A State-of-the-Art Review of Radioactive Decontamination Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities
Abstract
:1. Introduction
2. Methodology
2.1. Literatures Search
2.2. Screening
3. Radioactive Contamination
3.1. Surface Contamination Mechanism
3.2. Sources of Radionuclide Contaminants
3.3. Behavior Characteristics of Radionuclides
Radionuclides | Bulk Materials | Species on the Bulk Surface | Depth Distributions | References |
---|---|---|---|---|
235U | Rubber, cable | - | Rubber tube: 6.5–35.0 µm Rubber floor: 2.1–220 µm Cable insulation material: 3.5–38.3 µm | [18] |
90Sr | 316L stainless steel | SrCrO4 in the oxide layer SrCO3 in the matrix | Penetrating depth of ∼150 nm in 12 M HNO3 | [21] |
137Cs | 316L stainless steel | Cs2Cr2O7 in the oxide layer | Penetrating depth of ∼15 nm in 1 mM NaOH | [21] |
Concrete | Degraded concrete: several millimeters. Cracked concrete: >10 cm | [29] | ||
90Sr 137Cs 90Y | Concrete | 137Cs does not interact with cement hydrates. Sr interacts with cement hydrates through ion exchange with Ca. High pH of the cement hydrate forming a hydroxide of low Y solubility. | 137Cs: 15 mm with concentration of approximately 1 × 10−8 mol/kg. 90Sr: 3 mm with concentration of approximately 1 × 10−7 mol/kg. 90Y: on the surface of the mortar. | [30] |
3H | 316 stainless steel | Majority in HTO; minority in HT | HTO: ~0.01 µm with amount of 1015 molecules/cm2 | [23] |
CLAM steel CLF-1 steel | soluble tritium; non-soluble tritium | - | [24] | |
SS316 stainless steel | - | <10 µm with concentration of 1.5 × 1013 Bq/cm3 in adsorbed water layer and ~5µm with concentration of <107 Bq/cm3 | [25] | |
Low-carbon steel | - | Painted steel: <40 μm with activity concentration of <0.4 Bq g−1. Unpainted steel: <40 μm with activity concentration of >0.4 Bq g−1 and <0.4 Bq g−1 in the 40–80 μm layer. | [31] |
4. Recent Decontamination Technologies
4.1. Mechanical Methods
4.1.1. High-Pressure Liquid Jetting
4.1.2. Dry ice Blasting
4.1.3. Laser-Based Cleaning
4.1.4. Nonthermal Plasmas
4.2. Chemical Methods
4.2.1. Reagent Washing
4.2.2. Foam Decontamination
4.2.3. Chemical Gels
4.2.4. Strippable Coating
4.2.5. Electrochemical Method
5. Perspective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly as. Earth Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.T.; Xia, M.S.; Sarker, P.K.; Chen, T. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel 2014, 120, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Bhattarai, R.; Li, Y.; Si, B.; Dong, X.; Wang, T.; Yao, Z. Towards sustainable coal industry: Turning coal bottom ash into wealth. Sci. Total Environ. 2021, 804, 149985. [Google Scholar] [CrossRef] [PubMed]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.T.; Khan, D.; Zhu, B.; Batool, B. Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change. Energy 2021, 238, 121890. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. Reducing CO2 emissions in OECD countries: Do renewable and nuclear energy matter? Prog. Nucl. Energy 2020, 126, 103425. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Zhao, L.; Wang, S.; Li, J. Research on nuclear emergency decontamination technology based on strippable coating. J. Radioanal. Nucl. Chem. 2019, 322, 1049–1054. [Google Scholar] [CrossRef]
- Wu, K.; Ling, X.; Bian, C.; Lu, C. Research Progress of Radioactive Decontamination Methods. Int. Core J. Eng. 2021, 7, 206–215. [Google Scholar]
- Zhang, K.; Wang, S.; He, Z.; Wu, M.; Cao, X. Study on acrylate peelable nuclear detergent for film formation at low temperature. Appl. Radiat. Isot. 2020, 162, 109187. [Google Scholar] [CrossRef]
- Greifzu, G.; Kahl, T.; Herrmann, M.; Lippmann, W.; Hurtado, A. Laser-based decontamination of metal surfaces. Opt. Laser Technol. 2019, 117, 293–298. [Google Scholar] [CrossRef]
- Paul, M.J.; Biegalski, S.R.; Haas, D.A.; Jiang, H.; Daigle, H.; Lowrey, J.D. Xenon adsorption on geological media and implications for radionuclide signatures. J. Environ. Radioact. 2018, 187, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Dufour, N.; Dumazert, J.; Barat, E.; Bertrand, G.; Carrel, F.; Dautremer, T.; Lainé, F.; Sari, A. Measurement of low-activity uranium contamination by gamma-ray spectrometry for nuclear decommissioning, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detect. Assoc. Equip. 2020, 951, 162976. [Google Scholar] [CrossRef]
- Lang, A.R.; Engelberg, D.L.; Walther, C.; Weiss, M.; Bosco, H.; Jenkins, A.; Livens, F.R.; Law, G.T. Cesium and strontium contamination of nuclear plant stainless steel: Implications for decommissioning and waste minimization. ACS Omega 2019, 4, 14420–14429. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, D.F.; Herndon, J.M. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field. Proc. Natl. Acad. Sci. USA 2001, 98, 11085–11090. [Google Scholar] [CrossRef] [Green Version]
- Dighton, J. Fungi and Remediation of Radionuclide Pollution; CRC Press: Boca Raton, FL, USA, 2019; pp. 238–263. [Google Scholar]
- Kim, J.H.; Anwer, H.; Kim, Y.S.; Park, J. Decontamination of radioactive cesium-contaminated soil/concrete with washing and washing supernatant—Critical Review. Chemosphere 2021, 280, 130419. [Google Scholar] [CrossRef]
- Pozo, A.A.P.; Monroy-Guzmán, F.; Gómora-Herrera, D.R.; Navarrete-Bolaños, J.; Bustos, E.B. Radioactive decontamination of metal surfaces using peelable films made from chitosan gels and chitosan/magnetite nanoparticle composites. Prog. Nucl. Energy 2022, 144, 104088. [Google Scholar] [CrossRef]
- Shuai, Z.; Zhu, S.; Zhao, B.; Tong, C.; Gao, G.; Zhang, D.; Tan, Z. Study on 235U transfer depth in the rubber. Nucl. Power Eng. 2004, 25, 475–477. [Google Scholar]
- Gao, Z.; Li, J.; Ma, M.; Zheng, Z.; Han, L. Laser Decontamination of Metal Surface Polluted by Radioactive Waste. Progress Report on China Nuclear Science & Technology. 2017, Volume 5, pp. 139–147. (In Chinese). Available online: https://www.researchgate.net/publication/330381677_Laser_decontamination_of_metal_surface_polluted_by_Radioactive_Waste (accessed on 21 March 2021).
- Lang, A.; Engelberg, D.; Smith, N.T.; Trivedi, D.; Horsfall, O.; Banford, A.; Martin, P.A.; Coffey, P.; Bower, W.R.; Walther, C. Analysis of contaminated nuclear plant steel by laser-induced breakdown spectroscopy. J. Hazard. Mater. 2018, 345, 114–122. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.; Hu, Y.; Zhang, J.; Gao, Y.; Li, H.; Wang, S. Laser-induced breakdown spectroscopy for contamination analysis of Sr and Cs on 316L stainless steels in alkaline environment for spent nuclear fuel storage. Appl. Surf. Sci. 2021, 566, 150709. [Google Scholar] [CrossRef]
- Taylor-Underhill, A.L. Contamination of Stainless Steel Components with Stable Caesium and Strontium Isotopes; The University of Manchester: Manchester, UK, 2013. [Google Scholar]
- Hirabayashi, T.; Saeki, M. Sorption of gaseous tritium on the surface of type 316 stainless steel. J. Nucl. Mater. 1984, 120, 309–315. [Google Scholar] [CrossRef]
- Wang, Z.; Xiang, X.; Chen, C.A.; Yan, J.; Song, Y.; Rao, Y.; Zhu, K. The distribution and forming of tritium in two types of China reduced activation ferritic-martensitic steels. J. Nucl. Mater. 2019, 523, 342–346. [Google Scholar] [CrossRef]
- Sharpe, M.; Fagan, C.; Shmayda, W.T. Distribution of Tritium in the Near Surface of Type 316 Stainless Steel. Fusion Sci. Technol. 2019, 75, 1053–1057. [Google Scholar] [CrossRef]
- Fan, D.; Lu, G.; Zhang, G.; Bao, J.; Yang, F.; Xiang, X. Deuterium and Tritium Permeation in the Reduced Activation Ferritic/Martensitic Steel. Acta Met. Sin. 2018, 54, 519–526. [Google Scholar]
- Boda, A.; Sk, M.A.; Shenoy, K.T.; Mohan, S. Diffusion, permeation and solubility of hydrogen, deuterium and tritium in crystalline tungsten: First principles DFT simulations. Int. J. Hydrogen Energy 2020, 45, 29095–29109. [Google Scholar] [CrossRef]
- Byeon, W.J.; Yoon, S.; Seo, H.; Kim, H.S.; Lee, C.; Lee, S.K.; Chung, B.; Noh, S.J. Hydrogen-isotope transport in Ti-added reduced activation ferritic/martensitic steel. Fusion Eng. Des. 2020, 158, 111849. [Google Scholar] [CrossRef]
- Yamada, K.; Takeuchi, Y.; Igarashi, G.; Osako, M. Field Survey of Radioactive Cesium Contamination in Concrete After the Fukushima-Daiichi Nuclear Power Station Accident. J. Adv. Concr. Technol. 2019, 17, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Igarashi, G.; Osawa, N.; Kiran, R.; Haga, K.; Tomita, S.; Maruyama, I. Experimental study investigating the effects of concrete conditions on the penetration behaviors of Cs and Sr at low concentration ranges. J. Adv. Concr. Technol. 2021, 19, 756–770. [Google Scholar] [CrossRef]
- Lewis, A.; Warwick, P.E.; Croudace, I.W. Penetration of tritium (as tritiated water vapour) into low carbon steel and remediation using abrasive cleaning. J. Radiol. Prot. 2005, 25, 161–168. [Google Scholar] [CrossRef]
- Cavaghan, J. Decontamination and Recovery of a Nuclear Facility to Allow Continued Operation. Radiat. Prot. Dosim. 2017, 173, 118–123. [Google Scholar] [CrossRef]
- Ashtiani, R.S.; Pullen, A.B.; Hammons, M.I. Comparative study of water-blasting equipment for airfield surface decontamination. J. Mater. Civ. Eng. 2016, 28, 4016053. [Google Scholar] [CrossRef]
- Kohli, R. Applications of Solid Carbon Dioxide (Dry Ice) Pellet Blasting for Removal of Surface Contaminants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 117–169. [Google Scholar]
- Máša, V.; Horňák, D.; Petrilák, D. Industrial use of dry ice blasting in surface cleaning. J. Clean. Prod. 2021, 329, 129630. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Wang, L.; Jia, X.; Hong, M.; Ren, Y.; Ma, M. A novel de-rusting method with molten salt precleaning and laser cleaning for the recycling of steel parts. Clean Technol. Environ. Policy 2021, 23, 1403–1414. [Google Scholar] [CrossRef]
- López, M.; Calvo, T.; Prieto, M.; Múgica-Vidal, R.; Muro-Fraguas, I.; Alba-Elías, F.; Alvarez-Ordóñez, A. A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Front. Microbiol. 2019, 10, 622. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, B.; Dong, L.; Du, H.; Xiao, J. Low-pressure arc plasma-assisted nitriding of AISI 304 stainless steel. Surf. Coat. Technol. 2012, 210, 90–96. [Google Scholar] [CrossRef]
- Alassali, A.; Aboud, N.; Kuchta, K.; Jaeger, P.; Zeinolebadi, A. Assessment of Supercritical CO2 Extraction as a Method for Plastic Waste Decontamination. Polymers 2020, 12, 1347. [Google Scholar] [CrossRef]
- Kim, I. Fatigue strength improvement of longitudinal fillet welded out-of-plane gusset joints using air blast cleaning treatment. Int. J. Fatigue 2013, 48, 289–299. [Google Scholar] [CrossRef]
- Nedyalkova, I.P. Decontamination of Nuclear Plant Steels; The University of Manchester: Manchester, UK, 2019. [Google Scholar]
- Masserant, K.P. Cleaning of Radioactive Contamination Using Dry Ice. U.S. Patent 20130263890A1, 10 October 2013. [Google Scholar]
- Zeng, J.; Sun, J.; Zhang, H.; Yang, X.; Qiu, F.; Zhou, P.; Niu, W.; Dong, S.; Zhou, X.; Cao, X. Lanthanum magnesium hexaluminate thermal barrier coatings with pre-implanted vertical microcracks: Thermal cycling lifetime and CMAS corrosion behaviour. Ceram. Int. 2018, 44, 11472–11485. [Google Scholar] [CrossRef]
- Najafabadi, S.; Khajavi, R. Thermal stress induction for improving the absorption of raw cotton fabric and its effect on the morphology of in situ synthesized Cu nano particles. Cellulose 2018, 25, 2733–2743. [Google Scholar] [CrossRef]
- Demos, S.G.; Negres, R.A.; Raman, R.N.; Shen, N.; Rubenchik, A.M.; Matthews, M.J. Mechanisms governing the interaction of metallic particles with nanosecond laser pulses. Opt. Express 2016, 24, 7792–7815. [Google Scholar] [CrossRef]
- She, M.; Kim, D.; Grigoropoulos, C.P. Liquid-assisted pulsed laser cleaning using near-infrared and ultraviolet radiation. J. Appl. Phys. 1999, 86, 6519–6524. [Google Scholar] [CrossRef]
- Jr, A.J.P.; Dellamano, J.C.; Vicente, R.; Raele, M.P.; Wetter, N.U.; Landulfo, E. Laser decontamination of the radioactive lightning rods. Radiat. Phys. Chem. 2014, 95, 188–190. [Google Scholar]
- Li, Y.; Qing, Y.; Yang, W. Research of decontamination process of radioactive material on metal surface by pulse fiber laser. Appl. Laser 2019, 39, 1006–1011. (In Chinese) [Google Scholar]
- Hu, X.; Wang, C. Research on laser cleaning and recycling technology of oxide coating on stainless steel. Nucl. Sci. Technol. 2020, 8, 183–192. (In Chinese) [Google Scholar] [CrossRef]
- Ma, M.; Gao, Z.; Tang, X.; Zheng, Z.; Zhu, X.; Zhang, Y.; Liu, Y. Laser decontamination research on radioactive simulated specimens in air. J. Nucl. Radiochem. 2017, 39, 69–71. [Google Scholar]
- Kar, R.; Bute, A.; Chand, N.; Ahmed, Z.; Maiti, N.; Patil, D.S. Removal of Radioactive Waste by Nonthermal Plasma Etching: Trends for the Promising Future; Hussain, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–27. [Google Scholar]
- Windarto, H.F.; Matsumoto, T.; Akatsuka, H.; Suzuki, M. Decontamination process using CF4-O2 microwave discharge plasma at atmospheric pressure. J. Nucl. Sci. Technol. 2000, 37, 787–792. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, Y.; Kim, J.; Park, J.; Ju, W.; Paek, K.; Hwang, Y.S. Decontamination of radioactive metal surface by atmospheric pressure ejected plasma source. Surf. Coat. Technol. 2003, 171, 317–320. [Google Scholar] [CrossRef]
- Kim, Y.; Seo, Y.; Koo, M. Decontamination of metal surface by reactive cold plasma: Removal of cobalt. J. Nucl. Sci. Technol. 2004, 41, 1100–1105. [Google Scholar] [CrossRef]
- Kar, R.; Bute, A.; Chand, N.; Chandra, R.; Patil, D.S.; Jagasia, P.; Dhami, P.S.; Sinha, S. Feasibility of using non-thermal microwave plasma for nuclear waste management: A detailed study backed by plasma spectroscopy. Environ. Technol. Innov. 2018, 12, 219–229. [Google Scholar] [CrossRef]
- Petrovskaya, A.S.; Tsyganov, A.B.; Kladkov, A.Y.; Surov, S.V.; Stakhiv, M.R.; Polischuk, V.A. Surface deactivation of the nuclear power plants constructions by a new plasma method. In Proceedings of the 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 22–23 October 2018; pp. 230–232. [Google Scholar]
- Kim, G.; Yang, B.; Choi, W.; Lee, K.; Hyeon, J. Washing-electrokinetic decontamination for concrete contaminated with cobalt and cesium. Nucl. Eng. Technol. 2009, 41, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, M.D.; Lee, S.D.; Magnuson, M. Wide-area decontamination in an urban environment after radiological dispersion: A review and perspectives. J. Hazard. Mater. 2016, 305, 67–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuleev, P.V.; Andrews, W.S.; Creber, K.; Azmi, P.; Velicogna, D.; Kuang, W.; Volchek, K. Decontamination of radionuclides on construction materials. J. Radioanal. Nucl. Chem. 2013, 296, 811–815. [Google Scholar] [CrossRef]
- Kaminski, M.; Mertz, C.; Ortega, L.; Kivenas, N. Sorption of radionuclides to building materials and its removal using simple wash solutions. J. Environ. Chem. Eng. 2016, 4, 1514–1522. [Google Scholar] [CrossRef] [Green Version]
- Karthick, R.A.; Jangir, K.; Chattopadhyay, P. Foaming and cleaning performance comparison of liquid detergent formulations using mixtures of anionic and nonionic surfactants. Tenside Surfactants Deterg. 2018, 55, 162–168. [Google Scholar] [CrossRef]
- Causse, J.; Faure, S. Acidic surfactant solutions for tributylphosphate removal in nuclear fuel reprocessing plants: A formulation study. Chem. Eng. J. 2009, 147, 180–187. [Google Scholar] [CrossRef]
- Tongaonkar, J.G.; Bhagwat, S.S.; Srinivasa, C.; Banerjee, D.; Goswami, J.L.; Wattal, P.K. Foaming properties of amine oxide-based surfactants. Int. J. Nucl. Energy Sci. Technol. 2014, 8, 277–289. [Google Scholar] [CrossRef]
- Tian, Z.; Song, L.; Li, X. Effect of Oxidizing Decontamination Process on Corrosion Property of 304L Stainless Steel. Int. J. Corros. 2019, 2019, 1206098. [Google Scholar] [CrossRef] [Green Version]
- Bespala, E.V.; Antonenko, M.V.; Chubreev, D.O.; Leonov, A.V.; Novoselov, I.Y.; Pavlenko, A.P.; Kotov, V.N. Electrochemical treatment of irradiated nuclear graphite. J. Nucl. Mater. 2019, 526, 151759. [Google Scholar] [CrossRef]
- Toader, G.; Pulpea, D.; Rotariu, T.; Diacon, A.; Rusen, E.; Moldovan, A.; Podaru, A.; Ginghină, R.; Alexe, F.; Iorga, O. Strippable Polymeric Nanocomposites Comprising “Green” Chelates, for the Removal of Heavy Metals and Radionuclides. Polymers 2021, 13, 4194. [Google Scholar] [CrossRef]
- Yang, H.; Park, C.W.; Lee, K. Polymeric coatings for surface decontamination and ecofriendly volume reduction of radioactive waste after use. Prog. Nucl. Energy 2018, 104, 67–74. [Google Scholar] [CrossRef]
- Kim, S.; Won, H.; Moon, J.; Choi, W. Magnetite dissolution using hydrazine-acid solution for chemical decontamination. Trans. Am. Nucl. Soc. 2016, 115, 47–50. [Google Scholar]
- Han, S.; Hong, S.; Nam, S.; Kim, W.; Um, W. Decontamination of concrete waste from nuclear power plant decommissioning in South Korea. Ann. Nucl. Energy 2020, 149, 107795. [Google Scholar] [CrossRef]
- Parker, A.J.; Joyce, M.J.; Boxall, C. Remediation of 137Cs contaminated concrete using electrokinetic phenomena and ionic salt washes in nuclear energy contexts. J. Hazard. Mater. 2017, 340, 454–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arenas, L.F.; de León, C.P.; Walsh, F.C. Electrochemical redox processes involving soluble cerium species. Electrochim. Acta 2016, 205, 226–247. [Google Scholar] [CrossRef]
- Nishad, P.A.; Bhaskarapillai, A.; Velmurugan, S. Removal of antimony over nano titania–impregnated epichlorohydrin-crosslinked chitosan beads from a typical decontamination formulation. Nucl. Technol. 2017, 197, 88–98. [Google Scholar] [CrossRef]
- John, J.; Bartl, P.; Cubova, K.; Nemec, M.; Semelová, M.; Sebesta, F.; Sobova, T.; Sul’Akova, J.; Vetesnik, A.; Vopalka, D. Development of New Processes for the Decommissioning Decontamination and for Treatment and Disposal of the Secondary Low-and Intermediate-Level Radioactive Waste. J. Nucl. Fuel Cycle Waste Technol. 2021, 19, 9–27. [Google Scholar] [CrossRef]
- Sonn, J.S.; Lee, J.Y.; Jo, S.H.; Yoon, I.; Jung, C.; Lim, J.C. Effect of surface modification of silica nanoparticles by silane coupling agent on decontamination foam stability. Ann. Nucl. Energy 2018, 114, 11–18. [Google Scholar] [CrossRef]
- Lepeytre, C.; Frances, F.; Charvolin, M.; Ludwig, A.; le Toquin, E.; Comoy, E.; Grandjean, A.; Gossard, A. Colloidal gel as an efficient process to treat Chemical, Biological, Radiological (CBR) and prion contaminated solid surfaces. Chem. Eng. Sci. 2021, 246, 116957. [Google Scholar] [CrossRef]
- Fournel, B.; Faure, S.; Pouvreau, J.; Dame, C.; Poulain, S. Decontamination using foams: A brief review of 10 years French experience. In Proceedings of the 9th International Conference on Radioactive Waste Management and Environmental Remediation, Oxford, UK, 21–25 September 2003; pp. 1483–1489. [Google Scholar]
- Yoon, I.; Yoon, S.B.; Jung, C.; Kim, C.; Kim, S.; Moon, J.; Choi, W. A highly efficient decontamination foam stabilized by well-dispersed mesoporous silica nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 164–170. [Google Scholar] [CrossRef]
- Yoon, I.; Kim, S.E.; Choi, M.; Kim, S.; Choi, W.; Jung, C. Highly enhanced foams for stability and decontamination efficiency with a fluorosurfactant, silica nanoparticles, and Ce(IV) in radiological application. Environ. Technol. Innov. 2020, 18, 100744. [Google Scholar] [CrossRef]
- Yoon, I.; Jung, C.; Yoon, S.B.; Park, S.Y.; Moon, J.; Choi, W. Effect of silica nanoparticles on the stability of decontamination foam and their application for oxide dissolution of corroded specimens. Ann. Nucl. Energy 2014, 73, 168–174. [Google Scholar] [CrossRef]
- Yoon, I.; Yoon, S.B.; Sihn, Y.; Choi, M.; Jung, C.; Choi, W. Stabilizing decontamination foam using surface-modified silica nanoparticles containing chemical reagent: Foam stability, structures, and dispersion properties. RSC Adv. 2021, 11, 1841–1849. [Google Scholar] [CrossRef]
- Zhang, H.; Xi, H.; Li, Z.; Pan, X.; Wang, Y.; Chen, C.; Lin, X.; Luo, X. The stability and decontamination of surface radioactive contamination of biomass-based antifreeze foam. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126774. [Google Scholar] [CrossRef]
- Moore, J.J.; Raine, T.P.; Jenkins, A.; Livens, F.R.; Law, K.A.; Morris, K.; Law, G.; Yeates, S.G. Decontamination of caesium and strontium from stainless steel surfaces using hydrogels. React. Funct. Polym. 2019, 142, 7–14. [Google Scholar] [CrossRef]
- Gurau, D.; Deju, R. The use of chemical gel for decontamination during decommissioning of nuclear facilities. Radiat. Phys. Chem. 2015, 106, 371–375. [Google Scholar] [CrossRef]
- Yang, H.; Yoon, I.; Lee, Y. Poly(vinyl alcohol)-borax complex-based spray coating for the decontamination of radioactive Cs from wide-area surfaces. Chem. Eng. J. 2020, 402, 126299. [Google Scholar] [CrossRef]
- Yang, H.; Park, C.W.; Lee, K. Enhanced surface decontamination of radioactive Cs by self-generated, strippable hydrogels based on reversible cross-linking. J. Hazard. Mater. 2019, 362, 72–81. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, L.; Zhao, L.; Zhang, T. Strippable coatings for radioactive contamination removal: A short review and perspectives. J. Radioanal. Nucl. Chem. 2021, 330, 29–36. [Google Scholar] [CrossRef]
- Pulpea, D.; Rotariu, T.; Toader, G.; Pulpea, G.B.; Neculae, V.; Teodorescu, M. Decontamination of radioactive hazardous materials by using novel biodegradable strippable coatings and new generation complexing agents. Chemosphere 2020, 258, 127227. [Google Scholar] [CrossRef]
- Lu, C.; Tang, Q.; Chen, M.; Zhou, X.; Zheng, Z. Study on ultrasonic electrochemical decontamination. J. Radioanal. Nucl. Chem. 2018, 316, 1–7. [Google Scholar] [CrossRef]
- Pavlyuk, A.O.; Bespala, E.V.; Kotlyarevskii, S.G.; Zagumennov, V.S.; Zakharova, E.V.; Volkova, A.G.; Rodygina, N.I. Electrochemical Decontamination of Irradiated Nuclear Graphite of Uranium-Graphite Nuclear Reactors. At. Energy 2020, 128, 24–29. [Google Scholar] [CrossRef]
- Pujol, A.A.P.; Monroy, F.G.; Bustos, E.B. Electrocoagulation applied to the decontamination of stainless steel parts contaminated with uranium. In Proceedings of the 28th SNM Annual Congress, Mexico City, Mexico, 8–21 June 2017. [Google Scholar]
Type | Species | Advantages | Disadvantages | References |
---|---|---|---|---|
Water | Alone or with soap | Safe, inexpensive, and few handling problems | Low cleaning efficiency | [59,60] |
Detergents, surfactants | Anionic, cationoid, nonionic | Safe, mild | Limited effectiveness by themselves | [61,62,63] |
Alkali | NaOH, KOH | Relatively safe and nontoxic | Limited working range | [64,65] |
Chelators | Oxalic acid, citric acid and ethylenediaminetetraacetic acid | Relatively safe and nontoxic | Cost and limited working range | [66,67,68] |
Inorganic acids and salts | HCl, HNO3, H2SO4, H3PO4 | Being inexpensive and readily available | Compatibility issues and can cause fires with incompatible materials | [57,69] |
Organic acids and salts | Acetic acid, citric acid | Low corrosion and safer handling | Higher cost and slower reactivity | [57,70] |
Redox agents | KMnO4, K2S2O8, H2O2 | Inexpensive and few handling problems | Requires more skilled workers and good engineering/chemistry support | [71,72,73] |
Foams and gels | Foam, gel | Improving contact times | Poor penetrating ability | [74,75] |
Techniques | Advantages | Disadvantages/Limitations |
---|---|---|
High-pressure water jetting | 1. Using environmentally friendly water as a cleaning medium. 2. No chemical solvents or cleaning agents necessary. 3. Can be used for places that are hard to reach and for complex structures. 4. Fast, effective, and customizable process. | 1. Minimal material removal on the base material. 2. Having the potential to create larger volumes of liquid waste that would require effective management. |
Dry ice blasting | 1. A simple, nonabrasive cleaning method. 2. The solid pellets sublime directly after working, significantly reducing the amount of secondary waste for disposal. 3. No size limitations to the parts to be cleaned. | 1. Permitting direct release of CO2 to the environment via sublimation. 2. Some painted surfaces can be damaged by the process. 3. Requires large volumes of air and corresponding air compressors. |
Laser-based cleaning | 1. Precise treatment, high selectivity, and flexibility. 2. High speed, the possibility of remote control, minimal risk for personnel, less manual labor. | 1. Larger volume of particulate matter, including aerosol particles are generated. 2. High cost and high noise emission. 3. Required specialized equipment, safety measures, and trained personnel. |
Nonthermal plasmas | 1. Ability to operate at atmosphere pressure and room temperature. 2. Capable of cleaning a wide range of contaminants in a few seconds. | 1. Complicated technology with numerous factors affecting the efficiency. 2. High initial cost for facility. |
Reagent washing | 1. Relatively safe and nontoxic. 2. More effective on smooth nonporous surfaces. | 1. Cost and limited working range. 2. Having the potential to create larger volumes of liquid waste that would require effective management. |
Foam decontamination | 1. Low-volume secondary waste. 2. Lengthens the contact duration of the medium. | 1. Lifetime of foam is limited. 2. Care must be taken when flushing. |
Chemical gels | 1. Easy application and increased contact time. 2. Can reach remote and hidden areas. 3. Minimal secondary waste generation. | 1. May require repeated applications to achieve maximum effectiveness. 2. The formulation of colloidal gels are complex. |
Strippable coating | 1. Produce a single solid waste. 2. No airborne contamination. 3. No secondary liquid waste. | 1. The spray gun nozzles clog. 2. Best suited for smaller decontamination activities. 3. Only works for easily removed contaminants. |
Electrochemical method | 1. Quick processing time, high efficiency. 2. Small volume of secondary waste, thanks to the recycling/regeneration. | 1. Even with recycling, the saturated solutions require appropriate processes for final treatment. 2. Protection against chemical hazards with high corrosive products (acid, gas, etc.) and by products (H2, HF, etc.). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; He, Y.; Xie, H.; Ge, Y.; Lin, Y.; Yao, Z.; Jin, M.; Liu, J.; Chen, X.; Sun, Y.; et al. A State-of-the-Art Review of Radioactive Decontamination Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities. Sustainability 2022, 14, 4021. https://doi.org/10.3390/su14074021
Liu S, He Y, Xie H, Ge Y, Lin Y, Yao Z, Jin M, Liu J, Chen X, Sun Y, et al. A State-of-the-Art Review of Radioactive Decontamination Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities. Sustainability. 2022; 14(7):4021. https://doi.org/10.3390/su14074021
Chicago/Turabian StyleLiu, Shengyong, Yingyong He, Honghu Xie, Yongjun Ge, Yishan Lin, Zhitong Yao, Meiqing Jin, Jie Liu, Xinyang Chen, Yuhang Sun, and et al. 2022. "A State-of-the-Art Review of Radioactive Decontamination Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities" Sustainability 14, no. 7: 4021. https://doi.org/10.3390/su14074021
APA StyleLiu, S., He, Y., Xie, H., Ge, Y., Lin, Y., Yao, Z., Jin, M., Liu, J., Chen, X., Sun, Y., & Wang, B. (2022). A State-of-the-Art Review of Radioactive Decontamination Technologies: Facing the Upcoming Wave of Decommissioning and Dismantling of Nuclear Facilities. Sustainability, 14(7), 4021. https://doi.org/10.3390/su14074021