Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard (Brassica juncea L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Details
2.3. Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Changes in Soil Salinity
3.2. Soil Moisture Content (%)
3.3. Mass Balance of Drained Water and Salt
3.4. Yields (t ha−1)
3.5. Quality Parameters
3.6. Plant Water Relations
3.7. Relations of Yields with Plant Water Relations and Physiological Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organisation of the United Nations. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 26 January 2022).
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Bhowmik, P.C.; Hossain, M.; Rahman, M.M.; Fujita, M. Potential use of halophytes to remediate saline soils. BioMed Res. Int. 2014, 14, 589341. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Raju, R.; Kumar, A.; Kumar, P.; Sharma, P.C. Current status of research, technology response and policy needs of salt-affected soils in India–a review. J. Indian Soc. Coast. Agric. Res. 2018, 36, 40–53. [Google Scholar]
- CSSRI. Vision 2050; ICAR-Central Soil Salinity Research Institute: Karnal, India, 2015; Available online: https://cssri.res.in/download/vision_2050_cssri_karnal/?wpdmdl=3031 (accessed on 26 January 2022).
- Thimmappa, K.; Singh, Y.; Raju, R.; Tripathi, R.S.; Kumar, S.; Sendhil, R.; Mitrannavar, D. Declining farm productivity and profitability due to soil degradation in North India. J. Wheat Res. 2015, 7, 45–51. [Google Scholar]
- Mandal, A.K.; Sharman, R.C.; Singh, G.; Dagar, J.C. Computerised Database on Salt-Affected Soils in India; Technical Bulletin CSSRI, Karnal/2/2010; ICAR-Central Soil Salinity Research Institute: Karnal, India, 2010. [Google Scholar]
- Sharma, D.K.; Thimmappa, K.; Chinchmalatpure, A.R.; Mandal, A.K.; Yadav, R.K.; Chaudhari, S.K.; Satyendra, K.; Sikka, A.K. Assessment of Production and Monetary Losses from Salt-Affected Soils in India; Technical Bulletin ICAR-CSSRI/Karnal/2015/05; ICAR-Central Soil Salinity Research Institute: Karnal, India, 2015; p. 99. [Google Scholar]
- Sharma, D.K.; Singh, A. Salinity research in India-achievements, challenges and future prospects. Water Energy Int. 2015, 58, 35–45. [Google Scholar]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef]
- Yadav, T.; Kumar, A.; Yadav, R.K.; Yadav, G.; Kumar, R.; Kushwaha, M. Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet–wheat. Saudi J. Biol. Sci. 2020, 27, 2010–2017. [Google Scholar] [CrossRef]
- Ritzema, H.P.; Satyanarayana, T.V.; Raman, S.; Boonstra, J. Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers’ fields. Agric. Water Manag. 2008, 95, 179–189. [Google Scholar] [CrossRef]
- Jalota, S.K.; Arora, V.K. Model-based assessment of water balance components under different cropping systems in north-west India. Agric. Water Manag. 2002, 57, 75–87. [Google Scholar] [CrossRef]
- Boumans, J.H.; Van Hoorn, J.W.; Kruseman, G.P.; Tanwar, B.S. Water table control, reuse and disposal of drainage water in Haryana. Agric. Water Manag. 1988, 14, 537–545. [Google Scholar] [CrossRef]
- Singh, A. On Farm Irrigation Water Management in Raya through Simulation Modeling under Saline Groundwater Conditions. Ph.D. Thesis, CCS Haryana Agricultural University, Hisar, India, 1999. [Google Scholar]
- Singh, G.; Bundela, D.S.; Sethi, M.; Lal, K.; Kamra, S.K. Remote Sensing and Geographic Information System for Appraisal of Salt-Affected Soils in India. J. Environ. Qual. 2010, 39, 5–15. [Google Scholar] [CrossRef]
- Minhas, P.S.; Gupta, R.K. Quality of Irrigation Water: Assessment and Management; Indian Council of Agricultural Research: New Delhi, India, 1992. [Google Scholar]
- Maas, E.V.; Grattan, S.R. Crop yields as affected by salinity. Agric. Drain. 1999, 38, 55–108. [Google Scholar]
- Singh, J.; Sharma, P.C. Comparative effects of soil and water salinity on oil quality parameters of Brassica juncea. J. Oilseed Brassica 2016, 7, 29–37. [Google Scholar]
- Usda, N.R.C.S. The Plants Database; National Plant Data Center: Baton Rouge, LA, USA, 2013. [Google Scholar]
- Okuda, Y.; Goto, K.; Kitagawa, I. A Trial of Desalinization by Using a Mole-Drain in the Republic of Uzbekistan. In Development of Subsurface Drainage and Water-Saving Irrigation Technology for Mitigation of Soil Salinization in Uzbekistan; Japan International Research Center for Agricultural Sciences (JIRCAS): Tshukuba, Japan, 2020; p. 65. [Google Scholar]
- Neha; Yadav, G.; Yadav, R.K.; Kumar, A.; Rai, A.K.; Sehwag, M.; Onishi, J.; Omori, K.; Sharma, P.C. Desalinization effect of simulated Cut-soiler based residue filled preferential shallow sub surface drainage improves physiology and yield of rain-fed pearl millet in saline semiarid regions. Land Degrad. Dev. 2022. [Google Scholar] [CrossRef]
- Narjary, B.; Kumar, S.; Kamra, S.K.; Bundela, D.S.; Sharma, D.K. Impact of rainfall variability on groundwater resources and opportunities of artificial recharge structure to reduce its exploitation in fresh groundwater zones of Haryana. Curr. Sci. 2014, 107, 1305–1312. [Google Scholar]
- Gabriel, J.L.; Almendros, P.; Hontoria, C.; Quemada, M. The role of cover crops in irrigated systems: Soil salinity and salt leaching. Agric. Ecosyst. Environ. 2012, 158, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; USDA Agriculture Handbook; U.S. Government Printing Office: Washington, DC, USA, 1954; Volume 60, p. 160. [Google Scholar]
- Weatherley, P. Studies in the water relations of the cotton plant: I. The field measurement of water deficits in leaves. New Phytol. 1950, 49, 81–97. [Google Scholar] [CrossRef]
- Statistical Analysis System. User’s Guide: Statistics, Version 8.2; SAS Institute: Cary, NC, USA, 2001. [Google Scholar]
- Okuda, Y.; Onishi, J.; Shirokova, Y.I.; Kitagawa, I.; Kitamura, Y.; Fujimaki, H. Salt removal technology by shallow subsurface drainage in combination with a cut-drain. J. Arid. Land Stud. 2018, 28, 127–130. [Google Scholar]
- Meena, M.D.; Joshi, P.K.; Narjary, B.; Sheoran, P.; Jat, H.S.; Chinchmalatpure, A.R.; Sharma, D.K. Effects of municipal solid waste compost, rice-straw compost and mineral fertilizers on biological and chemical properties of a saline soil and yields in a mustard–pearl millet cropping system. Soil Res. 2016, 54, 958–969. [Google Scholar] [CrossRef]
- Gandahi, A.W.; Gandahi, R.; Sarki, M.S.; Buriro, M. Effect of saline groundwater on growth, fodder yield and ion content of various maize (Zea mays L.) cultivars. Sci. Int. 2015, 27, 3305–3309. [Google Scholar]
- Sharma, D.P.; Tyagi, N.K. On-farm management of saline drainage water in arid and semi-arid regions. Irrig. Drain. 2004, 53, 87–103. [Google Scholar] [CrossRef]
- Yadav, R.K.; Datta, A.; Dagar, J.C. Future Research Needs: Way Forward for Combating Salinity in Climate Change Scenario. In Research Developments in Saline Agriculture; Springer: Singapore, 2019; pp. 883–899. [Google Scholar]
- Arvind, K.Y. Agro Physiological Traits for Drought Tolerance in Pearl Millet (Pennisetum glaucum L.). Ph.D. Thesis, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India, 2013. [Google Scholar]
- Lu, P.; Zhang, Z.; Sheng, Z.; Huang, M.; Zhang, Z. Assess effectiveness of salt removal by a subsurface drainage with bundled crop straws in coastal saline soil using HYDRUS-3D. Water 2019, 11, 943. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, K.K.; Pradhan, S.; Sahoo, R.N.; Singh, R.; Gupta, V.K.; Joshi, D.K.; Sutradhar, A.K. Characterization of water stress and prediction of yield of wheat using spectral indices under varied water and nitrogen management practices. Agric. Water Manag. 2014, 146, 115–123. [Google Scholar] [CrossRef]
- Prasad, P.V.; Boote, K.J.; Allen, L.H., Jr. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric. For. Meteorol. 2006, 139, 237–251. [Google Scholar] [CrossRef]
- Meena, H.N.; Bhalodia, P.K.; Jat, R.S.; Vekaria, L.C. Prospects of using saline water for irrigation in groundnut (Arachis hypogaea)-pearl millet (Pennisetum glaucum) cropping system in saline black soils of Saurashtra. Indian J. Agron. 2012, 57, 122–126. [Google Scholar]
- Wakchaure, G.C.; Minhas, P.S.; Ratnakumar, P.; Choudhary, R.L. Effect of plant bioregulators on growth, yield and water production functions of sorghum [Sorghum bicolor (L.) Moench]. Agric. Water Manag. 2016, 177, 138–145. [Google Scholar] [CrossRef]
- Mathew, E.K.; Panda, R.K.; Nair, M. Influence of subsurface drainage on crop production and soil quality in a low-lying acid sulphate soil. Agric. Water Manag. 2001, 47, 191–209. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, Z.; Zhang, Z. Evaluating the sustainable use of saline water irrigation on soil water-salt content and grain yield under subsurface drainage condition. Sustainability 2019, 11, 6431. [Google Scholar] [CrossRef] [Green Version]
- Chiba, K.; Kato, T.; Togashi, C.; Kanmuri, H. Effectiveness of desalinization by infiltration of water and desalinization of tsunami-hit farmlands in Miyagi Prefecture. Water Land Environ. Eng. 2012, 80, 3–6. (In Japanese) [Google Scholar]
- Kaneko, T.; Murakawa, M.; Kozai, N.; Mitsugi, K. Desalting technique for illuviated salts soil at paddy field by using underdrainage. J. Jpn. Soc. Irrig. Drain. Reclam. Eng. Jpn. 2002, 70, 611–614. [Google Scholar]
- Makarana, G.; Yadav, R.K.; Kumar, R.; Soni, P.G.; Yadav, T.; Yadav, M.R.; Meena, V.K. Fodder yield and quality of pearl millet (Pennisetum glaucum L.) Genotypes as influenced by salinity of irrigation water in north western India. Indian J. Anim. Nutr. 2017, 34, 56–63. [Google Scholar] [CrossRef]
- Nadaf, S.K.; Al-Hinai, S.A.; Al-Farsi, S.M.; Al-Lawati, A.H.; Al-Bakri, A.N.; Ahmed, M.; Hussain, N. Differential Response of Salt Tolerant Pearl Millet Genotypes to Irrigation Water Salinity. In The Monograph on Management of Salt-Affected Soils and Water for Sustainable Agriculture; Mushtaque, A., Al-Rawahi, S.A., Hussain, N., Eds.; Sultan Qaboos University: Muscat, Oman, 2010; pp. 47–60. [Google Scholar]
- Singh, J.; Sharma, P.C.; Sharma, S.K.; Rai, M. Assessing the effect of salinity on the oil quality parameters of Indian mustard (Brassica juncea L. Czern&Coss) using Fourier Transform Near-Infrared Reflectance (FT-NIR) spectroscopy. Grasas Y Aceites 2014, 65, e009. [Google Scholar]
- Toorchi, M.; Naderi, R.; Kanbar, A.; Shakiba, M.R. Response of spring canola cultivars to sodium chloride stress. Ann. Biol. Res. 2012, 2, 312–322. [Google Scholar]
- Cucci, G.; Rotunno, T.; De Caro, A.; Lacolla, G.; Di Caterina, R.; Tarantino, E. Effects of saline and sodic stress on yield and fatty acid profile in sunflower seeds. Ital. J. Agron. 2007, 2, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Mann, A.; Kumar, A.; Kumar, N.; Meena, B.L. Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. Int. J. Phytoremediat. 2021. [Google Scholar] [CrossRef]
- Greenway, H.; Munns, R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Nandwal, A.S.; Kukreja, S.; Kumar, N.; Sharma, P.K.; Jain, M.; Mann, A.; Singh, S. Plant water status, ethylene evolution, N2-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. J. Plant Physiol. 2007, 164, 1161–1169. [Google Scholar] [CrossRef]
- Neto, M.T.C.; Reinhardt, D.H.; Ledo, C.A.d.S. Determination of water potential on mango trees by pressure chamber. Acta Hort. 2004, 645, 425–427. [Google Scholar] [CrossRef]
- Pooja, D.; Nandwal, A.S.; Chand, M.; Singh, K.; Mishra, A.K.; Kumar, A.; Kumari, A.; Rani, B. Varietal variation in physiological and biochemical attributes of sugarcane varieties under different soil moisture regimes. Indian J. Exp. Biol. 2019, 57, 721–732. [Google Scholar]
Soil Properties | ECe 1 (dS m−1) | pHs 2 | Bulk Density | Hydraulic Conductivity (cm Day−1) | Texture | Soil Moisture | |
---|---|---|---|---|---|---|---|
Before Sowing (%) | After Harvest (%) | ||||||
Saline soil | 6.0 | 7.14 | 1.57 | 30–51 | Sandy loam | 20.55 | 18.46 |
Heavy-textured soil | 3.02 | 7.34 | 1.67 | 8–13 | Silty clay loam | 23.36 | 19.21 |
Period | Rainfall (mm) | Irrigation (mm) | Evaporation (mm) | Drain Water (mm) | Drain EC * (dS m−1) | Salt Removed (kg/lys *) |
---|---|---|---|---|---|---|
18 June to 18 October | 984.7 | 3 × 50 | 524.1 | 188.4 (753 L) | 3.50 | 1.7 |
18 November to 19 April | 79.6 | 3 × 50 | 491.9 | -- | -- | -- |
19 May to 19 October | 400.3 | 3 × 50 | 984.8 | 42.7 (170 L) | 2.93 | 0.32 |
19 November to 20 April | 322.3 | 3 × 50 | 444.4 | 14.6 (58.4 L) | 3.14 | 0.12 |
20 May to 20 October | 995.3 | 3 × 50 | 873.0 | 137.5 (550 L) | 2.16 | 0.77 |
20 November to 21 April | 113.0 | 3 × 50 | 542.1 | --- | -- |
Treatments/Traits | Seed Yield (t ha−1) | Straw Yield (t ha−1) | Biological Yield (t ha−1) | Harvest Index (%) |
---|---|---|---|---|
Years | ||||
2019–2020 | 2.41 B | 8.06 B | 10.47 B | 22.90 A |
2020–2021 | 2.51 A | 8.60 A | 11.11 A | 22.50 B |
CD (p = 0.05) | 0.06 ± 0.02 | 0.15 ± 0.05 | 0.21 ± 0.06 | 0.27 ± 0.08 |
Cut-soiler | ||||
Cut-soiler | 2.80 A | 8.89 A | 11.69 A | 23.90 A |
Without cut-soiler | 2.13 B | 7.77 B | 9.90 B | 21.49 B |
CD (p = 0.05) | 0.06 ± 0.02 | 0.15 ± 0.05 | 0.21 ± 0.06 | 0.27 ± 0.08 |
Soil type | ||||
Saline soil | 2.34 B | 8.10 B | 10.44 B | 22.25 B |
Heavy-textured soil | 2.59 A | 8.55 A | 11.15 A | 23.14 A |
CD (p = 0.05) | 0.03 ± 0.01 | 0.07 ± 0.03 | 0.08 ± 0.04 | 0.21 ± 0.1 |
Irrigation water salinity | ||||
S1 (4 dS m−1) | 2.64 A | 8.64 A | 11.29 A | 23.29 A |
S2 (8 dS m−1) | 2.46 B | 8.32 B | 10.78 B | 22.69 B |
S3 (12 dS m−1) | 2.29 C | 8.01 C | 10.30 C | 22.11 C |
CD (p = 0.05) | 0.03 ± 0.02 | 0.08 ± 0.04 | 0.1 ± 0.05 | 0.26 ± 0.12 |
Treatments/Traits | Oil Content (%) | Crude Fiber (%) | Protein Content (%) | Erucic Acid (%) |
---|---|---|---|---|
Years | ||||
2019–2020 | 38.99 B | 9.87 | 19.42 B | 40.87 A |
2020–2021 | 39.47 A | 10.05 | 19.59 A | 39.66 B |
CD (p = 0.05) | 0.12 ± 0.04 | NS | 0.11 ± 0.03 | 0.21 ± 0.07 |
Cut-soiler | ||||
Cut-soiler | 39.53 A | 10.39 A | 19.75 A | 38.79 B |
Without cut-soiler | 38.92 B | 9.53 B | 19.26 B | 41.74 A |
CD (p = 0.05) | 0.12 ± 0.04 | 0.2 ± 0.06 | 0.11 ± 0.03 | 0.21 ± 0.07 |
Soil type | ||||
Saline soil | 39.06 B | 9.65 B | 19.32 B | 43.31 A |
Heavy-textured soil | 39.39 A | 10.27 A | 19.69 A | 37.22 B |
CD (p = 0.05) | 0.1 ± 0.05 | 0.07 ± 0.03 | 0.05 ± 0.02 | 0.36 ± 0.17 |
Irrigation water salinity | ||||
S1 (4 dS m−1) | 39.40 A | 10.15 A | 19.63 A | 39.00 C |
S2 (8 dS m−1) | 39.20 B | 9.94 B | 19.51 B | 40.24 B |
S3 (12 dS m−1) | 39.08 C | 9.79 C | 19.38 C | 41.56 A |
CD (p = 0.05) | 0.12 ± 0.06 | 0.08 ± 0.04 | 0.06 ± 0.03 | 0.44 ± 0.21 |
Treatments/ Traits | Relative Water Content (%) | Water Potential (−MPa) | Osmotic Potential (−MPa) | Turgor Pressure | ||||
---|---|---|---|---|---|---|---|---|
Veg | Repro | Veg | Repro | Veg | Repro | Veg | Repro | |
Years | ||||||||
2019–2020 | 86.14 | 77.82 B | −2.27 A | −1.71 A | −2.57 A | −2.42 A | 0.301 | 0.710 |
2020–2021 | 86.59 | 79.11 A | −2.03 B | −1.55 B | −2.39 B | −2.26 B | 0.360 | 0.700 |
CD (p = 0.05) | NS | 0.5 ± 0.2 | 0.09 ± 0.04 | 0.06 ± 0.02 | 0.16 ± 0.06 | 0.15 ± 0.06 | NS | NS |
Cut-soiler | ||||||||
Cut-soiler | 91.26 A | 82.75 A | −1.88 B | −1.47 B | −2.31 B | −2.14 B | 0.430 A | 0.670 |
Without cut-soiler | 81.48 B | 74.17 B | −2.42 A | −1.80 A | −2.66 A | −2.54 A | 0.232 B | 0.742 |
CD (p = 0.05) | 0.62 ± 0.25 | 0.5 ± 0.2 | 0.09 ± 0.04 | 0.06 ± 0.02 | 0.16 ± 0.06 | 0.15 ± 0.06 | 0.1 ± 0.04 | NS |
Soil type | ||||||||
Saline soil | 83.61 B | 76.12 B | −2.59 A | −1.86 A | −2.84 A | −2.68 A | 0.251 B | 0.821 A |
Heavy-textured soil | 89.13 A | 80.81 A | −1.71 B | −1.40 B | −2.12 B | −1.99 B | 0.410 A | 0.592 B |
CD (p = 0.05) | 0.37 ± 0.18 | 0.42 ± 0.21 | 0.06 ± 0.03 | 0.06 ± 0.03 | 0.1 ± 0.05 | 0.13 ± 0.06 | 0.11 ± 0.05 | 0.13 ± 0.07 |
Irrigation water salinity | ||||||||
S1 (4 dS m−1) | 88.30 A | 80.55 A | −1.90 C | −1.27 C | −2.12 C | −1.97 C | 0.230 B | 0.719 |
S2 (8 dS m−1) | 86.81 B | 78.54 B | −2.12 B | −1.62 B | −2.46 B | −2.32 B | 0.341 AB | 0.715 |
S3 (12 dS m−1) | 84.00 C | 76.31 C | −2.43 A | −2.01 A | −2.86 A | −2.72 A | 0.430 A | 0.711 |
CD (p = 0.05) | 0.45 ± 0.22 | 0.51 ± 0.25 | 0.08 ± 0.04 | 0.08 ± 0.04 | 0.12 ± 0.06 | 0.16 ± 0.08 | 0.13 ± 0.07 | NS |
* GY | * SY | * BY | * HI | * RWC | * WP | * OP | * TP | * OC | * PC | * CF | * EA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | Pearson Corr. | 1 | 0.96 | 0.98 | 0.97 | 0.95 | −0.69 | −0.72 | −0.15 | 0.96 | 0.81 | 0.77 | −0.63 |
GY | p-value | -- | 2.08 × 10−7 | 2.04 × 10−9 | 5.47 × 10−8 | 2.04 × 10−6 | 0.012 | 0.007 | 0.620 | 2.76 × 10−7 | 0.001 | 0.002 | 0.025 |
SY | Pearson Corr. | 0.96 | 1 | 0.99 | 0.89 | 0.96 | −0.79 | −0.70 | 0.005 | 0.95 | 0.83 | 0.80 | −0.68 |
SY | p-value | 2.08E-07 | -- | 1.16 × 10−11 | 7.73 × 10−5 | 4.91 × 10−7 | 0.002 | 0.010 | 0.98 | 1.96 × 10−6 | 7.95 × 10−4 | 0.001 | 0.014 |
BY | Pearson Corr. | 0.98 | 0.99 | 1 | 0.93 | 0.96 | −0.76 | −0.71 | −0.056 | 0.96 | 0.83 | 0.80 | −0.66 |
BY | p-value | 2.04 × 10−9 | 1.16 × 10−11 | -- | 9.27 × 10−6 | 3.52 × 10−7 | 0.003 | 0.008 | 0.860 | 4.26 × 10−7 | 7.89 × 10−4 | 0.001 | 0.017 |
HI | Pearson Corr. | 0.97 | 0.89 | 0.93 | 1 | 0.89 | −0.58 | −0.69 | −0.27 | 0.92 | 0.74 | 0.68 | −0.57 |
HI | p-value | 5.47 × 10−8 | 7.73 × 10−5 | 9.27 × 10−6 | -- | 7.57 × 10−5 | 0.045 | 0.011 | 0.39 | 1.44 × 10−5 | 0.005 | 0.013 | 0.049 |
RWC | Pearson Corr. | 0.95 | 0.96 | 0.96 | 0.89 | 1 | −0.74 | −0.68 | −0.02 | 0.97 | 0.91 | 0.85 | −0.76 |
RWC | p-value | 2.04 × 10−6 | 4.91 × 10−7 | 3.52 × 10−7 | 7.57 × 10−5 | -- | 0.005 | 0.014 | 0.93 | 3.00 × 10−8 | 3.38 × 10−5 | 3.45 × 10−4 | 0.003 |
WP | Pearson Corr. | −0.69 | −0.79 | −0.76 | −0.58 | −0.74 | 1 | 0.77 | −0.18 | −0.68 | −0.60 | −0.62 | 0.68 |
WP | p-value | 0.012 | 0.002 | 0.003 | 0.045 | 0.005 | -- | 0.003 | 0.571 | 0.013 | 0.037 | 0.029 | 0.014 |
OP | Pearson Corr. | −0.72 | −0.70 | −0.71 | −0.69 | −0.68 | 0.77 | 1 | 0.47 | −0.71 | −0.66 | −0.70 | 0.74 |
OP | p-value | 0.007 | 0.010 | 0.008 | 0.011 | 0.014 | 0.003 | -- | 0.114 | 0.008 | 0.018 | 0.009 | 0.005 |
TP | Pearson Corr. | −0.159 | 0.005 | −0.056 | −0.271 | −0.027 | −0.182 | 0.479 | 1 | −0.162 | −0.197 | −0.237 | 0.209 |
TP | p-value | 0.620 | 0.987 | 0.860 | 0.392 | 0.932 | 0.571 | 0.114 | -- | 0.614 | 0.538 | 0.457 | 0.512 |
OC | Pearson Corr. | 0.967 | 0.951 | 0.964 | 0.927 | 0.979 | −0.685 | −0.715 | −0.162 | 1 | 0.920 | 0.881 | −0.705 |
OC | p-value | 2.76 × 10−7 | 1.96 × 10−6 | 4.26 × 10−7 | 1.44 × 10−5 | 3.00 × 10−8 | 0.013 | 0.008 | 0.614 | -- | 2.19 × 10−5 | 1.53 × 10−4 | 0.010 |
PC | Pearson Corr. | 0.816 | 0.831 | 0.832 | 0.746 | 0.913 | −0.603 | −0.665 | −0.197 | 0.920 | 1 | 0.976 | −0.829 |
PC | p-value | 0.0012 | 7.95 × 10−4 | 7.89 × 10−4 | 0.0052 | 3.38 × 10−5 | 0.0376 | 0.0181 | 0.538 | 2.19 × 10−5 | -- | 5.23 × 10−8 | 8.54 × 10−4 |
CF | Pearson Corr. | 0.77 | 0.80 | 0.80 | 0.68 | 0.85 | −0.62 | −0.70 | −0.23 | 0.88 | 0.97 | 1 | −0.82 |
CF | p-value | 0.002 | 0.001 | 0.001 | 0.013 | 3.45 × 10−4 | 0.029 | 0.009 | 0.457 | 1.53 × 10−4 | 5.23 × 10−8 | -- | 8.64 × 10−4 |
EA | Pearson Corr. | −0.63 | −0.68 | −0.66 | −0.57 | −0.76 | 0.68 | 0.74 | 0.20 | −0.70 | −0.82 | −0.82 | 1 |
EA | p-value | 0.025 | 0.014 | 0.017 | 0.049 | 0.0038 | 0.014 | 0.005 | 0.512 | 0.010 | 8.54 × 10−4 | 8.64 × 10−4 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neha; Yadav, G.; Yadav, R.K.; Kumar, A.; Rai, A.K.; Onishi, J.; Omori, K.; Sharma, P.C. Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard (Brassica juncea L.). Sustainability 2022, 14, 4146. https://doi.org/10.3390/su14074146
Neha, Yadav G, Yadav RK, Kumar A, Rai AK, Onishi J, Omori K, Sharma PC. Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard (Brassica juncea L.). Sustainability. 2022; 14(7):4146. https://doi.org/10.3390/su14074146
Chicago/Turabian StyleNeha, Gajender Yadav, Rajender Kumar Yadav, Ashwani Kumar, Aravind Kumar Rai, Junya Onishi, Keisuke Omori, and Parbodh Chander Sharma. 2022. "Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard (Brassica juncea L.)" Sustainability 14, no. 7: 4146. https://doi.org/10.3390/su14074146
APA StyleNeha, Yadav, G., Yadav, R. K., Kumar, A., Rai, A. K., Onishi, J., Omori, K., & Sharma, P. C. (2022). Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard (Brassica juncea L.). Sustainability, 14(7), 4146. https://doi.org/10.3390/su14074146