Responses in Soil Carbon and Nitrogen Fractionation after Prescribed Burning in the Montseny Biosphere Reserve (NE Iberian Peninsula)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Laboratory Determinations
2.3. Data Analysis
3. Results
3.1. Overall Soil C and N Distribution
3.2. Total and Fractional Soil C
3.3. Total and Fractional soil N
Explanatory Variables | Nitrogen Variables | |||
---|---|---|---|---|
Total Soil Nitrogen | Nitrogen in Clay | Nitrogen in Silt | Nitrogen in Sand | |
Slope | 0.001 ** | 0.003 ** | 0.003 ** | <0.001 *** |
Burning | 0.028 * | 0.047 * | 0.002 ** | 0.108 |
Species | 0.075 | 0.088 | 0.102 | 0.013 * |
Soil depth | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Burning * Soil depth | - | - | 0.022 * | 0.082 |
3.4. Total and Fractional Soil C/N Ratio
Explanatory Variables | C/N Ratio | |||
---|---|---|---|---|
Total C/N Ratio | C/N Ratio in Clay | C/N Ratio in Silt | C/N Ratio in Sand | |
Slope | - | 0.031 * | - | 0.104 |
Burning | 0.002 ** | 0.024 * | <0.001 *** | 0.415 |
Species | 0.821 | - | - | - |
Soil depth | <0.001 *** | 0.014⁎ | <0.001 *** | <0.001 *** |
Burning * Soil depth | 0.051 | - | - | 0.033 * |
Burning * Species | 0.023 * | - | - | - |
4. Discussion
4.1. Total and Fractional Soil C and N Distribution before and after Burning
4.2. Plant Species and Species Legacy Effects on Total and Fractional Soil C and N Distribution after Burning
4.3. Total and Fractional Soil C/N Ratio
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- San Emeterio, L.; Múgica, L.; Gutiérrez, R.; Juaristi, A.; Pedro, J.; Canals Tresserras, R. Cambios en el nitrógeno edáfico tras la realización de quemas controladas para mejora de pastos pirenaicos. Pastos Rev. la Soc. Española para el Estud. los Pastos 2013, 43, 44–53. [Google Scholar]
- Reverchon, F.; Xu, Z.; Blumfield, T.J.; Chen, C.; Abdullah, K.M. Impact of global climate change and fire on the occurrence and function of understorey legumes in forest ecosystems. J. Soils Sediments 2012, 12, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran Nair, P.K.; Nair, V.D.; Mohan Kumar, B.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar] [CrossRef]
- McLauchlan, K.K.; Hobbie, S.E. Comparison of Labile Soil Organic Matter Fractionation Techniques. Soil Sci. Soc. Am. J. 2004, 68, 1616–1625. [Google Scholar] [CrossRef]
- Snider, M.J.; Reinhardt, L.; Wolfenden, R.; Cleland, W.W. 15N kinetic isotope effects on uncatalyzed and enzymatic deamination of cytidine. Biochemistry 2002, 41, 415–421. [Google Scholar] [CrossRef]
- Dijkstra, P.; Menyailo, O.V.; Doucett, R.R.; Hart, S.C.; Schwartz, E.; Hungate, B.A. C and N availability affects the 15N natural abundance of the soil microbial biomass across a cattle manure gradient. Eur. J. Soil Sci. 2006, 57, 468–475. [Google Scholar] [CrossRef]
- Artz, R.R.E.; Reid, E.; Anderson, I.C.; Campbell, C.D.; Cairney, J.W.G. Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils. FEMS Microbiol. Ecol. 2009, 67, 397–410. [Google Scholar] [CrossRef]
- Davies, G.M.; Domènech, R.; Gray, A.; Johnson, P.C.D. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires. Biogeosciences 2016, 13, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Soto, B.; Diaz-Fierros, F. Interactions between plant ash leachates and soil. Int. J. Wildl. Fire 1993, 3, 207–216. [Google Scholar] [CrossRef]
- Úbeda, X.; Lorca, M.; Outeiro, L.R.; Bernia, S.; Castellnou, M. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). Int. J. Wildl. Fire 2005, 14, 379–384. [Google Scholar] [CrossRef]
- Roaldson, L.M.; Johnson, D.W.; Miller, W.W.; Murphy, J.D.; Walker, R.F.; Stein, C.M.; Glass, D.W.; Blank, R.R. Prescribed Fire and Timber Harvesting Effects on Soil Carbon and Nitrogen in a Pine Forest. Soil Sci. Soc. Am. J. 2014, 78, S48–S57. [Google Scholar] [CrossRef]
- Boyer, W.D.; Miller, J.H. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. For. Ecol. Manag. 1994, 70, 311–318. [Google Scholar] [CrossRef]
- Girona-García, A.; Ortiz-Perpiñá, O.; Badía-Villas, D.; Martí-Dalmau, C. Effects of prescribed burning on soil organic C, aggregate stability and water repellency in a subalpine shrubland: Variations among sieve fractions and depths. Catena 2018, 166, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Armas-Herrera, C.M.; Martí, C.; Badía, D.; Ortiz-Perpiñá, O.; Girona-García, A.; Porta, J. Immediate effects of prescribed burning in the Central Pyrenees on the amount and stability of topsoil organic matter. Catena 2016, 147, 238–244. [Google Scholar] [CrossRef]
- Marion, G.M.; Moreno, J.M.; Oechel, W.C. Fire Severity, Ash Deposition, and Clipping Effects on Soil Nutrients in Chaparral. Soil Sci. Soc. Am. J. 1991, 55, 235–240. [Google Scholar] [CrossRef]
- Rovira, P.; Romanyà, J.; Duguy, B. Long-term effects of wildfires on the biochemical quality of soil organic matter: A study on Mediterranean shrublands. Geoderma 2012, 179–180, 9–19. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview. Adv. Agron. 2005, 85, 221–268. [Google Scholar] [CrossRef]
- Wiesenberg, G.L.B.; Dorodnikov, M.; Kuzyakov, Y. Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping. Geoderma 2010, 156, 267–277. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O.; Gallet, C. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol. Biochem. 2003, 35, 827–835. [Google Scholar] [CrossRef]
- Debouk, H.; Emeterio, L.S.; Marí, T.; Canals, R.M.; Sebastià, M.T. Plant functional diversity, climate and grazer type regulate soil activity in natural grasslands. Agronomy 2020, 10, 1291. [Google Scholar] [CrossRef]
- De Kauwe, M.G.; Medlyn, B.E.; Zaehle, S.; Walker, A.P.; Dietze, M.C.; Wang, Y.P.; Luo, Y.; Jain, A.K.; El-Masri, B.; Hickler, T.; et al. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 2014, 203, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Craine, J.M.; Tilman, D.; Wedin, D.; Reich, P.; Tjoelker, M.; Knops, J. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct. Ecol. 2002, 16, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.D.; Ehleringer, J.R. A break in the nitrogen cycle in aridlands? Evidence from δp15N of soils. Oecologia 1993, 94, 314–317. [Google Scholar] [CrossRef]
- Granged, A.J.P.; Jordán, A.; Zavala, L.M.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167–168, 125–134. [Google Scholar] [CrossRef]
- Crow, T.R. Ecosystems: Balancing Science with Management. Restor. Ecol. 2000, 8, 99–101. [Google Scholar] [CrossRef]
- Vellend, M.; Brown, C.D.; Kharouba, H.M.; Mccune, J.L.; Myers-Smith, I.H. Historical ecology: Using unconventional data sources to test for effects of global environmental change. Am. J. Bot. 2013, 100, 1294–1305. [Google Scholar] [CrossRef] [Green Version]
- Belillas, C.M.; Rodà, F. Nutrient budgets in a dry heathland watershed in northeastern Spain. Biogeochemistry 1991, 13, 137–157. [Google Scholar] [CrossRef]
- Pié Valls, G.; Vilar Sais, L. Corologia de la flora vascular d’interès de conservació al Parc Natural del Montseny. Butlletí la Inst. Catalana d’Història Nat. 2014, 3987, 65–74. [Google Scholar] [CrossRef]
- Bartolomé, J.; Plaixats, J.; Fanlo, R.; Boada, M. Conservation of isolated Atlantic heathlands in the Mediterranean region: Effects of land-use changes in the Montseny biosphere reserve (Spain). Biol. Conserv. 2005, 122, 81–88. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of SOM implications for C saturation of soils.pdf. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Smilauer, P. Canoco (Version 5.10): Canoco Reference Manual and User’s Guide: Software for Ordination; Biometris, Wageningen University & Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Found. Stat. Comput.: Vienna, Austria, 2020. [Google Scholar]
- Sebastiá, M.T. Role of topography and soils in grassland structuring at the landscape and community scales. Basic Appl. Ecol. 2004, 5, 331–346. [Google Scholar] [CrossRef]
- Handbook of chemistry and physics: 1st student edition. Trends Biochem. Sci. 1988, 13, 116. [CrossRef]
- Smith, D.W. Concentrations of soil nutrients before and after fire. Can. J. Soil Sci. 1970, 50, 17–29. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Mataix-Solera, J.; Nava, A.L.; Alanís, N. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena 2011, 84, 136–147. [Google Scholar] [CrossRef]
- Leal, O.A.; Dick, D.P.; Costa, F.S.; Knicker, H.; de Carvalho Júnior, J.A.; Santos, J.C. Carbon in physical fractions and organic matter chemical composition of an acrisol after Amazon forest burning and conversion into pasture. J. Braz. Chem. Soc. 2019, 30, 413–424. [Google Scholar] [CrossRef]
- Fornara, D.A.; Banin, L.; Crawley, M.J. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Glob. Change Biol. 2013, 19, 3848–3857. [Google Scholar] [CrossRef] [Green Version]
- Moran-Zuloaga, D.; Dippold, M.; Glaser, B.; Kuzyakov, Y. Organic nitrogen uptake by plants: Reevaluation by position-specific labeling of amino acids: Reevaluation of organic N uptake by plants by position-specific labeling. Biogeochemistry 2015, 125, 359–374. [Google Scholar] [CrossRef]
- Reich, P.B.; Ellsworth, D.S.; Walters, M.B. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Funct. Ecol. 1998, 12, 948–958. [Google Scholar] [CrossRef]
- Ibanez, M.; Altimir, N.; Ribas, A.; Eugster, W.; Sebastia, M.T. Phenology and plant functional type dominance drive CO2 exchange in seminatural grasslands in the Pyrenees. J. Agric. Sci. 2020, 158, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Fornara, D.A.; Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 2008, 96, 314–322. [Google Scholar] [CrossRef]
- De Deyn, G.B.; Quirk, H.; Yi, Z.; Oakley, S.; Ostle, N.J.; Bardgett, R.D. Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. J. Ecol. 2009, 97, 864–875. [Google Scholar] [CrossRef]
- Rodríguez, A.; Canals, R.M.; Sebastià, M.T. Positive Effects of Legumes on Soil Organic Carbon Stocks Disappear at High Legume Proportions Across Natural Grasslands in the Pyrenees. Ecosystems 2021. Available online: https://link.springer.com/article/10.1007/s10021-021-00695-9 (accessed on 17 November 2021). [CrossRef]
- Webb, E.E.; Heard, K.; Natali, S.M.; Bunn, A.G.; Alexander, H.D.; Berner, L.T.; Kholodov, A.; Loranty, M.M.; Schade, J.D.; Spektor, V.; et al. Variability in above- and belowground carbon stocks in a Siberian larch watershed. Biogeosciences 2017, 14, 4279–4294. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.R.; Mack, M.C.; Hollingsworth, T.N.; Harden, J.W. The role of mosses in ecosystem succession and function in Alaska’s boreal forest. Can. J. For. Res. 2010, 40, 1237–1264. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Monroy, A.P.; Maestre, F.T.; Delgado-Baquerizo, M.; Gallardo, A. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: Insights from a Mediterranean grassland. Plant Soil 2010, 333, 21–34. [Google Scholar] [CrossRef]
- Madritch, M.D.; Cardinale, B.J. Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA: A multi-site experiment along a latitudinal gradient. Plant Soil 2007, 292, 147–159. [Google Scholar] [CrossRef]
- Hendricks, J.J.; Boring, L.R. N2-fixation by native herbaceous legumes in burned pine ecosystems of the southeastern United States. For. Ecol. Manag. 1999, 113, 167–177. [Google Scholar] [CrossRef]
- Newland, J.A.; DeLuca, T.H. Influence of fire on native nitrogen-fixing plants, and soil nitrogen status in ponderosa pine—Douglas-fir forests in western Montana. Can. J. For. Res. 2000, 30, 274–282. [Google Scholar] [CrossRef]
- Sedia, E.G.; Ehrenfeld, J.G. Differential effects of lichens, mosses and grasses on respiration and nitrogen mineralization in soils of the New Jersey Pinelands. Oecologia 2005, 144, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.C.; Allen, S.E. Nutrient Losses in Smoke Produced during Heather Burning. Oikos 1971, 22, 149. [Google Scholar] [CrossRef]
- Certini, G.; Nocentini, C.; Knicker, H.; Arfaioli, P.; Rumpel, C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 2011, 167–168, 148–155. [Google Scholar] [CrossRef]
- Barthès, B.; Barthès, B.; Azontonde, A.; Blanchart, E.; Girardin, C.; Villenave, C.; Lesaint, S.; Oliver, R.; Feller, C. Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use Manag. 2004, 20, 231–239. [Google Scholar] [CrossRef]
- Chaer, G.M.; Resende, A.S.; Campello, E.F.C.; De Faria, S.M.; Boddey, R.M.; Schmidt, S. Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol. 2011, 31, 139–149. [Google Scholar] [CrossRef] [Green Version]
Explanatory Variables | Carbon Variables | |||
---|---|---|---|---|
Total Soil Carbon | Carbon in Clay | Carbon in Silt | Carbon in Sand | |
Slope | 0.001 ** | 0.001 ** | 0.002 ** | <0.001 *** |
Burning | 0.004 ** | 0.175 | 0.191 | 0.085 |
Species | 0.095 | 0.061 | 0.076 | 0.024 * |
Soil depth | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Burning * Soil depth | 0.021 * | - | 0.039 * | 0.034 * |
Species * Soil depth | - | - | - | 0.076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, S.; Manjón-Cabeza, J.; Ibáñez, M.; Mestre, C.; Broncano, M.J.; Mosquera-Losada, M.R.; Plaixats, J.; Sebastià, M.-T. Responses in Soil Carbon and Nitrogen Fractionation after Prescribed Burning in the Montseny Biosphere Reserve (NE Iberian Peninsula). Sustainability 2022, 14, 4232. https://doi.org/10.3390/su14074232
Chowdhury S, Manjón-Cabeza J, Ibáñez M, Mestre C, Broncano MJ, Mosquera-Losada MR, Plaixats J, Sebastià M-T. Responses in Soil Carbon and Nitrogen Fractionation after Prescribed Burning in the Montseny Biosphere Reserve (NE Iberian Peninsula). Sustainability. 2022; 14(7):4232. https://doi.org/10.3390/su14074232
Chicago/Turabian StyleChowdhury, Sangita, José Manjón-Cabeza, Mercedes Ibáñez, Christian Mestre, Maria José Broncano, María Rosa Mosquera-Losada, Josefina Plaixats, and M.-Teresa Sebastià. 2022. "Responses in Soil Carbon and Nitrogen Fractionation after Prescribed Burning in the Montseny Biosphere Reserve (NE Iberian Peninsula)" Sustainability 14, no. 7: 4232. https://doi.org/10.3390/su14074232
APA StyleChowdhury, S., Manjón-Cabeza, J., Ibáñez, M., Mestre, C., Broncano, M. J., Mosquera-Losada, M. R., Plaixats, J., & Sebastià, M. -T. (2022). Responses in Soil Carbon and Nitrogen Fractionation after Prescribed Burning in the Montseny Biosphere Reserve (NE Iberian Peninsula). Sustainability, 14(7), 4232. https://doi.org/10.3390/su14074232