Towards Energy-Positive Buildings through a Quality-Matched Energy Flow Strategy
Abstract
:1. Introduction
1.1. Addressing Limits of Load-Reduction Strategies with Active Envelope and Thermal Distribution
1.2. Precedents: Active Facades
1.3. Benefits of Distributed Systems
1.4. Thermal Energy Storage for Resource-Matching and Dispatchability
1.5. Entropic Efficiency of Thermal Cascade
1.6. Valuing Different Forms of Energy
1.7. Exergy-Efficient Solar Collection Aligned with Façade Criteria
1.8. Comparison to Alternative Building Energy Schema
1.9. Research Objective: Modeling Q-MEF Building Energy Behavior
2. Methods
2.1. Systems for Thermal Energy Collection, Redistribution and Use
2.2. Inputs to Q-MEF Model
2.2.1. Climates Considered
2.2.2. Building Energy Models as Baselines
2.2.3. BITCoPT Envelope Cavity Model
2.2.4. Daylighting Modeling Method
2.3. Q-MEF Model Components and Functions
2.3.1. Thermal Energy Storage Elements Model
2.3.2. Deep-Mullion Cavity Energy Balance
2.3.3. BITCoPT Area-Based Gap Transmittance
2.3.4. Cavity Flushing Function
2.3.5. Thermally Driven Chillers Model
2.3.6. Auxiliary Heat Pumps and Heat Rejection Model
2.3.7. Loop Temperature Controls
2.3.8. Utility Cost Metrics
3. Results
3.1. Daylighting Impact on Lighting Energy Use
3.2. Heating and Cooling Loads
3.3. On-Site Thermal Collection and Application
3.4. Solar Cooling with Adsorption Chilling
3.5. Energy Use Profile Comparison
3.6. Utility Cost Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Variables | |
cp | specific heat (kJ/kg-K) |
C | heat capacity (kWh/K) |
E | electricity (kW) |
G | solar power (kW) |
i | instance of zone or cavity balance |
I | solar irradiance (W/m2) |
K | proportional gain constant |
n | time step (hour) |
Q | heat collected or transferred (kW) |
R | thermal resistance (W/m2-K) |
T | temperature (°C) or transmittance (n.d.) |
Greek letters | |
λ | tracker pitch angle (radians) |
ϕ | tracker yaw angle (radians) |
Subscripts and Abbreviations | |
AEC | architecture, engineering, and construction sector |
AIF | active integrated facade |
ASHRAE | American Society of Heating, Refrigeration, and Air-Conditioning Engineers |
BEM | building energy model |
BITCoPT | building envelope-integrated, transparent concentrating photovoltaic and thermal collector |
BL | baseline (energy model) |
BL40 | baseline energy model with 40% window-wall ratio |
BL95 | baseline energy model with 95% window-wall ratio |
buffer | high-range buffer |
cav | envelope cassette cavity |
chilled | chilled distribution loop |
cond | conduction and convection (non-radiative) |
conv | energy conversion |
CDD | cooling degree days |
COP | coefficient of performance |
db | dry-bulb (temperature) |
Diff | diffuse (insolation component) |
DN | direct normal (insolation component) |
DOAS | dedicated outdoor air system |
DOE | United States Department of Energy |
Egen | electrical generation |
env | environment |
EPB | energy-positive building |
EUI | energy use intensity |
flush | cavity flushing |
full | threshold for BITCoPT module gap function |
gap | spacing between BITCoPT modules |
gen | generated (by envelope-integrated collector) |
HDD | heating degree days |
HVAC | heating, ventilation, and air conditioning system |
hz | horizontal |
IGU | insulated glazing unit |
ind | indoor |
lim | limit |
kWh-E | Electricity energy unit |
kWh-Q | Thermal energy unit |
loop | pertaining to chilled or rejection-stage hydronic loops |
loss | energy lost to ambient |
MTV | Mountain View, California, USA (climate) |
NZEB | net-zero energy building |
NYC | New York City, New York, USA (climate) |
offset | temperature offset |
outd | outdoor |
PHX | Phoenix, Arizona, USA (climate) |
Q-MEF | quality-matched energy flow network; also a model configuration |
Q-MEF + Tilt | model configuration adding solar-optimized façade geometry |
rej | rejection-range (heating) loop |
SHW | service hot water |
target | target temperature |
TES | thermal energy storage component |
vert | vertical |
vis | visible (transmittance) |
wall | insulated wall of TES component |
References
- Dyson, A. Interdisciplinary Co-Development of Intelligent Building Envelopes with On-Site Power Generation. In Proceedings of the 91st ACSA International Conference Proceedings, Helsinki, Finland, 27–30 July 2003; Available online: https://www.acsa-arch.org/chapter/interdisciplinary-co-development-of-intelligent-building-envelopes-with-on-site-power-generation/ (accessed on 18 November 2020).
- Novelli, N.; Phillips, K.; Shultz, J.; Derby, M.M.; Stark, P.R.H.; Craft, J.; Salvas, R.; Derby, S.; Jensen, M.K.; Dyson, A. Experimental Investigation of a Building Envelope-Integrated, Transparent Concentrating Photovoltaic and Thermal Collector. Renew. Energy 2021, 176, 617–634. [Google Scholar] [CrossRef]
- Novelli, N.; Gordon, R.; Varfolomeev, I. Separating direct from diffuse: Observations of visible transmittance through a tracking photovoltaic envelope. In Proceedings of the Facade Tectonics Institute 2018 World Congress Proceedings, Los Angeles, CA, USA, 12–13 March 2018; Volume 2, pp. 355–364. Available online: https://www.facadetectonics.org/publications/collection/publications (accessed on 27 March 2018).
- Lechner, N. Heating, Cooling, Lighting: Sustainable Design Methods for Architects, 3rd ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wong, I.L. A review of daylighting design and implementation in buildings. Renew. Sustain. Energy Rev. 2017, 74, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Salcido, J.C.; Raheem, A.A.; Issa, R.R. From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy Build. 2016, 127, 1008–1018. [Google Scholar] [CrossRef]
- Kuhn, T.E.; Erban, C.; Heinrich, M.; Eisenlohr, J.; Ensslen, F.; Neuhaus, D.H. Review of technological design options for building integrated photovoltaics (BIPV). Energy Build. 2021, 231, 110381. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D.; Mateus, R.; Almeida, M.; da Silva, S.M. Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems. Renew. Energy 2015, 75, 833–846. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II—Implemented systems, performance assessment, and future directions. Renew. Sustain. Energy Rev. 2015, 50, 1566–1633. [Google Scholar] [CrossRef]
- Li, G.; Xuan, Q.; Akram, M.W.; Akhlaghi, Y.G.; Liu, H.; Shittu, S. Building integrated solar concentrating systems: A review. Appl. Energy 2020, 260, 114288. [Google Scholar] [CrossRef]
- Probst, M.M.; Roecker, C. Towards an improved architectural quality of building integrated solar thermal systems (BIST). Sol. Energy 2007, 81, 1104–1116. [Google Scholar] [CrossRef]
- Elsayed, A.T.; Mohamed, A.A.; Mohammed, O.A. DC microgrids and distribution systems: An overview. Electr. Power Syst. Res. 2015, 119, 407–417. [Google Scholar] [CrossRef]
- Kim, M.K.; Leibundgut, H.; Choi, J.-H. Energy and exergy analyses of advanced decentralized ventilation system compared with centralized cooling and air ventilation systems in the hot and humid climate. Energy Build. 2014, 79, 212–222. [Google Scholar] [CrossRef]
- Pang, H.; Lo, E.; Pong, B. DC Electrical Distribution Systems in Buildings. In Proceedings of the 2nd International Conference on Power Electronics Systems and Applications, Hong Kong, China, 2–14 November 2006; pp. 115–119. [Google Scholar] [CrossRef]
- Mumma, S.A. Designing dedicated outdoor air systems. ASHRAE J. 2001, 43, 28. [Google Scholar]
- Roth, K.; Dieckmann, J.; Zogg, R.; Brodrick, J. Chilled Beam Cooling. ASHRAE J. 2007, 49, 84–86. [Google Scholar]
- Kintner-Meyer, M.C.; Subbarao, K.; Kumar, N.P.; Bandyopadhyay, G.K.; Finley, C.; Koritarov, V.S.; Molburg, J.C.; Wang, J.; Zhao, F.; Brackney, L.; et al. The Role of Energy Storage in Commercial Building A Preliminary Report. In Pacific Northwest National Laboratory; Pacific Northwest National Laboratory: Benton County, WA, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Pintaldi, S.; Perfumo, C.; Sethuvenkatraman, S.; White, S.; Rosengarten, G. A review of thermal energy storage technologies and control approaches for solar cooling. Renew. Sustain. Energy Rev. 2015, 41, 975–995. [Google Scholar] [CrossRef]
- MacCracken, M.M. Thermal Energy Storage Myths. ASHRAE J. 2003, 45, 36–43. [Google Scholar] [CrossRef]
- Dincer, I. On thermal energy storage systems and applications in buildings. Energy Build. 2002, 34, 377–388. [Google Scholar] [CrossRef]
- Nassif, N.; Tesiero, R.C.; Singh, H. Impact of Ice Thermal Storage on Cooling Energy Cost for Commercial HVAC Systems. ASHRAE Trans. 2013, 119, 1–7. [Google Scholar]
- Lizana, J.; Chacartegui, R.; Padura, A.B.; Valverde, J.M. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 2017, 203, 219–239. [Google Scholar] [CrossRef]
- Christopher, S.; Parham, K.; Mosaffa, A.; Farid, M.; Ma, Z.; Thakur, A.K.; Xu, H.; Saidur, R. A critical review on phase change material energy storage systems with cascaded configurations. J. Clean. Prod. 2021, 283, 124653. [Google Scholar] [CrossRef]
- Zhang, Z.; Ci, Z.; Zhang, T. Heat-Storage Performance Optimization for Packed Bed Using Cascaded PCMs Capsules. Int. J. Thermophys. 2021, 42, 1–2. [Google Scholar] [CrossRef]
- Lizana, J.; Chacartegui, R.; Barrios-Padura, A.; Ortiz, C. Advanced low-carbon energy measures based on thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2018, 82, 3705–3749. [Google Scholar] [CrossRef]
- Herrmann, U.; Kearney, D.W. Survey of Thermal Energy Storage for Parabolic Trough Power Plants. J. Sol. Energy Eng. 2002, 124, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Schweigler, C.; Hiebler, S.; Keil, C.; Köbel, H.; Kren, C.; Mehling, H. Low-Temperature Heat Storage for Solar Heating and Cooling Applications. ASHRAE Trans. 2007, 113, 89–96. [Google Scholar]
- Hartkopf, V.; Archer, D.H.; Loftness, V. Building As Power Plant–BAPP/Invention Works Project at Carnegie Mellon University, Pittsburgh PA, USA. In Proceedings of the Fourth International Conference for Enhanced Building Operations, Paris, France, 18–19 October 2004; Available online: http://hdl.handle.net/1969.1/5033 (accessed on 2 May 2012).
- Ferrara, M.; Coleman, J.; Meggers, F. Exploring potentialities of energy-connected buildings: Performance assessment of an innovative low-exergy design concept for a building heating supply system. Energy Procedia 2017, 122, 1075–1080. [Google Scholar] [CrossRef]
- Coventry, J.; Lovegrove, K. Development of an approach to compare the ‘value’ of electrical and thermal output from a domestic PV/thermal system. Sol. Energy 2003, 75, 63–72. [Google Scholar] [CrossRef]
- Littlefair, P.J. The luminous efficacy of daylight: A review. Light. Res. Technol. 1985, 17, 162–182. [Google Scholar] [CrossRef]
- Pattison, P.M.; Hansen, M.; Tsao, J.Y. LED lighting efficacy: Status and directions. Comptes Rendus. Phys. 2018, 19, 134–145. [Google Scholar] [CrossRef]
- Dyson, A.; Stark, P.R.H.; Jensen, M.K. Integrated Concentrating (IC) Solar Facade System. Department of Energy Peer Review. 2007. Available online: https://www1.eere.energy.gov/solar/review_meeting/pdfs/sys_9_dyson_rensselaer.pdf (accessed on 1 April 2020).
- Novelli, N.; Shultz, J.; Dyson, A. Development of a modeling strategy for adaptive multifunctional solar energy building envelope systems. In Proceedings of the Symposium on Simulation for Architecture & Urban Design, Washington, DC, USA, 12–15 April 2015; pp. 35–42. [Google Scholar]
- Cabeza, L.F.; Chàfer, M. Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review. Energy Build. 2020, 219, 110009. [Google Scholar] [CrossRef]
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy efficiency, demand side management and energy storage technologies—A critical analysis of possible paths of integration in the built environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Gilbride, M.; Loveland, J.; Burpee, H.; Kriegh, J.; Meek, C. Occupant-Behavior-Driven Energy Savings at the Bullitt Center in Seattle, Washington. ACEEE Summer Study Energy Effic. Build. 2016, 15, 8-1–8-15. [Google Scholar]
- Torío, H.; Angelotti, A.; Schmidt, D. Exergy analysis of renewable energy-based climatisation systems for buildings: A critical view. Energy Build. 2009, 41, 248–271. [Google Scholar] [CrossRef]
- Nishikawa, R.; Shukuya, M. Numerical analysis on the production of cool exergy by making use of heat capacity of building envelopes. In Proceedings of the Sixth International IBPSA Conference, Kyoto, Japan, 13–15 September 1999; Available online: http://www.inive.org/members_area/medias/pdf/Inive/IBPSA/UFSC691.pdf (accessed on 27 January 2016).
- Hepbasli, A. Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies. Renew. Sustain. Energy Rev. 2012, 16, 73–104. [Google Scholar] [CrossRef]
- Meggers, F.; Ritter, V.; Goffin, P.; Baetschmann, M.; Leibundgut, H. Low exergy building systems implementation. Energy 2012, 41, 48–55. [Google Scholar] [CrossRef]
- Dunkelberg, E.; Schneller, A.; Bachmann, M.; Kriegel, M. LowExTra-Feasibility of a Multi-Conductor District Heating System. Energy Procedia 2018, 149, 427–434. [Google Scholar] [CrossRef]
- Lehmann, B.; Dorer, V.; Koschenz, M. Application range of thermally activated building systems tabs. Energy Build. 2007, 39, 593–598. [Google Scholar] [CrossRef]
- Lydon, G.; Hofer, J.; Svetozarevic, B.; Nagy, Z.; Schlueter, A. Coupling energy systems with lightweight structures for a net plus energy building. Appl. Energy 2017, 189, 310–326. [Google Scholar] [CrossRef]
- Azami, A.; Sevinç, H. The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope. Build. Environ. 2021, 199, 107856. [Google Scholar] [CrossRef]
- Moe, K. Integrated Design in Contemporary Architecture; Princeton Architectural Press: New York, NY, USA, 2008. [Google Scholar]
- Moe, K. Convergence: An Architectural Agenda for Energy; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Dyson, A.; Ngai, T.; Vollen, J. Characterizing the Problem: Bioenergetic Information Modeling. In BIM in Academia; Yale School of Architecture: New Haven, CT, USA, 2011. [Google Scholar]
- Sayadi, S.; Tsatsaronis, G.; Morosuk, T. Dynamic exergetic assessment of heating and cooling systems in a complex building. Energy Convers. Manag. 2019, 183, 561–576. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Palombo, A.; Vicidomini, M. Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors. Renew. Energy 2019, 137, 109–126. [Google Scholar] [CrossRef]
- Baeten, B.; Rogiers, F.; Helsen, L. Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response. Appl. Energy 2017, 195, 184–195. [Google Scholar] [CrossRef]
- Gagnon, P.J.; Govindarajan, A.; Bird, L.A.; Barbose, G.; Darghouth, N.; Mills, A. Solar + Storage Synergies for Managing Commercial-Customer Demand Charges; NREL: Golden, CO, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Deo, A.; Mishra, G.; Tiwari, G. A thermal periodic theory and experimental validation of building integrated semi-transparent photovoltaic thermal (BiSPVT) system. Sol. Energy 2017, 155, 1021–1032. [Google Scholar] [CrossRef]
- Abdelalim, A.; O’Brien, W.; Shi, Z. Data visualization and analysis of energy flow on a multi-zone building scale. Autom. Constr. 2017, 84, 258–273. [Google Scholar] [CrossRef]
- NREL and US DOE. Open Studio 2.7. 2018. Available online: https://www.openstudio.net/ (accessed on 30 November 2018).
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.; Huang, Y.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- US Energy Information Administration. Commercial Buildings Energy Consumption Survey (CBECS) Data. 2015. Available online: http://www.eia.gov/consumption/commercial/data/2012/#b6 (accessed on 18 July 2015).
- Etman, M.A.; Novelli, N.; Shultz, J.; Phillips, K.; Andow, B.; Dyson, A. Daylighting effect of separating direct and diffuse insolation with facade-integrated, transparent solar collector. In Proceedings of the 31st International PLEA Conference, Bologna, Italy, 9–11 September 2015. [Google Scholar]
- Daßler, I.; Mittelbach, W. Solar Cooling with Adsorption Chillers. Energy Procedia 2012, 30, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, C.F. Lightswitch-2002: A model for manual and automated control of electric lighting and blinds. Sol. Energy 2004, 77, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Hajiah, A.; Krarti, M. Optimal controls of building storage systems using both ice storage and thermal mass—Part II: Parametric analysis. Energy Convers. Manag. 2012, 64, 509–515. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L. Development of radiative cooling and its integration with buildings: A comprehensive review. Sol. Energy 2020, 212, 125–151. [Google Scholar] [CrossRef]
Location | Climate Description (ASHRAE Zone) | Degree Days | Tdb,outd(99%) Tdb,outd(1%) | ||
---|---|---|---|---|---|
Base 10 °C | Base 18.3 °C | ||||
New York City (NYC) | Humid Subtropical/ Continental (4A) | HDD: CDD: | 2118 962 | 672 2557 | 31.8 °C −8.2 °C |
Phoenix (PHX) | Subtropical Desert (2B) | HDD: CDD: | 5067 17 | 2532 523 | 42.3 °C 5.2 °C |
Mountain View (MTV) | Warm—summer Mediterranean (3C) | HDD: CDD: | 2177 64 | 267 1196 | 28.7 °C 3.7 °C |
Model Configuration | 40% Glazed BL40 | 95% Glazed BL95 | Q-MEF | Q-MEF + Tilt |
---|---|---|---|---|
Climates Modeled | New York City, NY/Phoenix, AZ/Mountain View, CA | |||
Geometry | DOE Prototype: medium office | DOE Prototype: medium office | DOE Prototype: medium office + inclined clerestories | DOE Prototype: medium office + inclined clerestories tilted facades |
Length (east–west) | 49.9 m | |||
Width (north–south) | 33.3 m | |||
Floors | 3 | |||
Floor to floor height | 3.96 m | |||
Perimeter zones depth | 4.57 m | |||
Total floor area | 4980 m2 | |||
Envelope Specifications | ||||
Wall U value (W/m2-K) | 0.204/0.251/0.223 | 0.204/0.251/0.223 | 0.429 | 0.429 |
Roof U value (W/m2-K) | 0.223 | 0.223 | 0.223 | 0.223 |
Façade glazing ratio | 40% | 95% | 95% | 95% |
BITCOPT integrated | NO | NO | YES | YES |
Glazing System | to ASHRAE 90.1-2013 | to ASHRAE 90.1-2013 | deep-mullion with internal IGU | deep-mullion with internal IGU |
Tvis | 0.13/0.13/0.13 | 0.13/0.13/0.13 | 0.812 | 0.812 |
SHGC | 0.40/0.25/0.25 | 0.40/0.25/0.25 | 0.764 | 0.764 |
U-factor (W/m2-K) | 4.6/5.2/4.8 | 4.6/5.2/4.8 | 2.72 | 2.72 |
Mechanical Systems | to ASHRAE 90.1-2013 with hydronic thermal distribution | to ASHRAE 90.1-2013 with hydronic thermal distribution | Q-MEF specified distributed systems | Q-MEF specified distributed systems |
Plant(s) | Heating boiler, SHW boiler, electric chiller | Heating boiler, SHW boiler, electric chiller | Envelope solar collection, adsorption chillers, auxiliary heat pumps + boiler | Envelope solar collection, adsorption chillers, auxiliary heat pumps + boiler |
System topology | central plants, zone unit loops in parallel | central plants, zone unit loops in parallel | Primary heating and cooling distribution/storage loops; secondary loops for plants, zones | Primary heating and cooling distribution/storage loops; secondary loops for plants, zones |
Zone transfer units | Chilled beams, hydronic baseboard heating | |||
Heat rejection | air-side rejection from chiller | air-side rejection from chiller | air-side rejection from primary heating loop | air-side rejection from primary heating loop |
Ventilation | Dedicated Outdoor Air System (DOAS) | |||
Lighting, Equipment | up to 8 W/m2, up to 10 W/m2, scheduled | |||
Daylighting controls | Stepped dimming with centered zone sensor |
TES Elements | High-Temperature Buffers | Distribution Loops | ||||
---|---|---|---|---|---|---|
East or West (3X) | South (3X) | Clerestory (First Row) | Clerestory (Balance) | Chilled | Rejection-Stage | |
Thermal capacity (kWh/K) | 0.9 | 1.4 | 4.9 | 2.1 | 450 | 583 |
Allowable Temperatures | Below 95 °C | 10 to 18 °C | Toutd,db to 35 °C |
Lighting Loads | ||
---|---|---|
(kWh-E/m2-yr) | ||
NYC | BL40 | 23 |
BL95 | 20 | |
Q-MEF | 20 | |
Q-MEF + Tilt | 20 | |
PHX | BL40 | 23 |
BL95 | 19 | |
Q-MEF | 19 | |
Q-MEF + Tilt | 20 | |
MTV | BL40 | 23 |
BL95 | 19 | |
Q-MEF | 19 | |
Q-MEF + Tilt | 20 |
Heating Loads | Cooling Loads | Heating/Cooling Ratio | ||
---|---|---|---|---|
(MWh-Q/yr) | ||||
NYC | BL40 | 266 | 263 | 1:1 |
BL95 | 364 | 346 | 1.1:1 | |
Q-MEF | 388 | 274 | 1.4:1 | |
Q-MEF + Tilt | 514 | 310 | 1.7:1 | |
PHX | BL40 | 44 | 634 | 1:14.4 |
BL95 | 78 | 959 | 1:12.3 | |
Q-MEF | 167 | 729 | 1:4.4 | |
Q-MEF + Tilt | 209 | 784 | 1:3.8 | |
MTV | BL40 | 109 | 277 | 1:2.5 |
BL95 | 174 | 357 | 1:2.1 | |
Q-MEF | 316 | 261 | 1.2:1 | |
Q-MEF + Tilt | 398 | 294 | 1.4:1 |
Thermal Energy Collected | Zone Heating Loads | SHW Preheat | Heating Required (SHW, DOAS, Zone) | ||
---|---|---|---|---|---|
(MWh-Q/yr) | |||||
NYC | BL40 | - | 266 | - | 330 |
BL95 | - | 364 | - | 449 | |
Q-MEF | 149 | 388 | 9 | 430 | |
Q-MEF + Tilt | 151 | 514 | 9 | 488 | |
PHX | BL40 | - | 44 | - | 64 |
BL95 | - | 78 | - | 95 | |
Q-MEF | 308 | 167 | 8 | 241 | |
Q-MEF + Tilt | 348 | 209 | 8 | 141 | |
MTV | BL40 | - | 109 | - | 136 |
BL95 | - | 174 | - | 219 | |
Q-MEF | 234 | 316 | 9 | 431 | |
Q-MEF + Tilt | 244 | 398 | 9 | 345 |
Net Cooling Loads | Adsorption Chillers Work | ||
---|---|---|---|
(MWh-Q/yr) | (MWh-Q/yr, % of net) | ||
NYC | BL40 | 263 | - |
BL95 | 346 | - | |
Q-MEF | 274 | 40 (15%) | |
Q-MEF + Tilt | 310 | 52 (17%) | |
PHX | BL40 | 634 | - |
BL95 | 959 | - | |
Q-MEF | 729 | 103 (14%) | |
Q-MEF + Tilt | 784 | 135 (17%) | |
MTV | BL40 | 277 | - |
BL95 | 357 | - | |
Q-MEF | 261 | 53 (20%) | |
Q-MEF + Tilt | 294 | 53 (18%) |
Heating | Heating & Cooling | Ventilation | Lights | Equipment | Power Generated | Net EUI, Electrical | Net EUI, Total Site | Peak Electrical Demand | ||
---|---|---|---|---|---|---|---|---|---|---|
kWh-Q/ m2-yr | kWh-E/m2-yr | kWh/ m2-yr | kW-E | |||||||
NYC | BL40 | 68 | 17 | 4 | 23 | 47 | - | 92 | 160 | 139 |
BL95 | 92 | 29 | 3 | 20 | 47 | - | 99 | 191 | 156 | |
Q-MEF | 86 | 26 | 3 | 20 | 47 | −61 | 36 | 121 | 151 | |
Q-MEF + T | 98 | 26 | 4 | 20 | 47 | −71 | 27 | 124 | 147 | |
PHX | BL40 | 13 | 47 | 9 | 23 | 47 | - | 127 | 139 | 189 |
BL95 | 21 | 72 | 12 | 19 | 47 | - | 150 | 171 | 231 | |
Q-MEF | 48 | 55 | 4 | 19 | 47 | −106 | 20 | 68 | 157 | |
Q-MEF + T | 28 | 54 | 5 | 20 | 47 | −125 | 0 | 29 | 166 | |
MTV | BL40 | 29 | 17 | 3 | 23 | 47 | - | 91 | 120 | 133 |
BL95 | 46 | 26 | 4 | 19 | 47 | - | 96 | 142 | 164 | |
Q-MEF | 86 | 31 | 4 | 19 | 47 | −84 | 18 | 104 | 133 | |
Q-MEF + T | 69 | 26 | 5 | 20 | 47 | −99 | −1 | 68 | 131 |
Electricity EUI | Total EUI | Peak Electricity Demand | |||||
---|---|---|---|---|---|---|---|
vs. BL40 | vs. BL95 | vs. BL40 | vs. BL95 | vs. BL40 | vs. BL95 | ||
NYC | Q-MEF | −61% | −64% | −24% | −37% | 9% | −3% |
Q-MEF + Tilt | −71% | −73% | −23% | −35% | 6% | −6% | |
PHX | Q-MEF | −84% | −87% | −51% | −60% | −17% | −32% |
Q-MEF + Tilt | −100% | −100% | −79% | −83% | −12% | −28% | |
MTV | Q-MEF | −80% | −81% | −13% | −27% | 0% | −19% |
Q-MEF + Tilt | −101% | −101% | −43% | −52% | −2% | −20% |
Demand Charges (USD) | Energy Charges (USD) | Natural Gas Charge (USD) | Total Utility Cost (USD) | Savings over BL40 (USD) | Savings over BL95 (USD) | ||
---|---|---|---|---|---|---|---|
NYC | BL40 | 37,000 | 50,000 | 15,000 | 102,000 | ||
BL95 | 43,000 | 55,000 | 20,000 | 119,000 | |||
Q-MEF | 39,000 | 20,000 | 22,000 | 81,000 | 21,000 (21%) | 38,000 (32%) | |
Q-MEF + Tilt | 40,000 | 15,000 | 22,000 | 77,000 | 25,000 (25%) | 42,000 (35%) | |
PHX | BL40 | 49,000 | 66,000 | 2000 | 117,000 | ||
BL95 | 60,000 | 79,000 | 4000 | 143,000 | |||
Q-MEF | 43,000 | 12,000 | 11,000 | 66,000 | 51,000 (44%) | 77,000 (54%) | |
Q-MEF + Tilt | 44,000 | 2000 | 5000 | 51,000 | 66,000 (56%) | 92,000 (64%) | |
MTV | BL40 | 37,000 | 49,000 | 6000 | 92,000 | ||
BL95 | 60,000 | 79,000 | 10,000 | 149,000 | |||
Q-MEF | 37,000 | 11,000 | 22,000 | 69,000 | 23,000 (25%) | 80,000 (42%) | |
Q-MEF + Tilt | 37,000 | 0 | 13,000 | 50,000 | 42,000 (46%) | 99,000 (66%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novelli, N.; Shultz, J.S.; Aly Etman, M.; Phillips, K.; Vollen, J.O.; Jensen, M.; Dyson, A. Towards Energy-Positive Buildings through a Quality-Matched Energy Flow Strategy. Sustainability 2022, 14, 4275. https://doi.org/10.3390/su14074275
Novelli N, Shultz JS, Aly Etman M, Phillips K, Vollen JO, Jensen M, Dyson A. Towards Energy-Positive Buildings through a Quality-Matched Energy Flow Strategy. Sustainability. 2022; 14(7):4275. https://doi.org/10.3390/su14074275
Chicago/Turabian StyleNovelli, Nick, Justin S. Shultz, Mohamed Aly Etman, Kenton Phillips, Jason O. Vollen, Michael Jensen, and Anna Dyson. 2022. "Towards Energy-Positive Buildings through a Quality-Matched Energy Flow Strategy" Sustainability 14, no. 7: 4275. https://doi.org/10.3390/su14074275
APA StyleNovelli, N., Shultz, J. S., Aly Etman, M., Phillips, K., Vollen, J. O., Jensen, M., & Dyson, A. (2022). Towards Energy-Positive Buildings through a Quality-Matched Energy Flow Strategy. Sustainability, 14(7), 4275. https://doi.org/10.3390/su14074275