Development of Bioclimatic Passive Designs for Office Building in Burkina Faso
Abstract
:1. Introduction
2. Literature Review of Bioclimatic Approach
3. Climate and Different Typology of Urban Architecture of Ouagadougou
3.1. Climate of Ouagadougou
3.2. Typology of Urban Architecture of Ouagadougou
3.2.1. Type 1: Modern Cement Block Buildings
3.2.2. Type 2: Low-Buildings from Molded Earth Blocks or Adobe
3.2.3. Type 3: Buildings Made with Compressed Earth Blocks
4. Materials and Methods
4.1. Thermal Comfort Zone
4.2. Adaptive Comfort Model
4.3. Data Weather File Used in Simulation Packages
4.4. Occupancy
4.5. Building Simulation Base Model Description
4.6. Building Optimized Model Description
4.7. Energy Simulation
5. Results
5.1. Indoor Comfort
5.1.1. Case 1: Window Shading
5.1.2. Case 2: Roof Shading
5.1.3. Case 3: Natural Ventilation
5.1.4. Case 4: Evaporative Cooling and Night Ventilation
5.1.5. Case 5: Dehumidification
5.1.6. Case 6: Optimized Case
5.2. Energy Consumption
5.2.1. Case 1: Window Shading
5.2.2. Case 2: Roof Shading
5.2.3. Case 3: Natural Ventilation
5.2.4. Case 4: Evaporative Cooling and Night Ventilation
5.2.5. Case 5: Dehumidification
5.2.6. Case 6: Optimized Case
6. Discussion
6.1. Window Shading
6.2. Roof Shading
6.3. Natural Ventilation
6.4. Evaporative Cooling and Night Ventilation
6.5. Dehumidification
6.6. Optimized Case
6.7. Future Research
7. Conclusions
- i.
- The simulations showed massive potential for reducing the discomfort hours with the use of roof shading and natural ventilation, which are the most effective passive techniques, reducing the annual discomfort hours by up to 40%.
- ii.
- Window shading has a reverse effect on energy consumption and discomfort hours.
- iii.
- A 53% reduction in the wall U-value reduces the annual discomfort hours by 5% and the annual energy consumption by 8%.
- iv.
- Using a single passive technique cannot guarantee optimal thermal comfort and energy reduction throughout a full year.
- v.
- Overall, the combined use of the strategies decreases the discomfort hours by 69% and the annual energy consumption by 43%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Monetary Fund. World Global Report; SRO-Kundig: Versoix, Switzerland, 2000. [Google Scholar] [CrossRef]
- Cooper, P.J.M.; Dimes, J.; Rao, K.P.C.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: A dress rehearsal for adapting to future climate change. Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef] [Green Version]
- UN Habitat. L’état des Villes Africaines: Réinventer la Transition Urbaine; UN Habitat: Nairobi, Kenya, 2014. [Google Scholar]
- Dalton, G.; Lockington, D.; Baldock, T. Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations. Renew. Energy 2009, 34, 1134–1144. [Google Scholar] [CrossRef]
- Mazria, E. The 2010 Imperative: A Global Emergency Teach-In. Architecture 2030, 20 February 2007; Presentation. [Google Scholar]
- ANSI/ASHRAE Standard 55-2017; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2004. Available online: http://arco-hvac.ir/wp-content/uploads/2015/11/ASHRAE_Thermal_Comfort_Standard.pdf (accessed on 20 November 2021).
- Sobin, H.J.; Olgyay, V. Design with Climate: Bioclimatic Approach to Architectural Regionalism. J. Arch. Educ. 1963, 18, 43. [Google Scholar] [CrossRef]
- Man, B.G. Climate and Architecture; Applied Science Publishers Limited: London, UK, 1976. [Google Scholar]
- Milne, M.; Givoni, B. Architectural design based on climate. In Energy Conservation through Building Design; Watson, D., Ed.; McGraw Hill Book Company: New York, NY, USA, 1979; pp. 96–113. [Google Scholar]
- Dekay, M.; Brown, G.B. Sun, Wind & Light: Architectural Design Strategies, 3rd ed.; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Szokolay, S. Introduction to Architectural Science: The Basis of Sustainable Design; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Lam, J.C.; Yang, L.; Liu, J. Development of passive design zones in China using bioclimatic approach. Energy Convers. Manag. 2006, 47, 746–762. [Google Scholar] [CrossRef]
- Bodach, S. Developing bio-climatic zones and passive solar design strategies for Nepal. In Proceedings of the 30th International PLEA Conference, CEPT University, Ahmedabad, India, 16–18 December 2014. [Google Scholar]
- Rakoto-Joseph, O.; Garde, F.; David, M.; Adelard, L.; Randriamanantany, Z. Development of climatic zones and passive solar design in Madagascar. Energy Convers. Manag. 2009, 50, 1004–1010. [Google Scholar] [CrossRef]
- De Assis, E.; Frota, H. Urban bioclimatic design strategies for a tropical city. Atmos. Environ. 1999, 33, 4135–4142. [Google Scholar] [CrossRef]
- Al-Azri, N.A. Development of a typical meteorological year based on dry bulb temperature and dew point for passive cooling applications. Energy Sustain. Dev. 2016, 33, 61–74. [Google Scholar] [CrossRef]
- Papparelli, A.; Cdnsulo, M. Strategies for bioclimatic design in an urban area of an arid zone: San Juan (Argentina). Landsc. Urban Plan. 1996, 34, 19–25. [Google Scholar] [CrossRef]
- Al-Zuhair, M.; Sayigh, A. Designing for comfort in Iraq. Sol. Wind Technol. 1989, 6, 369–382. [Google Scholar] [CrossRef]
- Al-Jamal, K.H.; Sayigh, A.A. Design for Comfort in Gaza Strip and the West Bank. Sol. Wind. Technol. 1989, 6, 6203–6211. [Google Scholar] [CrossRef]
- Singh, M.K.; Mahapatra, S.; Atreya, S. Development of bio-climatic zones in north-east India. Energy Build. 2007, 39, 1250–1257. [Google Scholar] [CrossRef]
- Alajlan, S.; Smiai, M.; Elani, U. Effective tools toward electrical energy conservation in Saudi Arabia. Energy Convers. Manag. 1998, 39, 1337–1349. [Google Scholar] [CrossRef]
- Ajibola, K. Design for comfort in Nigeria—A bioclimatic approach. Renew. Energy 2001, 23, 57–76. [Google Scholar] [CrossRef]
- Khambadkone, N.; Jain, R. A bioclimatic approach to develop spatial zoning maps for comfort, passive heating and cooling strategies within a composite zone of India. Build. Environ. 2018, 128, 190–215. [Google Scholar]
- Khambadkone, N.K.; Jain, R. A bioclimatic analysis tool for investigation of the potential of passive cooling and heating strategies in a composite Indian climate. Build. Environ. 2017, 123, 469–493. [Google Scholar] [CrossRef]
- Srivanit, M.; Hokao, K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build. Environ. 2013, 66, 158–172. [Google Scholar] [CrossRef]
- Ratti, C.; Raydan, D.; Steemers, K. Building form and environmental performance: Archetypes, analysis and an arid climate. Energy Build. 2003, 35, 49–59. [Google Scholar] [CrossRef]
- Bernard, J.; Bocher, E.; Petit, G.; Palominos, S. Sky View Factor Calculation in Urban Context: Computational Performance and Accuracy Analysis of Two Open and Free GIS Tools. Climate 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Elshafei, G.; Vilcekova, S.; Zelenakova, M.; Negm, A.M. Towards an Adaptation of Efficient Passive Design for Thermal Comfort Buildings. Sustainability 2021, 13, 9570. [Google Scholar] [CrossRef]
- Ying, X.; Li, W. Effect of Floor Shape Optimization on Energy Consumption for U-Shaped Office Buildings in the Hot-Summer and Cold-Winter Area of China. Sustainability 2020, 12, 2079. [Google Scholar] [CrossRef] [Green Version]
- Emmerich, S.J.; Polidoro, B.; Axley, J.W. Impact of adaptive thermal comfort on climatic suitability of natural ventilation in office buildings. Energy Build. 2011, 43, 2101–2107. [Google Scholar] [CrossRef]
- Bhamare, D.K.; Rathod, M.K.; Banerjee, J. Evaluation of cooling potential of passive strategies using bioclimatic approach for different Indian climatic zones. J. Build. Eng. 2020, 31, 101356. [Google Scholar] [CrossRef]
- Kajjoba, D.; Kasedde, H.; Olupot, P.W.; Lwanyaga, J.D. Evaluation of thermal comfort and air quality of low-income housing in Kampala City, Uganda. Energy Built Environ. 2021. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Tchinda, R.; Ricciardi, P.; Djongyang, N. A field study on thermal comfort in naturally-ventilated buildings located in the equatorial climatic region of Cameroon. Renew. Sustain. Energy Rev. 2014, 39, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Dorcas Mobolade, T.; Pourvahidi, P. Bioclimatic Approach for Climate Classification of Nigeria. Sustainability 2020, 12, 4192. [Google Scholar] [CrossRef]
- Widera, B. Comparative analysis of user comfort and thermal performance of six types of vernacular dwellings as the first step towards climate resilient, sustainable and bioclimatic architecture in western sub-Saharan Africa. Renew. Sustain. Energy Rev. 2021, 140, 110736. [Google Scholar] [CrossRef]
- Rincón, L.; Carrobé, A.; Martorell, I.; Medrano, M. Improving thermal comfort of earthen dwellings in sub-Saharan Africa with passive design. J. Build. Eng. 2019, 24, 100732. [Google Scholar] [CrossRef]
- de Miguel, M.L.; Vegas, F.; Mileto, C.; García-Soriano, L. Return to the Native Earth: Historical Analysis of Foreign Influences on Traditional Architecture in Burkina Faso. Sustainability 2021, 13, 757. [Google Scholar] [CrossRef]
- Hema, C.; Van Moeseke, G.; Evrad, A.; Courard, L.; Messan, A. Vernacular housing practices in Burkina Faso: Representative models of construction in Ouagadougou and walls hygrothermal efficiency. Energy Procedia 2017, 122, 535–540. [Google Scholar] [CrossRef]
- Ouedraogo, B.; Levermore, G.; Parkinson, J. Future energy demand for public buildings in the context of climate change for Burkina Faso. Build. Environ. 2012, 49, 270–282. [Google Scholar] [CrossRef]
- Climate Change Overview. Available online: https://climateknowledgeportal.worldbank.org/country/burkina-faso (accessed on 20 November 2021).
- Köppen–Geiger Climate Classification Map for Burkina Faso. Available online: https://en.m.wikipedia.org/wiki/File:Koppen-Geiger_Map_BFA_present.svg (accessed on 20 November 2021).
- World Economic Forum. The Global Risks Report 2021, 16th ed.; World Economic Forum: Cologny, Switzerland, 2021; ISBN 9782940631247. Available online: https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2021.pdf (accessed on 20 November 2021).
- Geography of Burkina Faso. Available online: https://www.worlddata.info/africa/burkina-faso/index.php (accessed on 20 November 2021).
- Ouattara, A.; Somé, L. La Croissance Urbaine au Burkina Faso. Rapport d’analyse des Données du Recencement Général de la Population et de L’habitat de; Ministere de l’Economie et des Finances: Burkina Faso, 2006; Available online: http://web.insd.bf/contenu/enquetes_recensements/rgph-bf/themes_en_demographie/Theme9-Croissance_urbaine.pdf (accessed on 20 November 2021).
- Nikyema, G.A.; Blouin, V.Y. Barriers to the adoption of green building materials and technologies in developing countries: The case of Burkina Faso. IOP Conf. Series Earth Environ. Sci. 2020, 410, 012079. [Google Scholar] [CrossRef]
- Kéré, B. Architecture et Cultures Constructives du Burkina Faso; CRATerre-EAG: Burkina Faso, 1995; Available online: https://craterre.hypotheses.org/233 (accessed on 20 November 2021).
- Wyss, U. Direction du Développement et de la Cooperation. In La construction en “matériaux locaux”: État d’un secteur à Potentiel Multiple; EPFL: Ouagadougou, Burkina Faso, 2005; Available online: https://docplayer.fr/16169319-La-construction-en-materiaux-locaux-etat-d-un-secteur-a-potentiel-multiple.html (accessed on 20 November 2021).
- Gana, A.L. Caractèrisation des Matériaux Latéritiques Indurés Pour une Meilleure Utilisation dans L’habitat en Afrique. Ph.D. Thesis, Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE) co-tutelle Université du Havre, Le Havre, France, 2014. [Google Scholar]
- Offerle, B.; Jonsson, P.; Eliasson, I.; Grimmond, C.S. Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso. J. Clim. 2005, 18, 3983–3995. [Google Scholar] [CrossRef]
- Delgado, M.C.J.; Guerrero, I.C. The selection of soils for unstabilised earth building: A normative review. Constr. Build. Mater. 2005, 21, 237–251. [Google Scholar] [CrossRef]
- Guillaud, H. Compressed Earth Blocks: A Publication of Deutsches Zentrum für Entwicklungstechnologien—GATE, a Division of the Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH in Coordination with the Building Advisory Service and Information Network—BASIN. 2: Manual of Design and Construction; Vieweg: Braunschweig, Germany, 1995; p. 148. [Google Scholar]
- Craterre, H.H.; Guillaud, H. Traité de Construction en Terre; Parenthèses: Marseille, France, 1995. [Google Scholar]
- De Dear, R.; Brager, G.S. Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 1998, 104, 145–167. [Google Scholar]
- Chartered Institution of Building Services Engineers. Building Energy and Environmental Modelling; CIBSE: London, UK, 1998; Available online: https://vdoc.pub/documents/building-energy-and-environmental-modelling-7mompni85b90 (accessed on 20 November 2021).
- Lyons, P.R.; Arasteh, D.; Huizenga, C. Window performance for human thermal comfort. Trans. Am. Soc. Heat. Refrig. Air Cond. Eng. 2000, 106, 594–604. [Google Scholar]
- Mirrahimi, S.; Mohamed, M.F.; Haw, L.C.; Ibrahim, N.L.N.; Yusoff, W.F.M.; Aflaki, A. The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renew. Sustain. Energy Rev. 2016, 53, 1508–1519. [Google Scholar] [CrossRef]
- Alghamdi, S.; Tang, W.; Kanjanabootra, S.; Alterman, D. Effect of Architectural Building Design Parameters on Thermal Comfort and Energy Consumption in Higher Education Buildings. Buildings 2022, 12, 329. [Google Scholar] [CrossRef]
- Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- Jagan Pillai, P.E. BEMP and Rushil Desai Dehumidification Strategies and Their Applicability Based on Climate and Building Typology. In Proceedings of the 2018 Building Performance Analysis Conference and SimBuild Co-Organized by ASHRAE and IBPSA-USA, Chicago, IL, USA, 26–28 September 2018. [Google Scholar]
Monthly Means | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Global horiz radiation | 520 | 565 | 580 | 522 | 480 | 436 | 386 | 392 | 424 | 453 | 508 | 503 |
(avg hourly) wh/sq.m | ||||||||||||
Direct normal radiation | 572 | 588 | 545 | 388 | 351 | 279 | 186 | 174 | 225 | 335 | 529 | 574 |
(avg hourly) wh/sq.m | ||||||||||||
Diffuse radiation | 161 | 171 | 185 | 228 | 211 | 216 | 240 | 253 | 247 | 209 | 163 | 149 |
(avg hourly) wh/sq.m | ||||||||||||
Global horiz radiation | 960 | 1019 | 1079 | 1084 | 1050 | 999 | 985 | 956 | 1001 | 980 | 960 | 895 |
(max hourly) wh/sq.m | ||||||||||||
Direct normal radiation | 891 | 875 | 882 | 871 | 847 | 845 | 718 | 785 | 797 | 875 | 881 | 889 |
(max hourly) wh/sq.m | ||||||||||||
Diffuse radiation | 387 | 424 | 476 | 488 | 471 | 460 | 464 | 506 | 508 | 456 | 409 | 379 |
(max hourly) wh/sq.m | ||||||||||||
Global horiz radiation | 5916 | 6555 | 6932 | 6413 | 6039 | 5547 | 4893 | 4859 | 5121 | 5302 | 5812 | 5679 |
(avg daily total) wh/sq.m | ||||||||||||
Direct normal radiation | 6497 | 6811 | 6517 | 4768 | 4416 | 3558 | 2361 | 2168 | 2717 | 3912 | 6055 | 6479 |
(avg daily total) wh/sq.m | ||||||||||||
Diffuse radiation | 1829 | 1983 | 2220 | 2810 | 2658 | 2746 | 3037 | 3136 | 2991 | 2459 | 1867 | 1683 |
(avg daily total) wh/sq.m | ||||||||||||
Global horiz illumination | 61,684 | 61,684 | 61,684 | 61,684 | 61,684 | 61,684 | 61,684 | 61,684 | 61,684 | 61,684 | 61,684 | 61,684 |
(avg hourly) lux | ||||||||||||
Direct normal illumination | 39,572 | 39,612 | 37,649 | 27,933 | 22,832 | 17,186 | 12,239 | 11,415 | 14,511 | 21,680 | 34,848 | 38,572 |
(avg hourly) lux | ||||||||||||
Dry bulb temperature | 25 | 28 | 31 | 33 | 32 | 29 | 27 | 26 | 27 | 29 | 28 | 25 |
(avg monthly) °C | ||||||||||||
Dew point temperature | 0 | 4 | 5 | 8 | 18 | 22 | 22 | 22 | 22 | 18 | 10 | 3 |
(avg monthly) °C | ||||||||||||
Relative humidity (avg monthly) % | 20 | 26 | 23 | 27 | 49 | 63 | 74 | 80 | 77 | 57 | 35 | 25 |
Wind direction (monthly mode) ° | 20 | 40 | 40 | 240 | 220 | 200 | 200 | 220 | 220 | 180 | 60 | 40 |
Wind speed (avg monthly) m/s | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 |
Ground temperature (monthly) °C | 26 | 26 | 25 | 26 | 28 | 29 | 30 | 31 | 30 | 30 | 28 | 27 |
Designation | Number | Internal Heat Load/Worker (W) | Power (W) | Time |
---|---|---|---|---|
People | 12 | 140 | - | 9 h/day |
Lighting | 25 | - | 40 | 9 h/day |
Fan | 10 | - | 100 | 9 h/day |
Laptop | 10 | - | 100 | 9 h/day |
Handphone | 8 | - | 20 | 9 h/day |
Office Building Part | Layer Name | Width | Density | Specific Heat | Thermal Conductivity | U-Value (W/m2K) |
---|---|---|---|---|---|---|
(mm) | (kg/m3) | (J/KgK) | (W/mK) | |||
Base model | ||||||
Roof | 1. Concrete slab | 200 | 2400 | 1000 | 1.13 | 2.295 |
Ceiling | 2. Gypsum plasterboard | 19 | 800 | 1090 | 0.16 | - |
Wall | Exterior coating: Cement and plaster | 10 | 1858 | 1000 | 0.9 | 2.89 |
Hollow concrete block | 200 | 2200 | 1008 | 1.3 | ||
Interior coating: Cement and plaster | 10 | 1858 | 1000 | 0.9 | ||
Floor | 6. Ceramic tile | 10 | 2390 | 730 | 1.5 | 0.695 |
7. Cement screed | 20 | 2000 | 656.9 | 0.753 | ||
8. Soil | 1000 | 1300 | 1046 | 0.837 | ||
Window | Tinted Single Glazing | 3 | 0.9 | 6.014 | ||
Door | Wood | 40 | 0.6 | 1500 | 0.147 | - |
Optimized model | ||||||
Roof shading | Solid galvanized iron sheet | 5 | 7800 | 450 | 50 | - |
Roof 2 | Concrete slab | 200 | 2400 | 1000 | 1.13 | 2.295 |
Ceiling | Gypsum plasterboard | 19 | 800 | 1090 | 0.16 | - |
Wall | Exterior coating: Clay | 10 | 1600 | 1000 | 0.8 | 1.559 |
Hollow concrete block | 200 | 2200 | 1008 | 1.3 | ||
XPS extruded polystyrene | 10 | 35 | 1400 | 0.034 | ||
Interior coating: Clay | 10 | 1600 | 1000 | 0.8 | ||
Floor | Ceramic tile | 10 | 2390 | 730 | 1.5 | 0.695 |
Cement screed | 20 | 2000 | 656.9 | 0.753 | ||
Soil | 1000 | 1300 | 1046 | 0.837 | ||
Window | Tinted Single Glazing | 3 | 0.9 | 6.014 | ||
Door | Wood | 40 | 0.6 | 1500 | 0.147 | - |
Input Parameters | Base Case | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Optimized Case | |
---|---|---|---|---|---|---|---|---|
Windows Shading | Roof Shading | Natural | Evaporative Cooling and Night Ventilation | Dehumidification | ||||
Ventilation | ||||||||
Building Envelope | Wall U-Value (W/m2K) | 2.89 | 2.89 | 2.89 | 2.89 | 1.559 | 2.89 | 1.559 |
Roof U-Value (W/m2K) | 2.295 | 2.295 | 2.295 | 2.295 | 2.295 | 2.295 | 2.295 | |
Floor U-Value (W/m2K) | 0.695 | 0.695 | 0.695 | 0.695 | 0.695 | 0.695 | 0.695 | |
Glazing U-Value (W/m2K) | 6.014 | 6.014 | 6.014 | 6.014 | 6.014 | 6.014 | 6.014 | |
Glazing SHGC | 0.635 | 0.635 | 0.635 | 0.635 | 0.635 | 0.635 | 0.635 | |
Glazing VLT | 0.201 | 0.201 | 0.201 | 0.201 | 0.201 | 0.201 | 0.201 | |
Window Shading (m) | no | 1.5 m fixed overhang | no | no | no | no | 1.5 m fixed overhang | |
Roof Shading | no | no | roof shaded | no | no | no | roof shaded | |
External Shading (Trees) | no | no | no | no | tree shading | no | tree shading | |
Natural ventilation | Natural ventilation | off | off | off | on | off | off | on |
Natural ventilation (ac/h) | 0 | 0 | 0 | 5 | 0 | 0 | 5 | |
Infiltration (ac/h) | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | |
HVAC | System Type | split system | split system | split system | split system | split system | split system | split system |
System CoP | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | |
Cooling set point temperature (°C) | 22 | 22 | 22 | 22 | 22° | 22 | 22 | |
Cooling set back temperature (°C) | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
Supply Air Condition (°C) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | |
Dehumidification | off | off | off | off | off | on | on |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoure, A.N.; Genovese, P.V. Development of Bioclimatic Passive Designs for Office Building in Burkina Faso. Sustainability 2022, 14, 4332. https://doi.org/10.3390/su14074332
Zoure AN, Genovese PV. Development of Bioclimatic Passive Designs for Office Building in Burkina Faso. Sustainability. 2022; 14(7):4332. https://doi.org/10.3390/su14074332
Chicago/Turabian StyleZoure, Abraham Nathan, and Paolo Vincenzo Genovese. 2022. "Development of Bioclimatic Passive Designs for Office Building in Burkina Faso" Sustainability 14, no. 7: 4332. https://doi.org/10.3390/su14074332
APA StyleZoure, A. N., & Genovese, P. V. (2022). Development of Bioclimatic Passive Designs for Office Building in Burkina Faso. Sustainability, 14(7), 4332. https://doi.org/10.3390/su14074332