Assessing the Potential Impacts of Urban Expansion on Hydrological Ecosystem Services in a Rapidly Urbanizing Lake Basin in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Setting Urban Expansion Scenarios in 2030
2.3. The Land Use in 2030 Simulated by CLUE-S Model Based on Different Urbanization Scenarios
- (1)
- Spatial policies and restrictions such as area restrictions of some land use types. In this research, UEP scenario did not have any area restrictions on land use. Under the ERP scenario, changes in farmland area are usually limited, particularly the primary farmland in protected areas due to the redline policy; under the FRP scenario, forests are usually not allowed to be converted to other land use types in the ecological protection zone; and the EFRP scenario limited changes in the areas of basic farmland and ecological protection zones.
- (2)
- Land use type specific conversion setting: Considering the simulation ability of the model, we chose six types of land use to simulate. For each of the scenarios, land use type specific conversion settings were defined and implemented by the relative elasticity for change (ELAS) of land use type into any other land use type in the model [6] In the model, we assigned each land use type a dimension factor that represents the relative elasticity to conversion, ranging from 0 (easy conversion) to 1 (irreversible change). In this study, based on previous studies and the specific requirements of each scenario for 2030, the ELAS values of each land use type are shown in Table 2.
- (3)
- Land use requirements (demand): We adjusted related parameters through the linear interpolation methods in this study. The land requirements (demand) for the different land use types are calculated with the trend extrapolation method under the UEP scenario and linear interpolation under the other scenarios.
- (4)
- Location characteristics and suitability: parameters describing the relation between the driving factors of land use in particular locations and scales. The logistic regression model was used to relate the probabilities and the characteristics the study location. Therefore, in this study, we chose logistic regression to investigate the probability of converting each grid cell to another type of land use.
- (5)
- Model calibration. The ROC (receiver operating characteristic) curve was used to measure the fit of the regression results to the model in the study [44]. The accuracy of the model results was assessed by the Kappa coefficient, which can be used to compare a reference map with a simulated map or to compare two reference maps [6]. When 0.75 ≤ Kappa coefficient < 1.0, then the accuracy of the simulation is considered high [6]. In this study, simulated land use in the Nansihu Lake basin in 2015, derived from the CLUE-S model using land use patterns in 2000, was compared with the actual land use patterns observed in 2015. The general equation for the Kappa coefficient is as follows [45]:
2.4. HESs Assessment by the InVEST Model
2.4.1. Water Yield
2.4.2. Nutrient Delivery Ratio Model
2.4.3. Sediment Delivery Ratio Model
2.5. Model Calibration and Validation
2.5.1. Calibration and Validation of CLUE-S Model
2.5.2. Calibration and Validation of the InVEST Model
2.6. Assessing HESs Status and Changes
3. Results
3.1. Land Use Changes and Urban Expansion from 1980 to 2015
3.2. Changes in HESs from 1980 to 2015
3.3. Spatial Variations in HESs from 1980 to 2015
3.4. Trade-Offs between Different Ecosystem Services
3.4.1. Correlation between HESs
3.4.2. Trade-Offs of HESs in Main Land Use Types
3.5. HESs in 2030 Based on Different Scenarios
4. Discussion
4.1. Comparison of Urbanization Impact on HESs among Urbanizing Basin
4.2. Scenarios of Future Urban Expansion in 2030 and Its Impact on HESs
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, M.; Ou, W.; Chen, L. Spatial priority areas for individual and multiple hydrological ecosystem services with economic costs across teshio watershed, northernmost of Japan. Glob. Ecol. Conserv. 2019, 20, e00746. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Tallis, H.; Cole, A.; Schill, S.; Martin, E.; Heiner, M.; Paiz, M.C.; Aldous, A.; Apse, C.; Nickel, B. Spatial planning for a green economy: National-level hydrologic ecosystem services priority areas for Gabon. PLoS ONE 2017, 12, e0179008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maitre, D.C.L.; Milton, S.J.; Jarmain, C.; Colvin, C.A.; Saayman, I.; Vlok, J.H.J. Linking Ecosystem Services and Water Resources: Landscape-Scale Hydrology of the Little Karoo. Front. Ecol. Environ. 2007, 5, 261–270. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Li, Y.; Robinson, B.E.; Liu, G.; Daily, G.C. Using ecosystem service trade-offs to inform water conservation policies and management practices. Front. Ecol. Environ. 2016, 14, 527–532. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, H.; Ye, X.-Y.; Wang, X.-J.; Su, H.-L. The Delimitation of Urban Growth Boundaries Using the CLUE-S Land-Use Change Model: Study on Xinzhuang Town, Changshu City, China. Sustainability 2016, 8, 1182. [Google Scholar] [CrossRef] [Green Version]
- Dadi, D.; Azadi, H.; Senbeta, F.; Abebe, K.; Taheri, F.; Stellmacher, T. Urban sprawl and its impacts on land use change in Central Ethiopia. Urban Urban Green 2016, 16, 132–141. [Google Scholar]
- Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Salvati, L.; Perini, L. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 2015, 147, 590–600. [Google Scholar] [CrossRef]
- Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, İ. Impacts of Land Change on Ecosystem Services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Gao, L.; Bryan, B.A. Finding pathways to national-scale land-sector sustainability. Nature 2017, 544, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Bratman Gregory, N.; Anderson Christopher, B.; Berman Marc, G.; Cochran, B.; de Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross James, J.; Hartig, T.; et al. Nature and mental health: An ecosystem service perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, R.; Davis, S.; Grelet, G.-A.; Gregorini, P. Multiscapes and Urbanisation: The Case for Spatial Agroecology. Sustainability 2022, 14, 1352. [Google Scholar] [CrossRef]
- González-García, A.; Palomo, I.; González, J.A.; García-Díez, V.; García-Llorente, M.; Montes, C. Biodiversity and ecosystem services mapping: Can it reconcile urban and protected area planning? Sci. Total Environ. 2022, 803, 150048. [Google Scholar] [CrossRef] [PubMed]
- Pastor, A.V.; Tzoraki, O.; Bruno, D.; Kaletová, T.; Mendoza-Lera, C.; Alamanos, A.; Brummer, M.; Datry, T.; De Girolamo, A.M.; Jakubínský, J.; et al. Rethinking ecosystem service indicators for their application to intermittent rivers. Ecol. Indic. 2022, 137, 108693. [Google Scholar] [CrossRef]
- Hoyer, R.; Chang, H. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 2014, 53, 402–416. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Sci. Total Environ. 2021, 793, 148559. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef]
- Wang, R.; Bai, Y.; Alatalo, J.M.; Yang, Z.; Yang, Z.; Yang, W.; Guo, G. Impacts of rapid urbanization on ecosystem services under different scenarios—A case study in Dianchi Lake Basin, China. Ecol. Indic. 2021, 130, 108102. [Google Scholar] [CrossRef]
- Ebner, M.; Fontana, V.; Schirpke, U.; Tappeiner, U. Stakeholder perspectives on ecosystem services of mountain lakes in the European Alps. Ecosyst. Serv. 2022, 53, 101386. [Google Scholar] [CrossRef]
- Assessment, M.E. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- UN. The Millennium Development Goals Report 2015; United Nations Pubns: New York, NY, USA, 2015. [Google Scholar]
- Ministry of Land and Resources. The Adjusted Schemes of the National Overall Planning on Land Use; Ministry of Land and Resources: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Wang, L.; Anna, H.; Zhang, L.; Xiao, Y.; Wang, Y.; Xiao, Y.; Liu, J.; Ouyang, Z. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Meng, F.; Ji, C.; Xie, L.; Zhu, W.; Wang, S.; Sun, H. Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices. Agric. Sys. 2022, 196, 103342. [Google Scholar] [CrossRef]
- Guo, X.; Chang, Q.; Liu, X.; Bao, H.; Zhang, Y.; Tu, X.; Zhu, C.; Lv, C.; Zhang, Y. Multi-dimensional eco-land classification and management for implementing the ecological redline policy in China. Land Use Policy 2018, 74, 15–31. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Jiang, B.; Wang, M.; Li, H.; Alatalo, J.M.; Huang, S. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy 2016, 55, 348–351. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China, Opinions of the State Council on Strengthening Key Environmental Protection Work (Guo Fa 2011 No. 35). Available online: http://www.gov.cn/zwgk/2011-10/20/content_1974306.htm (accessed on 17 October 2011).
- Gao, J.; Zou, C.; Zhang, K.; Xu, M.; Wang, Y. The establishment of Chinese ecological conservation redline and insights into improving international protected areas. J. Environ. Manag. 2020, 264, 110505. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Repulic of China, National Ecological Protection Red Line—Technical Guidelines for the Delineation of Ecological Functions Red Line (Trial) (Huan Fa 2014 No. 10). Available online: http://www.gov.cn/xinwen/2014-02/04/content_2612994.htm (accessed on 4 February 2014).
- Ministry of Environmental Protection, Technical Guidelines for the Delineation of Ecological Red Lines, Beijing. Available online: https://www.mee.gov.cn/gkml/hbb/bwj/201505/t20150518_301834.htm (accessed on 30 April 2015).
- He, P.; Gao, J.; Zhang, W.; Rao, S.; Zou, C.; Du, J.; Liu, W. China integrating conservation areas into red lines for stricter and unified management. Land Use Policy 2018, 71, 245–248. [Google Scholar] [CrossRef]
- Jiang, B.; Bai, Y.; Wong, C.P.; Xu, X.; Alatalo, J.M. China’s ecological civilization program–Implementing ecological redline policy. Land Use Policy 2019, 81, 111–114. [Google Scholar] [CrossRef]
- Yang, Y.; Song, G.; Lu, S. Study on the ecological protection redline (EPR) demarcation process and the ecosystem service value (ESV) of the EPR zone: A case study on the city of Qiqihaer in China. Ecol. Indic. 2020, 109, 105754. [Google Scholar] [CrossRef]
- Zhang, H.; Pang, Q.; Hua, Y.; Li, X.; Liu, K. Linking ecological red lines and public perceptions of ecosystem services to manage the ecological environment: A case study in the Fenghe River watershed of Xi’an. Ecol. Indic. 2020, 113, 106218. [Google Scholar] [CrossRef]
- Xie, Y.L.; Huang, G.H.; Li, W.; Li, J.B.; Li, Y.F. An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China. J. Environ. Manag. 2013, 127, 188–205. [Google Scholar] [CrossRef]
- Zhang, B.-L.; Cui, B.-H.; Zhang, S.-M.; Wu, Q.-Y.; Yao, L. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China. Environ. Sci. Pollut. Res. 2018, 25, 19101–19113. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, Z.; Wu, X.; Xiang, X.; Wei, S.; Bai, Q.; Zhou, Y. Co-ordination of land exploitation, exploitable farmland reserves and national planning in China. Land Use Policy 2016, 57, 682–693. [Google Scholar] [CrossRef]
- Li, C.; Zheng, H.; Li, S.; Chen, X.; Li, J.; Zeng, W.; Liang, Y.; Polasky, S.; Feldman, M.W.; Ruckelshaus, M.; et al. Impacts of conservation and human development policy across stakeholders and scales. Proc. Natl. Acad. Sci. USA 2015, 112, 7396–7401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Jin, Q.; Li, J.; Li, L.; He, C.; Huang, Y.; Yao, Y. Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China. CATENA 2017, 158, 286–297. [Google Scholar] [CrossRef]
- Pontius, R.G.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Pontius, R.G.J. Quantification Error versus Location Error in Comparison of Categorical Maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST +VERSION+ User’s Guide; The Natural Capital Project: Morges, Switzerland, 2016. [Google Scholar]
- Sun, X.; Shan, R.; Liu, F. Spatio-temporal quantification of patterns, trade-offs and synergies among multiple hydrological ecosystem services in different topographic basins. J. Clean. Prod. 2020, 268, 122338. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Rukundo, E.; Liu, S.; Dong, Y.; Rutebuka, E.; Asamoah, E.F.; Xu, J.; Wu, X. Spatio-temporal dynamics of critical ecosystem services in response to agricultural expansion in Rwanda, East Africa. Ecol. Indic. 2018, 89, 696–705. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Bren, d.A.C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2016, 114, 8939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Yang, L.; Jiang, W. Coupling coordination and spatiotemporal dynamic evolution between social economy and water environmental quality—A case study from Nansi Lake catchment, China. Ecol. Indic. 2020, 119, 106870. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J. Investigating the Spatiotemporally Varying Correlation between Urban Spatial Patterns and Ecosystem Services: A Case Study of Nansihu Lake Basin, China. ISPRS Int. J. Geoinf. 2019, 8, 346. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Kwon, H. Assessing the Impacts of Urban Land Use Changes on Regional Ecosystem Services According to Urban Green Space Policies Via the Patch-Based Cellular Automata Model. Environ. Manag. 2021, 67, 192–204. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Huang, Q.; He, C.; Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: A case study in Beijing, China. Ecol. Indic. 2018, 84, 183–193. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Seto Karen, C.; Güneralp, B.; Hutyra Lucy, R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. R. Soc. B 2011, 278, 3201–3208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.N.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607–608, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lü, Y.; Fu, B.; Zhang, Q.; Li, T.; Hu, W.; Comber, A. Half century change of interactions among ecosystem services driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau. Sci. Total Environ. 2019, 651, 2546–2557. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Liang, J.; Li, S.; Li, X.; Li, X.; Liu, Q.; Meng, Q.; Lin, A.; Li, J. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Gong, J.; Jin, T.; Liu, D.; Zhu, Y.; Yan, L. Are ecosystem service bundles useful for mountainous landscape function zoning and management? A case study of Bailongjiang watershed in western China. Ecol. Indic. 2022, 134, 108495. [Google Scholar] [CrossRef]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing–Tianjin–Hebei region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
- Brauman, K.A. Hydrologic ecosystem services: Linking ecohydrologic processes to human well-being in water research and watershed management. WIREs Water 2015, 2, 345–358. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Villa, F.; Batker, D.; Harrison-Cox, J.; Voigt, B.; Johnson, G.W. From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol. Soc. 2014, 19, 64. [Google Scholar] [CrossRef] [Green Version]
- Wolff, S.; Schulp, C.J.E.; Verburg, P.H. Mapping ecosystem services demand: A review of current research and future perspectives. Ecol. Indic. 2015, 55, 159–171. [Google Scholar] [CrossRef]
- Landuyt, D.; Broekx, S.; Goethals, P.L.M. Bayesian belief networks to analyse trade-offs among ecosystem services at the regional scale. Ecol. Indic. 2016, 71, 327–335. [Google Scholar] [CrossRef]
- Jopke, C.; Kreyling, J.; Maes, J.; Koellner, T. Interactions among ecosystem services across Europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol. Indic. 2015, 49, 46–52. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [Green Version]
Data Type | Model | Sources and Descriptions |
---|---|---|
Land use | Water yield, nutrient and sediment delivery ratio model in the InVEST model, CLUE-S model | Downloaded from the Data Center for Resources and Environmental Sciences, Chinese Academy of Science (http://www.resdc.cn) (1980–2015) (accessed on 1 September 2019) |
Digital elevation model (DEM) | Water yield, nutrient and sediment delivery ratio model in the InVEST model, CLUE model | 30 m Digital elevation model, available on USGS/NASA, SRTM data (http://srtm.csi.cgiar.org) (accessed on 1 September 2019) |
Climate data | Water yield, nutrient and sediment delivery ratio model | The climate data in all meterological stations, including annual average precipitation and temperature were downloaded from China meteorological data network(http://data.cma.gov.cn) (1980–2015) (accessed on 5 September 2017) |
Soil properties | Water yield, nutrient and sediment delivery ratio model | The geographical soil properties data, including soil depth, clay content, clay content, silt content, sand content, organic carbon content, were derived from the Harmonized World Soil Database)(HSWD) (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database (accessed on 1 February 2016)) |
Socio-economic data | CLUE-S model | Socio-economic data including population density (1990–2015) and Gross Domestic Product (1995–2015) (raster) downloaded from the Data Center for Resources and Environmental Sciences, Chinese Academy of Science (http://www.resdc.cn) (accessed on 1 September 2019) |
Scenarios | Cropland | Forest Land | Grassland | Water Body | Urban Land | Unused Land |
---|---|---|---|---|---|---|
UEP | 0.4 | 0.9 | 0.6 | 0.7 | 1 | 0.3 |
ERP | 0.5 | 1 | 0.6 | 1 | 0.9 | 0.6 |
FRP | 0.9 | 0.8 | 0.6 | 0.8 | 0.5 | 0.5 |
EFRP | 0.8 | 1 | 0.6 | 1 | 0.5 | 0.6 |
Land Use | Kc | Root_depth | Load_n | Eff_n | Load_p | Eff_p | C Factor | P Factor | Sedret_eff |
---|---|---|---|---|---|---|---|---|---|
Cropland | 0.8 | 2100 | 5.8 | 0.25 | 1.1 | 0.25 | 0.25 | 0.3 | 0.25 |
Forest | 1.2 | 7000 | 1.4 | 0.8 | 0.01 | 0.8 | 0.003 | 1 | 0.6 |
Grassland | 0.75 | 2600 | 2.6 | 0.4 | 0.2 | 0.4 | 0.04 | 1 | 0.4 |
Water body | 1 | 1000 | 0.001 | 0.05 | 0.001 | 0.05 | 0.001 | 1 | 0.05 |
Urban land | 0.001 | 1 | 36 | 0.6 | 2 | 0.8 | 0.003 | 0.001 | 0.8 |
Unused land | 1 | 1000 | 2 | 0.8 | 0.05 | 0.8 | 0.1 | 0.2 | 0.6 |
Land Use Types | Final Cropland | Final Forest | Final Grassland | Final Water Body | Final Urban Land | Final Unused Land |
---|---|---|---|---|---|---|
Intitial cropland | 19,004.3 | 26.5 | 31.7 | 234.1 | 2158.7 | 2.3 |
88.57% | 0.12% | 0.15% | 1.09% | 10.06% | 0.01% | |
Intitial forest | 229.5 | 603.3 | 339.5 | 9.2 | 45.1 | 2.2 |
18.68% | 49.10% | 27.63% | 0.75% | 3.67% | 0.18% | |
Intitial grassland | 308.0 | 6.01 | 788 | 7.5 | 47.1 | 0.8 |
26.61% | 0.52% | 68.08% | 0.65% | 4.07% | 0.07% | |
Intitial water body | 105.6 | 5.6 | 19.0 | 1345.6 | 19.1 | 8.4 |
7.02% | 0.37% | 1.26% | 89.51% | 1.27% | 0.56% | |
Intitial urban land | 720.1 | 6.0 | 5.0 | 8.0 | 3102.2 | 1.6 |
18.74% | 0.16% | 0.13% | 0.21% | 80.73% | 0.04% | |
Intitial unused land | 96.0 | 3.7 | 2.4 | 71.2 | 16.7 | 49.9 |
40.02% | 1.54% | 1% | 29.68% | 6.96% | 20.80% |
Scenarios in 2030 | Water Yield | TP Export | TN Export | Sediment Export |
---|---|---|---|---|
UEP | 8.3 | 12 | 13 | −3.6 |
ERP | −7.72 | −5.30 | −4.46 | −9.97 |
FRP | −1.91 | 3.46 | 3.22 | 8.14 |
EFRP | −2.76 | −1.12 | −2.27 | −1.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Han, J.; Qian, L.; Long, X.; Sun, X. Assessing the Potential Impacts of Urban Expansion on Hydrological Ecosystem Services in a Rapidly Urbanizing Lake Basin in China. Sustainability 2022, 14, 4424. https://doi.org/10.3390/su14084424
Guo H, Han J, Qian L, Long X, Sun X. Assessing the Potential Impacts of Urban Expansion on Hydrological Ecosystem Services in a Rapidly Urbanizing Lake Basin in China. Sustainability. 2022; 14(8):4424. https://doi.org/10.3390/su14084424
Chicago/Turabian StyleGuo, Hongwei, Ji Han, Lili Qian, Xinxin Long, and Xiaoyin Sun. 2022. "Assessing the Potential Impacts of Urban Expansion on Hydrological Ecosystem Services in a Rapidly Urbanizing Lake Basin in China" Sustainability 14, no. 8: 4424. https://doi.org/10.3390/su14084424
APA StyleGuo, H., Han, J., Qian, L., Long, X., & Sun, X. (2022). Assessing the Potential Impacts of Urban Expansion on Hydrological Ecosystem Services in a Rapidly Urbanizing Lake Basin in China. Sustainability, 14(8), 4424. https://doi.org/10.3390/su14084424