Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis
Abstract
:1. Introduction
2. Methods
3. Decline in the Mangrove Forests Coverage
4. Status of the Mangrove Species
5. Drivers of Mangrove Deforestation
6. Environmental Drivers
6.1. Climate Change
6.1.1. Sea-Level Rise
6.1.2. Changes in Temperature Regimes
6.1.3. Changes in Precipitation Patterns
6.2. Extreme Events
7. Anthropogenic Drivers
7.1. Aquaculture and Agriculture
7.2. Settlements and Urbanization
7.3. Industrialization and Pollution
7.4. Flow Modification
8. Interactions among Drivers
9. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Romañach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Raja Barizan, R.S.; Zhai, L. Conservation and Restoration of Mangroves: Global Status, Perspectives, and Prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Worthington, T.; Spalding, M. Mangrove Restoration Potential. A Global Map Highlighting a Critical Opportunity; The Nature Conservancy: Arlington, VA, USA, 2018; p. 36. [Google Scholar]
- Rivera-Monroy, V.H.; Lee, S.Y.; Kristensen, E.; Twilley, R.R. Mangrove Ecosystems: A Global Biogeographic Perspective; Springer: Cham, The Netherlands, 2017. [Google Scholar]
- Barbier, E.B. The Protective Service of Mangrove Ecosystems: A Review of Valuation Methods. Mar. Pollut. Bull. 2016, 109, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of Mangrove Forests Degradation on Biodiversity and Ecosystem Functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic Carbon Dynamics in Mangrove Ecosystems: A Review. Mangrove Ecol. Appl. For. Costal Zone Manag. 2008, 89, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Carbon Cycling and Storage in Mangrove Forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Spalding, M. The Global Distribution and Status of Mangrove Ecosystems. Int. NewsLett. Coast. Manag. 1997, 1, 20–21. [Google Scholar]
- Alongi, D.M. Mangrove Forests: Resilience, Protection from Tsunamis, and Responses to Global Climate Change. Estuar. Coast. Shelf Sci. 2008, 78, 1–13. [Google Scholar] [CrossRef]
- Spalding, M.D.; Leal, M. The State of the World’s Mangroves; Global Mangrove Alliance. 2021, p. 41. Available online: https://www.mangrovealliance.org/mangrove-forests/ (accessed on 7 February 2022).
- Worthington, T.A.; Andradi-Brown, D.A.; Bhargava, R.; Buelow, C.; Bunting, P.; Duncan, C.; Fatoyinbo, L.; Friess, D.A.; Goldberg, L.; Hilarides, L.; et al. Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth 2020, 2, 429–443. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Feller, I.C.; Friess, D.A.; Krauss, K.W.; Lewis, R.R. The State of the World’s Mangroves in the 21st Century under Climate Change. Hydrobiologia 2017, 803, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Primavera, J.H.; Esteban, J.M.A. A Review of Mangrove Rehabilitation in the Philippines: Successes, Failures and Future Prospects. Wetl. Ecol. Manag. 2008, 16, 345–358. [Google Scholar] [CrossRef]
- Cormier-Salem, M.C.; Bernatets, C.; Sarr, O. Mangrove System Sustainability: Public Incentives and Local Strategies in West Africa. In Tropical Deltas and Coastal Zones: Food Production, Communities and Environment at the Land-Water Interface; CABI Publishing: Bonn, Germany, 2010. [Google Scholar]
- Asbridge, E.; Lucas, R.; Accad, A.; Dowling, R. Mangrove Response to Environmental Changes Predicted under Varying Climates: Case Studies from Australia. Curr. For. Rep. 2015, 1, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Giesen, W.; Wulffraat, S.; Zieren, M.; Scholten, L. Mangrove Guidebook for Southeast Asia; UN Food and Agricultural Organization: Phnom Penh, Combodi, 2007. [Google Scholar]
- Mangaoang, C.; Flores, A. Inventory of Mangroves in Katunggan Coastal Eco-Park, Sultan Kudarat Province, the Philippines. Bonorowo Wetl. 2019, 9. [Google Scholar] [CrossRef]
- Ragavan, P.; Saxena, M.; Saxena, A.; Mohan, P.M.; Sachithanandam, V.; Coomar, T. Floral Composition and Taxonomy of Mangroves of Andaman and Nicobar Islands. Indian J. Geo. Mar. Sci. 2014, 43, 1031–1044. [Google Scholar]
- Sheue, C.R.; Liu, H.Y.; Yong, J.W.H. Kandelia Obovata (Rhizophoraceae), a New Mangrove Species from Eastern Asia. Taxon 2003, 52, 287–294. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Van Pottelbergh, I.; Kairo, J.G.; Cannicci, S.; Koedam, N. Human-Impacted Mangroves in Gazi (Kenya): Predicting Future Vegetation Based on Retrospective Remote Sensing, Social Surveys, and Tree Distribution. Mar. Ecol. Prog. Ser. 2004, 272, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Fromard, F.; Vega, C.; Proisy, C. Half a Century of Dynamic Coastal Change Affecting Mangrove Shorelines of French Guiana. A Case Study Based on Remote Sensing Data Analyses and Field Surveys. Mar. Geol. 2004, 208, 265–280. [Google Scholar] [CrossRef]
- López-Angarita, J.; Roberts, C.M.; Tilley, A.; Hawkins, J.P.; Cooke, R.G. Mangroves and People: Lessons from a History of Use and Abuse in Four Latin American Countries. For. Ecol. Manag. 2016, 368, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Djamaluddin, R.; Brown, B.; Lewis, R.R. The Practice of Hydrological Restoration to Rehabilitate Abandoned Shrimp Ponds in Bunaken National Park, North Sulawesi, Indonesia. Biodiversitas 2019, 20, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, A.K.; Cabral, P. Cyclone Sidr Impacts on the Sundarbans Floristic Diversity. Earth Sci. Res. 2013, 2, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Williams, N. Tsunami Insight to Mangrove Value. Curr. Biol. 2005, 15, R73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Primavera, J.H. Development and Conservation of Philippine Mangroves: Institutional Issues. Ecol. Econ. 2000, 35, 91–106. [Google Scholar] [CrossRef]
- Maung, W.S.; Sasaki, J. Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sens. 2021, 13, 52. [Google Scholar] [CrossRef]
- Islam, S.; Gnauck, A. Water Shortage in the Gorai River Basin and Damage of Mangrove Wetland Ecosystems in Sundarbans, Bangladesh. In Proceedings of the 3rd International Conference on Water & Flood Management (ICWFM-2011), Dhaka, Bangladesh, 8–10 January 2011. [Google Scholar]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global Declines in Human-driven Mangrove Loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Tam, N.F.Y. Pollution Studies on Mangroves in Hong Kong and Mainland China. In The Environment in Asia Pacific Harbours; Springer: Dordrecht, The Netherlands, 2006; ISBN 140203654X. [Google Scholar]
- Baldwin, A.; Egnotovich, M.; Ford, M.; Platt, W. Regeneration in Fringe Mangrove Forests Damaged by Hurricane Andrew. Plant Ecol. 2001, 157, 151–164. [Google Scholar] [CrossRef]
- Godoy, M.D.P.; De Lacerda, L.D. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution. An. Acad. Bras. Cienc. 2015, 87, 651–667. [Google Scholar] [CrossRef] [Green Version]
- Krauss, K.W.; Osland, M.J. Tropical Cyclones and the Organization of Mangrove Forests: A Review. Ann. Bot. 2020, 125, 213–234. [Google Scholar] [CrossRef]
- Charrua, A.B.; Padmanaban, R.; Cabral, P.; Bandeira, S.; Romeiras, M.M. Impacts of the Tropical Cyclone Idai in Mozambique: A Multi-Temporal Landsat Satellite Imagery Analysis. Remote Sens. 2021, 13, 201. [Google Scholar] [CrossRef]
- Das, S. Can Mangroves Minimize Property Loss during Big Storms? An Analysis of House Damages Due to the Super Cyclone in Orissa; The South Asian Network for Development and Environmental Economics: Colombo, Sri Lanka, 2009; ISBN 978-9937-8218-1-0. [Google Scholar]
- Richards, D.R.; Friess, D.A. Rates and Drivers of Mangrove Deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, S.; Jones, T.G. Identifying Mangrove Deforestation Hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 2019, 11, 728. [Google Scholar] [CrossRef] [Green Version]
- Charrua, A.B.; Bandeira, S.O.; Catarino, S.; Cabral, P.; Romeiras, M.M. Assessment of the Vulnerability of Coastal Mangrove Ecosystems in Mozambique. Ocean Coast. Manag. 2020, 189, 105145. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayanthi, M.; Thirumurthy, S.; Muralidhar, M.; Ravichandran, P. Impact of Shrimp Aquaculture Development on Important Ecosystems in India. Glob. Environ. Chang. 2018, 52, 10–21. [Google Scholar] [CrossRef]
- Sherrod, C.L.; McMillan, C. Black Mangrove, Avicennia Germinans, in Texas: Past and Present Distribution. Contrib. Mar. Sci. 1981, 24, 115–131. [Google Scholar]
- Fakhruddin, B.; Mahalingam, R.; Padmanaban, R. Sustainable Development Goals for Reducing the Impact of Sea Level Rise on Mangrove Forests. Indian J. Geo. Mar. Sci. 2018, 47, 1947–1958. [Google Scholar]
- Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C. Enhanced Biological Production off Chennai Triggered by October 1999 Super Cyclone (Orissa). Curr. Sci. 2002, 82, 1472–1479. [Google Scholar]
- Das, S.; Crépin, A.-S. Mangroves Can Provide Protection against Wind Damage during Storms. Estuar. Coast. Shelf Sci. 2013, 134, 98–107. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; Yotk, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. BioScience 2001, 51, 807. [Google Scholar] [CrossRef] [Green Version]
- Maina, J.M.; Bosire, J.O.; Kairo, J.G.; Bandeira, S.O.; Mangora, M.M.; Macamo, C.; Ralison, H.; Majambo, G.; Poulter, B. Identifying Global and Local Drivers of Change in Mangrove Cover and the Implications for Management. Glob. Ecol. Biogeogr. 2021, 30, 2057–2069. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and Drivers of Global Mangrove Forest Change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Prisma Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UN Food and Agricultural Organization. Coordinating Working Party on Fishery Statistics (CWP). 2019. Available online: https://www.fao.org/fishery/cwp/en (accessed on 7 February 2022).
- Hamilton, S.E.; Casey, D. Creation of a High Spatio-Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Ward, R.D.; Friess, D.A.; Day, R.H.; Mackenzie, R.A. Impacts of Climate Change on Mangrove Ecosystems: A Region by Region Overview. Ecosyst. Health Sustain. 2016, 2, e01211. [Google Scholar] [CrossRef] [Green Version]
- Kodikara, K.A.S.; Jayatissa, L.P.; Huxham, M.; Dahdouh-Guebas, F.; Koedam, N. The Effects of Salinity on Growth and Survival of Mangrove Seedlings Changes with Age. Acta Bot. Bras. 2018, 32, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Bjorkman, O.; Demmig, B.; Andrews, T.J. Mangrove Photosynthesis: Response to High-Irradiance Stress. Aust. J. Plant Physiol. 1988, 15, 43–61. [Google Scholar] [CrossRef]
- Hamilton, S.E. Botany of Mangroves. In Coastal Research Library; Springer: Cham, The Netherlands, 2020; Volume 33, pp. 1–40. [Google Scholar]
- Mitsch, W.J.; Wu, X.; Nairn, R.W.; Weihe, P.E.; Wang, N.; Deal, R.; Boucher, C.E. Creating and Restoring Wetlands. BioScience 1998, 48, 1019–1030. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Asante, W.A.; Acheampong, E.; Boateng, K.; Adda, J. The Implications of Land Tenure and Ownership Regimes on Sustainable Mangrove Management and Conservation in Two Ramsar Sites in Ghana. For. Policy Econ. 2017, 85, 65–75. [Google Scholar] [CrossRef]
- UN Food and Agricultural Organization (FAO). Global Forest Resources Assessment 2020—Key Findings. Rome. 2020. Available online: https://doi.org/10.4060/ca8753en (accessed on 7 February 2022).
- Global Mangrove Alliance. FAO Reviews 30 Years of Global Forest Data. 2020. Available online: https://www.mangrovealliance.org/news/30-years-of-global-forest-data/ (accessed on 7 February 2022).
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N. Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sens. 2022, 14, 1034. [Google Scholar] [CrossRef]
- Luther, D.A.; Greenberg, R. Mangroves: A Global Perspective on the Evolution and Conservation of Their Terrestrial Vertebrates. BioScience 2009, 59, 602–612. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Long, J.; Abbas, S.; Mani Murali, R.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and Dynamics of Mangrove Forests of South Asia. J. Environ. Manag. 2015, 48, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Ximenes, A.C.; Ponsoni, L.; Lira, C.F.; Koedam, N.; Dahdouh-Guebas, F. Does Sea Surface Temperature Contribute to Determining Range Limits and Expansion of Mangroves in Eastern South America (Brazil)? Remote Sens. 2018, 10, 1787. [Google Scholar] [CrossRef] [Green Version]
- Latiff, A.A.; Faridah-Hanum, I.B. Mangrove Ecosystem of Malaysia: Status, Challenges and Management Strategies. In Mangrove Ecosystems of Asia; Springer: New York, NY, USA, 2014; pp. 1–22. ISBN 978-1-4614-8581-0. [Google Scholar]
- Hutchison, J.; Manica, A.; Swetnam, R.; Balmford, A.; Spalding, M. Predicting Global Patterns in Mangrove Forest Biomass. Conserv. Lett. 2014, 7, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Napton, D.; Giri, C.; Graesser, J. A Mapping and Monitoring Assessment of the Philippines’ Mangrove Forests from 1990 to 2010. J. Coast. Res. 2014, 294, 260–271. [Google Scholar] [CrossRef]
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T.; Ellison, J.; Koedam, N.E.; Wang, Y.; et al. Camptostemon philippinense. The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/species/178808/7612909 (accessed on 7 February 2022).
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T. Sonneratia griffithii. The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/species/178799/7609832 (accessed on 7 February 2022).
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T.; Ellison, J.; Koedam, N.E.; Wang, Y.; et al. Bruguiera hainesii. The IUCN Red List of Threatened Species. 2010. Available online: https://www.iucnredlist.org/species/178834/7621565 (accessed on 7 February 2022).
- Huang, X.; Zhang, L.; Wang, L. Evaluation of Morphological Texture Features for Mangrove Forest Mapping and Species Discrimination Using Multispectral IKONOS Imagery. IEEE Geosci. Remote Sens. Lett. 2009, 6, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Pin, T.G.; Supriatna, J.; Takarina, N.D.; Tambunan, R.P. Mangrove Diversity and Suitability Assessments for Ecotourism in Cimalaya Wetan Coast, Karawang District, Indonesia. Biodiversitas 2021, 22. [Google Scholar] [CrossRef]
- Day, J.W.; Conner, W.H.; Ley-Lou, F.; Day, R.H.; Navarro, A.M. The Productivity and Composition of Mangrove Forests, Laguna de Términos, Mexico. Aquat. Bot. 1987, 27, 267–284. [Google Scholar] [CrossRef]
- Rowley, I.; Kirwan, G.M. Philippine Cockatoo (Cacatua haematuropygia). Birds of the World. 2020. Available online: https://birdsoftheworld.org/bow/species/phicoc1/cur/introduction (accessed on 6 February 2022).
- Liu, I.A. Conservation Genetics and Genetic Mating System of the Yellow-Shouldered Blackbird (Agelaius xanthomus), an Endangered Island Endemic. Conserv. Genet. 2015, 16, 1041–1053. [Google Scholar] [CrossRef]
- Field, C.D. Impact of Expected Climate Change on Mangroves. Hydrobiologia 1995, 295, 75–81. [Google Scholar] [CrossRef]
- Cochard, R.; Ranamukhaarachchi, S.L.; Shivakoti, G.P.; Shipin, O.V.; Edwards, P.J.; Seeland, K.T. The 2004 Tsunami in Aceh and Southern Thailand: A Review on Coastal Ecosystems, Wave Hazards and Vulnerability. Perspect. Plant Ecol. Evol. Syst. 2008, 10, 3–40. [Google Scholar] [CrossRef]
- Woodroffe, C.D. The Impact of Sea-Level Rise on Mangrove Shorelines. Prog. Phys. Geogr. 1990, 14, 483–520. [Google Scholar] [CrossRef]
- Saintilan, N.; Khan, N.S.; Ashe, E.; Kelleway, J.J.; Rogers, K.; Woodroffe, C.D.; Horton, B.P. Thresholds of Mangrove Survival under Rapid Sea Level Rise. Science 2020, 368, 1118–1121. [Google Scholar] [CrossRef]
- Andriyono, S.; Masithah, E.D.; Pramono, H.; Suciyono, S. First Record of The Burrowing Goby Trypuchen Vagina from Pangpang Bay, Indonesia. ILMU Kelaut. Indones. J. Mar. Sci. 2019, 24, 127–131. [Google Scholar] [CrossRef]
- Mantri, V.A.; Mishra, A.K. On Monitoring Mangrove Vegetation of Sagar Island by Remote Sensing. Natl. Acad. Sci. Lett.-India 2006, 29, 45–48. [Google Scholar]
- Hoque, A.K.F.; Datta, D.K. The Mangroves of Bangladesh. Int. J. Ecol. Environ. Sci. 2005, 31, 245–253. [Google Scholar]
- Feng, Z.; Tan, G.; Xia, J.; Shu, C.; Chen, P.; Wu, M.; Wu, X. Dynamics of Mangrove Forests in Shenzhen Bay in Response to Natural and Anthropogenic Factors from 1988 to 2017. J. Hydrol. 2020, 591, 125271. [Google Scholar] [CrossRef]
- Albert, S.; Saunders, M.I.; Roelfsema, C.M.; Leon, J.X.; Johnstone, E.; Mackenzie, J.R.; Hoegh-Guldberg, O.; Grinham, A.R.; Phinn, S.R.; Duke, N.C.; et al. Winners and Losers as Mangrove, Coral and Seagrass Ecosystems Respond to Sea-Level Rise in Solomon Islands. Environ. Res. Lett. 2017, 12, 94009. [Google Scholar] [CrossRef]
- Li, S.; Meng, X.; Ge, Z.; Zhang, L. Evaluation of the Threat from Sea-Level Rise to the Mangrove Ecosystems in Tieshangang Bay, Southern China. Ocean Coast. Manag. 2015, 109, 1–8. [Google Scholar] [CrossRef]
- Schultz, K.A. El Niño/Southern Oscillation and the Seasonal Predictability of Tropical Cyclones. In El Nino and the Southern Oscillation; Cambridge University Press: Cambridge, UK, 2001; Volume 76, pp. 149–182. ISBN 9780511573125. [Google Scholar]
- Chen, S.; Wu, R.; Chen, W. The Changing Relationship between Interannual Variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. J. Clim. 2015, 28, 485–504. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Jackson, L.P.; Riva, R.E.M.; Grinsted, A.; Moore, J.C. Coastal Sea Level Rise with Warming above 2 °C. Proc. Natl. Acad. Sci. USA 2016, 113, 13342–13347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenberth, K.E. Observations: Surface and Atmospheric Climate Change. Changes 2007, 164. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Stocker, T.F. Chapter 10. Global Climate Projections. In Climate Change 2007: The Physical Science Basis; 2007. Available online: https://www.ipcc.ch/report/ar4/wg1/ (accessed on 1 August 2017).
- Hu, T.; Zhang, Y.Y.; Su, Y.; Zheng, Y.; Lin, G.; Guo, Q. Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sens. 2020, 12, 1690. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, H.; Lin, G.; Lin, H.; Tang, D. Zonation and Directional Dynamics of Mangrove Forests Derived from Time-Series Satellite Imagery in Mai Po, Hong Kong. Sustainability 2018, 10, 1913. [Google Scholar] [CrossRef] [Green Version]
- Cavanaugh, K.C.; Parker, J.D.; Cook-Patton, S.C.; Feller, I.C.; Williams, A.P.; Kellner, J.R. Integrating Physiological Threshold Experiments with Climate Modeling to Project Mangrove Species’ Range Expansion. Glob. Chang. Biol. 2015, 21, 1928–1938. [Google Scholar] [CrossRef] [Green Version]
- Stevens, P.W.; Fox, S.L.; Montague, C.L. The Interplay between Mangroves and Saltmarshes at the Transition between Temperate and Subtropical Climate in Florida. Wetl. Ecol. Manag. 2006, 14, 435–444. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Dangremond, E.M.; Doughty, C.L.; Williams, A.P.; Parker, J.D.; Hayes, M.A.; Rodriguez, W.; Feller, I.C. Climate-Driven Regime Shifts in a Mangrove–Salt Marsh Ecotone over the Past 250 Years. Proc. Natl. Acad. Sci. USA 2019, 116, 21602–21608. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.P.; Best, M.J.; Betts, R.A. Climate Change in Cities due to Global Warming and Urban Effects. Geophys. Res. Lett. 2010, 37, 415. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Chapter 3: Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 1 August 2017).
- Chen, Y.; Ye, Y. Effects of Salinity and Nutrient Addition on Mangrove Excoecaria Agallocha. PLoS ONE 2014, 9, e93337. [Google Scholar] [CrossRef]
- Bunt, J.S.; Williams, W.T.; Clay, H.J. River Water Salinity and the Distribution of Mangrove Species along Several Rivers in North Queensland. Aust. J. Bot. 1982, 30, 401–412. [Google Scholar] [CrossRef]
- Manna, S.; Chaudhuri, K.; Bhattacharyya, S.; Bhattacharyya, M. Dynamics of Sundarban Estuarine Ecosystem: Eutrophication Induced Threat to Mangroves. Saline Syst. 2010, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental Drivers in Mangrove Establishment and Early Development: A Review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Fickert, T. Better Resilient than Resistant-Regeneration Dynamics of Storm-Disturbed Mangrove Forests on the Bay Island of Guanaja (Honduras) during the First Two Decades after Hurricane Mitch (October 1998). Diversity 2018, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Cahoon, D.R. A Review of Major Storm Impacts on Coastal Wetland Elevations. Estuaries Coasts 2006, 29, 889–898. [Google Scholar] [CrossRef]
- Granek, E.F.; Ruttenberg, B.I. Protective Capacity of Mangroves during Tropical Storms: A Case Study from “Wilma” and “Gamma” in Belize. Mar. Ecol. Prog. Ser. 2007, 343, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Monroy, V.H.; Danielson, T.M.; Castañeda-Moya, E.; Marx, B.D.; Travieso, R.; Zhao, X.; Gaiser, E.E.; Farfan, L.M. Long-Term Demography and Stem Productivity of Everglades Mangrove Forests (Florida, USA): Resistance to Hurricane Disturbance. For. Ecol. Manag. 2019, 440, 79–91. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Hensel, P.; Rybczyk, J.; McKee, K.L.; Proffitt, C.E.; Perez, B.C. Mass Tree Mortality Leads to Mangrove Peat Collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 2003, 91, 1093–1105. [Google Scholar] [CrossRef]
- Roth, L.C. Hurricanes and Mangrove Regeneration: Effects of Hurricane Joan, October 1988, on the Vegetation of Isla Del Venado, Bluefields, Nicaragua. Biotropica 1992, 24, 375. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Aziz, A.; Khan, A.N.A.; Islam, M.N.; Iqubal, K.F.; Nazma, M.; Islam, M.S. Tree Diversity as Affected by Salinity in the Sundarban Mangrove Forests, Bangladesh. Bangladesh J. Bot. 2011, 40, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Vincent, J.R. Mangroves Protected Villages and Reduced Death Toll during Indian Super Cyclone. Proc. Natl. Acad. Sci. USA 2009, 106, 7357–7360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayyappan, K.; Thiruvenkatasamy, K.; Arumugam, T. Impact Assessment Study of Cyclone Vardah on Chennai, On East Coast of Tamil Nadu, India. TERI Inf. Dig. Energy Environ. 2017, 16, 13–20. [Google Scholar]
- Muthusamy, S.; Sivakumar, K.; Durai, A.; Sheriff, M. Ockhi Cyclone and Its Impact in the Kanyakumari District of Southern Tamilnadu, India: An Aftermath Analysis. Int. J. Recent Res. Asp. 2018, 1, 466–469. [Google Scholar]
- Nivedita Priyadarshini, K.; Sivashankari, V.; Shekhar, S. An Assessment of Land Cover Change Dynamics of Gaja Cyclone in Coastal Tamil Nadu, India Using Sentinel 1 SAR Dataset. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Dhulikhel, Nepal, 10–11 December 2019; Volume 42. [Google Scholar]
- Meyers, R.A. Extreme Environmental Events; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-7694-9. [Google Scholar]
- Danielsen, F.; Sørensen, M.K.; Olwig, M.F.; Selvam, V.; Parish, F.; Burgess, N.D.; Hiraishi, T.; Karunagaran, V.M.; Rasmussen, M.S.; Hansen, L.B.; et al. The Asian Tsunami: A Protective Role for Coastal Vegetation. Science 2005, 310, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. FAO Fisheries and Aquaculture Department. Mangrove Forest Management Guidelines; FAO Forestry Paper, FAO Fisheries and Aquaculture Department: Rome, Italy, 2004. [Google Scholar]
- Kusmana, C. Distribution and Current Status of Mangrove Forests in Indonesia. In Mangrove Ecosystems of Asia: Status, Challenges and Management Strategies; Springer: New York, NY, USA, 2014; pp. 37–60. ISBN 9781461485827. [Google Scholar]
- Prasad, P.R.C.; Reddy, C.S.; Rajan, K.S.; Raza, S.H.; Dutt, C.B.S. Assessment of Tsunami and Anthropogenic Impacts on the Forest of the North Andaman Islands, India. Int. J. Remote Sens. 2009, 30, 1235–1249. [Google Scholar] [CrossRef]
- Barbier, E.B. Natural Barriers to Natural Disasters: Replanting Mangroves after the Tsunami. Front. Ecol. Environ. 2006, 4, 124–131. [Google Scholar] [CrossRef]
- Dharanirajan, K.; Kasinatha Pandian, P.; Gurugnanam, B.; Narayanan, R.M.; Ramachandran, S. An Integrated Study for the Assessment of Tsunami Impacts: A Case Study of South Andaman Island, India Using Remote Sensing and GIS. Coast. Eng. J. 2007, 49, 229–266. [Google Scholar] [CrossRef]
- Tappin, D.R.; Watts, P.; Grilli, S.T. The Papua New Guinea Tsunami of 17 July 1998: Anatomy of a Catastrophic Event. Nat. Hazards Earth Syst. Sci. 2008, 8, 243–266. [Google Scholar] [CrossRef] [Green Version]
- Primavera, J.H. Socio-Economic Impacts of Shrimp Culture. Aquac. Res. 1997, 28, 815–827. [Google Scholar] [CrossRef]
- Bosire, J.O.; Kaino, J.J.; Olagoke, A.O.; Mwihaki, L.M.; Ogendi, G.M.; Kairo, J.G.; Berger, U.; Macharia, D. Mangroves in Peril: Unprecedented Degradation Rates of Peri-Urban Mangroves in Kenya. Biogeosciences 2014, 11, 2623–2634. [Google Scholar] [CrossRef] [Green Version]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The Potential of Indonesian Mangrove Forests for Global Climate Change Mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Hamilton, S. Assessing the Role of Commercial Aquaculture in Displacing Mangrove Forest. BMS 2013, 89, 585–601. [Google Scholar] [CrossRef]
- Quimby, B. Emerging Customs: Small-Scale Fishing Practices in Aceh, Indonesia. Appl. Geogr. 2015, 59, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Thompson, S.; Glaser, M. Integrated Mangrove-Shrimp Cultivation: Potential for Blue Carbon Sequestration. Ambio 2018, 47, 441–452. [Google Scholar] [CrossRef]
- Lacerda, L.D. Conservation and Sustainable Utilization of Mangrove Forests in Latin America and Africa Regions. America 1992, 114190, 44. [Google Scholar]
- Kadarsah, A.; Salim, D.; Husain, S.; Dinata, M. Species Density and Lead (Pb) Pollution in Mangrove Ecosystem, South Kalimantan. J. Biodjati 2020, 5, 70–81. [Google Scholar] [CrossRef]
- Euler, M.; Schwarze, S.; Siregar, H.; Qaim, M. Oil Palm Expansion among Smallholder Farmers in Sumatra, Indonesia. J. Agric. Econ. 2016, 67, 658–676. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R. Mapping Mangrove Density from Rapideye Data in Central America. Open Geosci. 2017, 9, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M.D.M. Present State and Future of the World’s Mangrove Forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Gornitz, V.; Cohen, J.E. Coastal Hazards and the Global Distribution of Human Population. Environ. Geosci. 2000, 7, 3–12. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects—Population Division; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P.; Zamyatin, A.; Almegdadi, O.; Shuangao, W. Modelling Urban Sprawl Using Remotely Sensed Data: A Case Study of Chennai City, Tamilnadu. Entropy 2017, 19, 163. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Grandi, G.D.E.; Saatchi, S.; Mayaux, P. Mapping Tropical Coastal Vegetation Using JERS-1 and ERS-1 Radar Data with a Decision Tree Classifier. Int. J. Remote Sens. 2002, 23, 1461–1474. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Barbour, E.; Futter, M.N.; Sarkar, S.; Rodda, H.; Caesar, J.; Butterfield, D.; Jin, L.; Sinha, R.; Nicholls, R.; et al. Impacts of Climate Change and Socio-Economic Scenarios on Flow and Water Quality of the Ganges, Brahmaputra and Meghna (GBM) River Systems: Low Flow and Flood Statistics. Environ. Sci. Processes Impacts 2015, 17, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Kathiresan, K.; Rajendran, N. Mangrove Ecosystems of the Indian Ocean Region. Indian J. Mar. Sci. 2005, 34, 104–113. [Google Scholar]
- Myers, S.S. Global Environmental Change: The Threat to Human Health; Worldwatch Paper; Worldwatch Institute: Washington, DC, USA, 2009. [Google Scholar]
- Farley, J.; Batker, D.; De La Torre, I.; Hudspeth, T. Conserving Mangrove Ecosystems in the Philippines: Transcending Disciplinary and Institutional Borders. Environ. Manag. 2010, 45, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.W.; Xu, X.R.; Sun, Y.X.; Yu, S.; Chen, Y.S.; Peng, J.X. Heavy Metal and Organic Contaminants in Mangrove Ecosystems of China: A Review. Environ. Sci. Pollut. Res. 2014, 21, 11938–11950. [Google Scholar] [CrossRef]
- Barbosa, F.M.A.; Cuambe, C.C.; Bandeira, S.O. Status and Distribution of Mangroves in Mozambique. S. Afr. J. Bot. 2001, 67, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Hendy, I.W.; Michie, L.; Taylor, B.W. Habitat Creation and Biodiversity Maintenance in Mangrove Forests: Teredinid Bivalves as Ecosystemengineers. PeerJ 2014, 2014, e591. [Google Scholar] [CrossRef] [Green Version]
- Selvam, S.; Venkatramanan, S.; Singaraja, C. A GIS-Based Assessment of Water Quality Pollution Indices for Heavy Metal Contamination in Tuticorin Corporation, Tamilnadu, India. Arab. J. Geosci. 2015, 8, 10611–10623. [Google Scholar] [CrossRef]
- Chidambaram, S.; Karmegam, U.; Prasanna, M.V.; Sasidhar, P. A Study on Evaluation of Probable Sources of Heavy Metal Pollution in Groundwater of Kalpakkam Region, South India. Environmentalist 2012, 32, 371–382. [Google Scholar] [CrossRef]
- Ganesan, S. One hydrocarbon Project, Many Fault Lines. The Hindu. Chennai, 2017. Available online: https://www.thehindu.com/news/national/tamil-nadu/one-hydrocarbon-project-many-fault-lines/article61808511.ece (accessed on 6 February 2022).
- Duke, N.C. Oil Spill Impacts on Mangroves: Recommendations for Operational Planning and Action Based on a Global Review. Mar. Pollut. Bull. 2016, 109, 700–715. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.D.; Osofsky, H.J.; Lichtveld, M.Y. The Gulf Oil Spill. N. Engl. J. Med. 2011, 364, 1334–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Nambi, I.M.; Prabhakar Clement, T. Environmental Impacts of the Chennai Oil Spill Accident—A Case Study. Sci. Total Environ. 2018, 626, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Sruthi, P.; Shackira, A.M.; Puthur, J.T. Heavy Metal Detoxification Mechanisms in Halophytes: An Overview. Wetl. Ecol. Manag. 2017, 25, 129–148. [Google Scholar] [CrossRef]
- Mandura, A.S. A Mangrove Stand under Sewage Pollution Stress: Red Sea. Mangroves Salt Marshes 1997, 1, 255–262. [Google Scholar] [CrossRef]
- Maiti, S.K.; Chowdhury, A. Effects of Anthropogenic Pollution on Mangrove Biodiversity: A Review. J. Environ. Prot. 2013, 4, 1428–1434. [Google Scholar] [CrossRef] [Green Version]
- Ellison, A.M.; Farnsworth, E.J. Anthropogenic Disturbance of Caribbean Mangrove Ecosystems: Past Impacts, Present Trends, and Future Predictions. Biotropica 1996, 28, 549. [Google Scholar] [CrossRef]
- Hemminga, M.A.; Slim, F.J.; Kazungu, J.; Ganssen, G.M.; Nieuwenhuize, J.; Kruyt, N.M. Carbon Outwelling from a Mangrove Forest with Adjacent Seagrass Beds and Coral Reefs (Gazi Bay, Kenya). Mar. Ecol. Prog. Ser. 1994, 106, 291–301. [Google Scholar] [CrossRef]
- Rudra, K. Rivers of the Ganga–Brahmaputra–Meghna Delta: An Overview; Springer: Cham, The Netherlands, 2018. [Google Scholar]
- Khare, D.; Patra, D.; Mondal, A.; Kundu, S. Impact of Landuse/Land Cover Change on Run-off in a Catchment of Narmada River in India. Appl. Geomat. 2015, 7, 23–35. [Google Scholar] [CrossRef]
- Day, J.W.; Conner, W.H.; Costanza, R.; Kemp, G.P.; Mendelssohn, I.A. Impacts of Sea Level Rise on Coastal Systems with Special Emphasis on the Mississippi River Deltaic Plain. In Climate and Sea Level Change: Observations, Projections and Implications; Cambridge University Press: Cambridge, UK, 1994; pp. 276–296. [Google Scholar]
- McKee, K.L.; Vervaeke, W.C. Will Fluctuations in Salt Marsh–Mangrove Dominance Alter Vulnerability of a Subtropical Wetland to Sea-Level Rise? Glob. Chang. Biol. 2018, 24, 1224–1238. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Lacerda, L.D. Degradation and Conservation of Brazilian Mangroves, Status and Perspectives. Ocean Coast. Manag. 2016, 125, 38–46. [Google Scholar] [CrossRef]
- Adame, M.F.; Hermoso, V.; Perhans, K.; Lovelock, C.E.; Herrera-Silveira, J.A. Selecting Cost-Effective Areas for Restoration of Ecosystem Services. Conserv. Biol. 2015, 29, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadzil, M.F.; Yun, P.S.; Razal, A.R.; Chee, P.S.; Suratman, S.; Dagang, N.S.; Tahir, N.M. Oil and Grease and Total Petroleum Hydrocarbons in the Waters of Ramsar Gazetted Mangrove Area, Johor. J. Sustain. Sci. Manag. 2017, 12, 30–39. [Google Scholar]
- Committee, A.T.; Rise, S.; Effects, I. Effects of Sea-Level Rise on Bays and Estuaries. J. Hydraul. Eng. 1992, 118. [Google Scholar] [CrossRef]
- Lee, S.Y.; Dunn, R.J.K.; Young, R.A.; Connolly, R.M.; Dale, P.E.R.; Dehayr, R.; Lemckert, C.J.; McKinnon, S.; Powell, B.; Teasdale, P.R.; et al. Impact of Urbanization on Coastal Wetland Structure and Function. Austral Ecol. 2006, 31, 149–163. [Google Scholar] [CrossRef]
- Rosasco, P.; Sdino, L.; Magoni, S. Reclamation Costs and Their Weight in the Economic Sustainability of a Project. Procedia Soc. Behav. Sci. 2016, 223, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Asbridge, E.F.; Bartolo, R.; Finlayson, C.M.; Lucas, R.M.; Rogers, K.; Woodroffe, C.D. Assessing the Distribution and Drivers of Mangrove Dieback in Kakadu National Park, Northern Australia. Estuar. Coast. Shelf Sci. 2019, 228, 106353. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M.C. Mangrove Dieback during Fluctuating Sea Levels. Sci. Rep. 2017, 7, 1680. [Google Scholar] [CrossRef]
- Osorio, J.A.; Crous, C.J.; Wingfield, M.J.; de Beer, Z.W.; Roux, J. An Assessment of Mangrove Diseases and Pests in South Africa. Forestry 2017, 90, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Blasco, F.; Saenger, P.; Janodet, E. Mangroves as Indicator of Coastal Change. Catena 1996, 27, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Ellison, J.C.; Stoddart, D.R. Mangrove Ecosystem Collapse during Predicted Sea-Level Rise: Holocene Analogues and Implications. J. Coast. Res. 1991, 7, 151–165. [Google Scholar]
- Bourne, J. Louisiana’s Vanishing Wetlands: Going, Going. Science 2000, 289, 1860–1863. [Google Scholar] [CrossRef] [PubMed]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking Deltas Due to Human Activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Gornitz, V. Sea-level Rise: A Review of Recent Past and Near-future Trends. Earth Surf. Processes Landf. 1995, 20, 7–20. [Google Scholar] [CrossRef]
- Shi-lun, Y.; Ji-yu, C. Coatal Salt Marshes and Mangrove Swamps in China. Chin. J. Oceanol. Limnol. 1995, 13, 318–324. [Google Scholar] [CrossRef]
- Bidorn, B.; Sok, K.; Bidorn, K.; Burnett, W.C. An Analysis of the Factors Responsible for the Shoreline Retreat of the Chao Phraya Delta (Thailand). Sci. Total Environ. 2021, 769, 145253. [Google Scholar] [CrossRef]
- Hale, R.P.; Wilson, C.A.; Bomer, E.J. Seasonal Variability of Forces Controlling Sedimentation in the Sundarbans National Forest, Bangladesh. Front. Earth Sci. 2019, 7, 211. [Google Scholar] [CrossRef] [Green Version]
- Kanaya, G.; Suzuki, T.; Kikuchi, E. Impacts of the 2011 Tsunami on Sediment Characteristics and Macrozoobenthic Assemblages in a Shallow Eutrophic Lagoon, Sendai Bay, Japan. PLoS ONE 2015, 10, e0135125. [Google Scholar] [CrossRef]
- Sandilyan, S.; Kathiresan, K. Mangrove Conservation: A Global Perspective. Biodivers. Conserv. 2012, 21, 3523–3542. [Google Scholar] [CrossRef]
- Hoque, M.A.-A.; Phinn, S.; Roelfsema, C.; Childs, I. Assessing Tropical Cyclone Impacts Using Object-Based Moderate Spatial Resolution Image Analysis: A Case Study in Bangladesh. Int. J. Remote Sens. 2016, 37, 5320–5343. [Google Scholar] [CrossRef]
- Macamo, C.; Massuanganhe, E.; Nicolau, D.; Bandeira, S.; Adams, J. Mangrove’s Response to Cyclone Eline (2000): What’s Happening 14 Years Late. Aquat. Bot. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization) The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)–Managing Systems at Risk; 2011. FAO, Earthscan Publications. Available online: https://www.fao.org/3/a-i1688e.pdf (accessed on 1 August 2017).
- Smith, S.V.; Buddemeier, R.W. Global Change and Coral Reef Ecosystems. Annu. Rev. Ecol. Syst. 1992, 23, 89–118. [Google Scholar] [CrossRef]
- Ellison, J.C. How South Pacific Mangroves May Respond to Predicted Climate Change and Sea-Level Rise. In Climate Change in the South Pacific: Impacts and Responses in Australia, New Zealand, and Small Island States; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Ilman, M.; Dargusch, P.; Dart, P. Onrizal A Historical Analysis of the Drivers of Loss and Degradation of Indonesia’s Mangroves. Land Use Policy 2016, 54, 448–459. [Google Scholar] [CrossRef]
- Thu, P.M.; Populus, J. Status and Changes of Mangrove Forest in Mekong Delta: Case Study in Tra Vinh, Vietnam. Estuar. Coast. Shelf Sci. 2007, 71, 98–109. [Google Scholar] [CrossRef]
- Lymburner, L.; Bunting, P.; Lucas, R.; Scarth, P.; Alam, I.; Phillips, C.; Ticehurst, C.; Held, A. Mapping the Multi-Decadal Mangrove Dynamics of the Australian Coastline. Remote Sens. Environ. 2020, 238, 111185. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Thom, B.G.; Chappell, J. Development of Widespread Mangrove Swamps in Mid-Holocene Times in Northern Australia. Nature 1985, 317, 711–713. [Google Scholar] [CrossRef]
- Acuña-Piedra, J.F.; Quesada-Román, A. Multidecadal Biogeomorphic Dynamics of a Deltaic Mangrove Forest in Costa Rica. Ocean Coast. Manag. 2021, 211, 105770. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to Mangroves from Climate Change and Adaptation Options. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Hamilton, L.S.; Snedaker, S.C. Handbook for Mangrove Area Management; United Nations Environment Programme and International Union for Conservation of Nature, 1984. Available online: https://wedocs.unep.org/handle/20.500.11822/29409 (accessed on 1 August 2017).
Initial Keywords | Driver Related Keyword Sets | Number of Literature | ||
---|---|---|---|---|
WOS | Scopus | Total | ||
{mangrove distribution, mangrove biomass, mangrove species, mangrove ecosystems} | Climate | 15 | 14 | 29 |
Extreme events | 20 | 25 | 45 | |
Land changes | 29 | 25 | 54 | |
Pollution | 12 | 15 | 27 | |
Flow modification | 16 | 30 | 46 | |
Total | 92 | 109 | 201 |
Global Regions | Mangrove Coverage km2 | Rate of Decline %/year | |||||
---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2020 | 1990–2000 | 2000–2010 | 2010–2020 | |
Western and Central Africa | 24,360 | 24,200 | 23,890 | 23,840 | 0.07 | 0.13 | 0.02 |
Eastern and Southern Africa | 9290 | 9050 | 9020 | 8830 | 0.26 | 0.03 | 0.21 |
Total Africa | 33,650 | 33,250 | 32,910 | 32,670 | 0.12 | 0.10 | 0.07 |
East Asia | 320 | 250 | 240 | 220 | 2.19 | 0.40 | 0.83 |
South and Southeast Asia | 57,170 | 57,080 | 55,130 | 53,300 | 0.02 | 0.34 | 0.33 |
Western and Central Asia | 1900 | 1900 | 1900 | 1840 | 0.00 | 0.00 | 0.32 |
Total Asia | 59,390 | 59,230 | 57,270 | 55,360 | 0.03 | 0.33 | 0.33 |
Caribbean | 7910 | 7890 | 7870 | 7740 | 0.03 | 0.03 | 0.17 |
Central America | 4920 | 4830 | 4820 | 4660 | 0.18 | 0.02 | 0.33 |
North America | 11,950 | 11,900 | 11,670 | 11,520 | 0.04 | 0.19 | 0.13 |
Total Caribbean, Central, and North America | 24,780 | 24,620 | 24,360 | 23,920 | 0.06 | 0.11 | 0.18 |
Total Oceania | 12,470 | 12,140 | 11,550 | 11,500 | 0.26 | 0.49 | 0.04 |
Total South America | 21,520 | 21,240 | 20,500 | 19,760 | 0.13 | 0.35 | 0.36 |
World | 151,810 | 150,480 | 146,590 | 143,210 | 0.09 | 0.26 | 0.23 |
Countries | Environmental Drivers | Anthropogenic Drivers | ||||
---|---|---|---|---|---|---|
Climate Change (Sea-Level Rise, Temperature, and Precipitation Changes) | Extreme Events | Aquaculture and Agriculture | Settlements and Urbanization | Industrialization and Pollution | Flow Modification | |
Mexico | 5 | N/A | 3 | 5 | 1 | N/A |
Cuba | N/A | N/A | 1 | 2 | 1 | N/A |
Brazil | 3 | N/A | 3 | 6 | 3 | 3 |
Guinea Bissau | 1 | 1 | N/A | 2 | N/A | N/A |
Guyana | N/A | N/A | 2 | 2 | 1 | N/A |
Saudi Arabia | 1 | 1 | 1 | 4 | N/A | N/A |
Ethiopia | 2 | 1 | 4 | 3 | N/A | N/A |
Mozambique | 1 | N/A | 2 | 2 | 1 | N/A |
Madagascar | 4 | 2 | N/A | 2 | N/A | N/A |
India | 9 | 4 | 6 | 11 | 7 | 4 |
Bangladesh | 6 | 4 | 6 | 8 | 2 | 3 |
Myanmar | 1 | 2 | N/A | N/A | N/A | N/A |
Malaysia | 3 | N/A | 3 | 2 | N/A | N/A |
Philippines | 6 | 2 | 6 | 1 | 1 | 1 |
Indonesia | 7 | 2 | 8 | 2 | 1 | 1 |
Australia | 3 | 4 | 1 | 6 | 2 | N/A |
Papua New Guinea | 1 | 1 | 1 | 1 | N/A | N/A |
New Zealand | 2 | 2 | 1 | 1 | N/A | N/A |
Thailand | 4 | 2 | 6 | N/A | 1 | N/A |
Colombia | 3 | 2 | 1 | 1 | N/A | N/A |
Nigeria | 2 | 2 | 1 | 2 | N/A | 1 |
Vietnam | 1 | 2 | 3 | 1 | N/A | N/A |
China | 2 | N/A | 1 | 9 | 2 | 1 |
South Africa | 1 | N/A | N/A | 4 | 2 | 1 |
Ecuador | N/A | N/A | 2 | N/A | 1 | N/A |
Pakistan | 1 | 2 | 2 | 4 | 1 | 3 |
Venezuela | 2 | N/A | N/A | 1 | 1 | 1 |
United States | 2 | 4 | N/A | 3 | N/A | N/A |
Mauritius | 1 | 1 | N/A | 1 | 2 | 1 |
Sri Lanka | 2 | 2 | 1 | 6 | N/A | N/A |
Kenya | 1 | 1 | N/A | 2 | 1 | N/A |
Japan | 2 | 3 | N/A | 4 | N/A | N/A |
Total | 79 | 47 | 65 | 98 | 31 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhowmik, A.K.; Padmanaban, R.; Cabral, P.; Romeiras, M.M. Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis. Sustainability 2022, 14, 4433. https://doi.org/10.3390/su14084433
Bhowmik AK, Padmanaban R, Cabral P, Romeiras MM. Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis. Sustainability. 2022; 14(8):4433. https://doi.org/10.3390/su14084433
Chicago/Turabian StyleBhowmik, Avit K., Rajchandar Padmanaban, Pedro Cabral, and Maria M. Romeiras. 2022. "Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis" Sustainability 14, no. 8: 4433. https://doi.org/10.3390/su14084433
APA StyleBhowmik, A. K., Padmanaban, R., Cabral, P., & Romeiras, M. M. (2022). Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis. Sustainability, 14(8), 4433. https://doi.org/10.3390/su14084433