Analysis of the Impact of Industrial Land Price Distortion on Overcapacity in the Textile Industry and Its Sustainability in China
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. Industrial Land Price Distortion and Enterprise Entry
2.2. Industrial Land Price Distortion, Enterprise Entry, and Overcapacity
3. Model Design and Data Description
3.1. Model Design
3.1.1. Price Distortion of Industrial Land (Distort)
3.1.2. Capacity Utilization (cr)
3.1.3. Correlated Control Variables
3.2. Data Source and Description
4. Empirical Analysis
4.1. Baseline Regression Result
4.2. Robustness Test
4.2.1. Change the Sample Interval
4.2.2. Substitution Explanatory Variable
4.3. Instrumental Variable Estimation
5. Further Analysis
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samo, A.H.; Murad, H. Impact of Liquidity and Financial Leverage on Firm’s Profitability—An Empirical Analysis of the Textile Industry of Pakistan. Res. J. Text. Appar. 2019, 23, 291–305. [Google Scholar] [CrossRef]
- Wu, L.; Liu, C. Project Matching and Overcapacity in China. Front. Econ. China 2019, 14, 629–669. [Google Scholar] [CrossRef]
- Chen, H.; Zhong, T.; Lee, J.Y. Capacity Reduction Pressure, Financing Constraints, and Enterprise Sustainable Innovation Investment: Evidence from Chinese Manufacturing Companies. Sustainability 2020, 12, 10472. [Google Scholar] [CrossRef]
- Hu, D. Trade, Rural–Urban Migration, and Regional Income Disparity in Developing Countries: A Spatial General Equilibrium Model Inspired by the Case of China. Reg. Sci. Urban Econ. 2002, 32, 311–338. [Google Scholar] [CrossRef]
- Tsai, W.-H. Green Production Planning and Control for the Textile Industry by Using Mathematical Programming and Industry 4.0 Techniques. Energies 2018, 11, 2072. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, Z. Road Investments and Inventory Reduction: Firm Level Evidence from China. J. Urban Econ. 2013, 76, 43–52. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, J.; Wang, J.; Guo, L. Return Migration and Hukou Registration Constraints in Chinese Cities. China Econ. Rev. 2020, 63, 101498. [Google Scholar] [CrossRef]
- Deng, F.F. Public Land Leasing and the Changing Roles of Local Government in Urban China. Ann. Reg. Sci. 2005, 39, 353–373. [Google Scholar] [CrossRef]
- Chen, J.; Guo, F.; Wang, H.; Wang, Z.; Wu, Y. Urban Land Revenue and Sustainable Urbanization in China: Issues and Challenges. Sustainability 2018, 10, 2111. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Hu, S.; Li, W.; Zhang, C.; Song, D. Spatio-Temporal Nonstationary Effects of Impact Factors on Industrial Land Price in Industrializing Cities of China. Sustainability 2020, 12, 2792. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, X.; Skitmore, M.; Song, Y.; Hui, E.C.M. Industrial Land Price and Its Impact on Urban Growth: A Chinese Case Study. Land Use Policy 2014, 36, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, C.; Fang, Y. Driving Factors of the Industrial Land Transfer Price Based on a Geographically Weighted Regression Model: Evidence from a Rural Land System Reform Pilot in China. Land 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, K.; Yan, L.; Zhu, Y.; Liao, L.; Chen, Y. Urban Land Use Transitions and the Economic Spatial Spillovers of Central Cities in China’s Urban Agglomerations. Land 2021, 10, 644. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, D.; Lu, X.; Tang, Y.; Jiang, B. Interaction between Land Financing Strategy and the Implementation Deviation of Local Governments’ Cultivated Land Protection Policy in China. Land 2021, 10, 803. [Google Scholar] [CrossRef]
- Wang, R.; Hou, J. Land Finance, Land Attracting Investment and Housing Price Fluctuations in China. Int. Rev. Econ. Finance 2021, 72, 690–699. [Google Scholar] [CrossRef]
- Pu, W.; Zhang, A. Can Market Reforms Curb the Expansion of Industrial Land?—Based on the Panel Data Analysis of Five National-Level Urban Agglomerations. Sustainability 2021, 13, 4472. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, J.; Jiang, F. Subsidy Competition, Industrial Land Price Distortions and Overinvestment: Empirical Evidence from China’s Manufacturing Enterprises. Appl. Econ. 2017, 49, 4851–4870. [Google Scholar] [CrossRef]
- Zheng, D.; Shi, M. Industrial Land Policy, Firm Heterogeneity and Firm Location Choice: Evidence from China. Land Use Policy 2018, 76, 58–67. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Government Intervention and Land Misallocation: Evidence from China. Cities 2017, 60, 323–332. [Google Scholar] [CrossRef]
- Li, Z.; Zou, F.; Tan, Y.; Zhu, J. Does Financial Excess Support Land Urbanization—An Empirical Study of Cities in China. Land 2021, 10, 635. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Q.; Jin, Z.; Xu, J. Do Intellectual Capital Elements Spur Firm Performance? Evidence from the Textile and Apparel Industry in China. Math. Probl. Eng. 2021, 2021, e7332885. [Google Scholar] [CrossRef]
- Fair, R.C. Excess Labor and the Business Cycle. Am. Econ. Rev. 1985, 75, 239–245. [Google Scholar]
- Burnside, C.; Eichenbaum, M. Factor-Hoarding and the Propagation of Business-Cycle Shocks. Am. Econ. Rev. 1996, 86, 1154–1174. [Google Scholar]
- Ogawa, H.; Nishimori, A. Do Firms Always Choose Excess Capacity? Econ. Bull. 2004, 12, 1–7. [Google Scholar]
- Masson, R.T.; Shaanan, J. Excess Capacity and Limit Pricing: An Empirical Test. Economica 1986, 53, 365–378. [Google Scholar] [CrossRef]
- Gilbert, R.J. The Role of Potential Competition in Industrial Organization. J. Econ. Perspect. 1989, 3, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Wang, M. Deepening Supply Side Reform and Resolving Overcapacity. World Sci. Res. J. 2020, 6, 10. [Google Scholar]
- Du, W.; Wang, F.; Li, M. Effects of Environmental Regulation on Capacity Utilization: Evidence from Energy Enterprises in China. Ecol. Indic. 2020, 113, 106217. [Google Scholar] [CrossRef]
- Ma, H.; Mei, X.; Tian, Y. The Impacts and Potential Mechanisms of Credit Support with Regard to Overcapacity: Based on Theoretical and Empirical Analyses of Steel Enterprises. Resour. Policy 2020, 68, 101704. [Google Scholar] [CrossRef]
- Qin, Q.; Jiao, Y.; Gan, X.; Liu, Y. Environmental Efficiency and Market Segmentation: An Empirical Analysis of China’s Thermal Power Industry. J. Clean. Prod. 2020, 242, 118560. [Google Scholar] [CrossRef]
- Wang, D.; Xue, X.; Wang, Y. Overcapacity Risk of China’s Coal Power Industry: A Comprehensive Assessment and Driving Factors. Sustainability 2021, 13, 1426. [Google Scholar] [CrossRef]
- Yan, X.; Chen, L.; Memon, H. Introduction. In Textile and Fashion Education Internationalization: A Promising Discipline from Southeast Asia; Yan, X., Chen, L., Memon, H., Eds.; Springer: Singapore, 2022; pp. 1–12. ISBN 9789811688546. [Google Scholar]
- Wang, Q.; Wang, Y.; Chen, W.; Zhou, X.; Zhao, M. Factors Affecting Industrial Land Use Efficiency in China: Analysis from Government and Land Market. Environ. Dev. Sustain. 2021, 23, 10973–10993. [Google Scholar] [CrossRef]
- Huang, D.; Chan, R.C.K. On ‘Land Finance’ in Urban China: Theory and Practice. Habitat Int. 2018, 75, 96–104. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, X.; Jin, X.; Mao, N. Government Competition, Land Supply Structure and Semi-Urbanization in China. Land 2021, 10, 1371. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, J.; Feng, C.; Zhong, S. The Impact of Anti-Corruption Measures on Land Supply and the Associated Implications: The Case of China. Land Use Policy 2020, 95, 104605. [Google Scholar] [CrossRef]
- Tian, L. Land Use Dynamics Driven by Rural Industrialization and Land Finance in the Peri-Urban Areas of China: “The Examples of Jiangyin and Shunde”. Land Use Policy 2015, 45, 117–127. [Google Scholar] [CrossRef]
- Chen, T.; Kung, J.K.-S. Do Land Revenue Windfalls Create a Political Resource Curse? Evidence from China. J. Dev. Econ. 2016, 123, 86–106. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Strategic Interaction in Local Governments’ Industrial Land Supply: Evidence from China. Urban Stud. 2017, 54, 1328–1346. [Google Scholar] [CrossRef]
- Jin, C.; Li, Q.; Jiang, L.; Ye, X.; Zhang, Z. Measurement for Overcapacity and Its Influencing Factors on the Construction Industry—Evidence from China’s Provincial Data. Environ. Sci. Pollut. Res. 2021, 28, 7883–7892. [Google Scholar] [CrossRef]
- Hu, H.; Tang, P.; Zhu, Y.; Hu, D.; Wu, Y. The Impact of Policy Intensity on Overcapacity in Low-Carbon Energy Industry: Evidence From Photovoltaic Firms. Front. Energy Res. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Saiz, A. The Geographic Determinants of Housing Supply. Q. J. Econ. 2010, 125, 1253–1296. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Mao, H.; Feng, Z. Political Uncertainty and Firm Entry: Evidence from Chinese Manufacturing Industries. J. Bus. Res. 2020, 120, 16–30. [Google Scholar] [CrossRef]
Variable | Observations | Mean | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|---|---|
Explained variables | cr_fx | 588 | 5.061 | 2.159 | 0.251 | 27.022 |
cr_pf | 588 | 8.262 | 2.695 | 0.769 | 21.646 | |
Explanatory variable | distort | 588 | 0.334 | 0.473 | −1.836 | 0.950 |
Intervening variables | entr1 | 588 | 1.438 | 1.872 | 0 | 11.600 |
entr2 | 588 | 1.326 | 3.211 | 0 | 56.953 | |
Control variables | lnfinexp | 588 | 14.588 | 0.899 | 12.797 | 17.463 |
lngdp | 588 | 7.602 | 0.886 | 5.902 | 9.885 | |
lnpop | 588 | 6.110 | 0.569 | 4.577 | 7.238 | |
lnloan | 588 | 16.567 | 1.186 | 14.120 | 19.715 | |
lnsav | 588 | 16.334 | 0.949 | 14.459 | 19.092 | |
growth | 588 | 0.165 | 0.384 | −0.725 | 1.985 | |
lnfori | 588 | 15.533 | 1.582 | 12.154 | 19.45 | |
Instrumental variables | ln[slope∗(1/i)] | 588 | −1.870 | 1.532 | −5.182 | 0.242 |
ln(area∗year) | 588 | 16.619 | 0.696 | 14.877 | 18.193 |
(1) cr_fx | (2) cr_pf | |
---|---|---|
distort | −0.4018 *** (0.1011) | −0.2496 ** (0.0963) |
lnfinexp | −0.2458 (0.1957) | −0.3022 (0.1363) |
lngdp | 1.2556 *** (0.2205) | 1.0188 *** (0.1803) |
lnpop | 0.1641 (0.1254) | 0.0405 (0.1178) |
lnloan | −0.6260 *** (0.1626) | −0.2924 (0.1298) |
lnsav | −0.5300 ** (0.2464) | −0.4545 * (0.1860) |
growth | 0.7160 *** (0.3570) | 1.0598 *** (0.6295) |
lnfori | 0.0699 (0.0531) | 0.0145 (0.0427) |
Constant | 10.9969 *** (2.1178) | 8.3645 *** (1.4662) |
Year and province | Yes | Yes |
N | 588 | 588 |
Adj-R2 | 0.2307 | 0.2650 |
(1) cr_fx | (2) cr_pf | |
---|---|---|
distort | −0.5866 *** (0.1454) | −0.4295 *** (0.1513) |
Controls | Yes | Yes |
Constant | 12.3918 *** (3.1947) | 11.6406 *** (2.4098) |
Year and province | Yes | Yes |
N | 336 | 336 |
Adj-R2 | 0.2321 | 0.3345 |
(1) cr_fx | (2) cr_pf | |
---|---|---|
distort_fz | −0.2683 *** (0.0840) | −0.2560 *** (0.0901) |
Controls | Yes | Yes |
Constant | 10.7729 *** (2.6286) | 14.2100 *** (2.4987) |
Year and province | Yes | Yes |
N | 512 | 512 |
Adj-R2 | 0.2079 | 0.2741 |
Phase I | ||
(1)distort | (2)distort | |
ln[slope*(1/i)] | −0.0519 *** (0.0103) | −0.0441 *** (0.0107) |
ln(area*year) | 0.1973 *** (0.0317) | 0.2026 *** (0.0328) |
Kleibergen–Paap rk LM statistic | 38.4620 [0.0000] | 36.9310 [0.0000] |
Kleibergen–Paap rk Wald F statistic | 23.6220 | 21.2590 |
Sargan–Hansen test | 0.8290 [0.3624] | 2.5300 [0.1117] |
Phase II | ||
cr_fx | cr_pf | |
distort | −1.4218 *** (0.4659) | −0.6293 ** (0.2636) |
Controls | Yes | Yes |
Year and province | Yes | Yes |
(1) entr1 | (2) cr_fx | (3) cr_pf | (4) entr2 | (5) cr_fx | (6) cr_pf | |
---|---|---|---|---|---|---|
distort | 0.5070 *** (0.1880) | −0.3886 *** (0.1001) | −0.2243 ** (0.0877) | 0.9247 ** (0.3611) | −0.3739 *** (0.0996) | −0.2137 ** (0.0850) |
entr1 | −0.0260 (0.0219) | −0.0500 ** (0.0279) | ||||
entr2 | −0.0302 ** (0.0126) | −0.0389 ** (0.0194) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | −11.7523 *** (4.4375) | 10.6918 *** (2.1505) | 7.7772 *** (1.5138) | −13.4290 * (7.5155) | 10.5919 *** (2.1291) | 7.8426 *** (1.5055) |
Year and province | Yes | Yes | Yes | Yes | Yes | Yes |
N | 588 | 588 | 588 | 588 | 588 | 588 |
Adj-R2 | 0.2889 | 0.2310 | 0.2699 | 0.1785 | 0.2371 | 0.2765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, X.; Li, H.; Yao, P.; Liu, J.; Chen, F.; Sriboonchitta, S. Analysis of the Impact of Industrial Land Price Distortion on Overcapacity in the Textile Industry and Its Sustainability in China. Sustainability 2022, 14, 4491. https://doi.org/10.3390/su14084491
Ju X, Li H, Yao P, Liu J, Chen F, Sriboonchitta S. Analysis of the Impact of Industrial Land Price Distortion on Overcapacity in the Textile Industry and Its Sustainability in China. Sustainability. 2022; 14(8):4491. https://doi.org/10.3390/su14084491
Chicago/Turabian StyleJu, Xiaoying, Huizhao Li, Peng Yao, Jianxu Liu, Fei Chen, and Songsak Sriboonchitta. 2022. "Analysis of the Impact of Industrial Land Price Distortion on Overcapacity in the Textile Industry and Its Sustainability in China" Sustainability 14, no. 8: 4491. https://doi.org/10.3390/su14084491
APA StyleJu, X., Li, H., Yao, P., Liu, J., Chen, F., & Sriboonchitta, S. (2022). Analysis of the Impact of Industrial Land Price Distortion on Overcapacity in the Textile Industry and Its Sustainability in China. Sustainability, 14(8), 4491. https://doi.org/10.3390/su14084491