Extractive Waste as a Resource: Quartz, Feldspars, and Rare Earth Elements from Gneiss Quarries of the Verbano-Cusio-Ossola Province (Piedmont, Northern Italy)
Abstract
:1. Introduction
- -
- -
- -
- -
- -
- -
2. Materials and Methods
2.1. Beola and Serizzo: Quarries, Dimension Stones, and Waste Materials
2.2. Sampling and Analytical Procedures
3. Results
3.1. Whole-Rock Geochemistry
3.2. Mineralogy and Petrography
3.3. Mineral Chemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SDG. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 15 January 2022).
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M.A.; Kinnaird, J.; Littleboy, A.; et al. Mineral supply for sustainable development requires resource governance. Nature 2017, 543, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, E.; Orveillon, G.; Saveyn, H.G.M. Management of waste from extractive industries: The new European reference document on the Best Available Techniques. Resour. Policy 2020, 69, 101782. [Google Scholar] [CrossRef]
- Dino, G.A.; Cavallo, A.; Rossetti, P.; Garamvölgyi, E.; Sándor, R.; Coulon, F. Towards Sustainable Mining: Exploiting Raw Materials from Extractive Waste Facilities. Sustainability 2020, 12, 2383. [Google Scholar] [CrossRef] [Green Version]
- EUROSTAT. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (accessed on 3 November 2021).
- European Commission. Europe 2020 a Strategy for Smart, Sustainable and Inclusive Growth; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- André, A.; de Brito, J.; Rosa, A.; Pedro, D. Durability performance of concrete incorporating coarse aggregates from marble industry waste. J. Clean. Prod. 2014, 65, 389–396. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Abdelhaffez, G.S.; Ahmed, A.A. Potential use of marble and granite solid wastes as environmentally friendly coarse particulate in civil constructions. Int. J. Environ. Sci. Technol. 2022, 19, 889–896. [Google Scholar] [CrossRef]
- Dias, A.B.; Pacheco, J.N.; Silvestre, J.D.; Martins, I.M.; de Brito, J. Environmental and economic life cycle assessment of recycled coarse aggregates: A Portuguese case study. Materials 2021, 14, 5452. [Google Scholar] [CrossRef]
- Luodes, H.; Kauppila, P.M.; Luodes, N.; Aatos, S.; Kallioinen, J.; Luukkanen, S.; Aalto, J. Characteristics and the environmental acceptability of the natural stone quarrying waste rocks. Bull. Eng. Geol. Environ. 2012, 71, 257–261. [Google Scholar] [CrossRef]
- Silva, A.C.; Divino Carolina, S.; Nascimento Sousa, D.; SchonsSilva, E.M. Feldspar production from dimension stone tailings for application in the ceramic industry. J. Mater. Res. Technol. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Barrientos, V.; Delgado, J.; Navarro, V.; Juncosa, R.; Falcón, I.; Vázquez, A. Characterization and geochemical–geotechnical properties of granite sawdust produced by the dimension stone industry of O Porriño (Pontevedra, Spain). Q. J. Eng. Geol. Hydrogeol. 2010, 43, 141–155. [Google Scholar] [CrossRef]
- Marras, G.; Bortolussi, A.; Siotto, G.; Surraco, M.; Careddu, N. Reduction of marble waste landfills through the enhancement of CaCO3. Key Eng. Mater. 2020, 40, 145–153. [Google Scholar] [CrossRef]
- Marras, G.; Careddu, N. Sustainable reuse of marble sludge in tyre mixtures. Resour. Policy 2018, 59, 77–84. [Google Scholar] [CrossRef]
- Coppola, B.; Tulliani, J.; Antonaci, P.; Palmero, P. Role of Natural Stone Wastes and Minerals in the Alkali Activation Process: A Review. Materials 2020, 13, 2284. [Google Scholar] [CrossRef] [PubMed]
- Coppola, B.; Palmero, P.; Montanaro, L.; Tulliani, J.M. Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. J. Eur. Ceram. Soc. 2020, 40, 3776–3787. [Google Scholar] [CrossRef]
- Palmero, P.; Formia, A.; Tulliani, J.-M.; Antonaci, P. Valorisation of alumino-silicate stone muds: From wastes to source materials for innovative alkali-activated materials. Cem. Concr. Compos. 2017, 83, 251–262. [Google Scholar] [CrossRef]
- Al-Hamaiedeh, H.D.; Khushefati, W.H. Granite sludge reuse in mortar and concrete. J. Appl. Sci. 2013, 13, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Allam, M.E.; Bakhoum, E.S.; Garas, G.L. Re-use of granite sludge in producing green concrete. ARPN J. Eng. Appl. Sci. 2014, 9, 2731–2737. [Google Scholar]
- Al-Zboon, K.; Al-Zou’by, J. Recycling of stone cutting slurry in concrete mixes. J. Mater. Cycles Waste 2015, 17, 324–335. [Google Scholar] [CrossRef]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Dino, G.A.; Cavallo, A.; Faraudello, A.; Rossi, P.; Mancini, S. Raw materials supply: Kaolin and quartz from ore deposits and recycling activities. The example of the Monte Bracco area (Piedmont, Northern Italy). Resour. Policy 2021, 74, 102413. [Google Scholar] [CrossRef]
- Cavallo, A.; Bigioggero, B.; Colombo, A.; Tunesi, A. The Verbano Cusio Ossola province: A land of quarries in northern Italy (Piedmont). Per. Mineral. 2004, 73, 197–210. [Google Scholar]
- ARPA. 2021. Available online: http://www.arpa.piemonte.it/reporting/indicatori-on_line/uso-delle-risorse/industria/industria_cave-e-miniere-1 (accessed on 30 October 2021).
- Dino, G.A.; Cavallo, A. Ornamental stones of the Verbano Cusio Ossola quarry district: Characterization of materials, quarrying techniques and history and relevance to local and national heritage. In Geological Society of London Special Publication SP 407—Global Heritage Stone: Towards International Recognition of Building and Ornamental Stones; Pereira, D., Marker, B.R., Kramar, S., Cooper, B.J., Schouenborg, B.E., Eds.; The Geological Society of London: London, UK, 2014; Volume 407, pp. 187–200. [Google Scholar] [CrossRef]
- Cavallo, A.; Bigioggero, B.; Colombo, A.; Tunesi, A. The Beola: A dimension stone from the Ossola Valley (NW Italy). Per. Mineral. 2004, 73, 85–97. [Google Scholar]
- Cavallo, A.; Dino, G.A.; Primavori, P. Gneisses (Serizzo and Beola) of the Verbano-Cusio-Ossola district (Piedmont, Northern Italy): Possible candidates for the designation as a Global Heritage Stone Province. In Global Heritage Stone: Worldwide Examples of Heritage Stones; Special Publications Series. SP486; The Geological Society of London: London, UK, 2019; Volume 486. [Google Scholar] [CrossRef] [Green Version]
- Colombo, A.; Cavallo, A. Geological-Structural Sketch-Map of the Ossola-Simplon Area—Explanatory Notes. 1906-2006-100 Anni Traforo del Sempione; Litografia Artistica Cartografica: Florence, Italy, 2007; Available online: https://www.snam.it/export/sites/snam-rp/repository/file/Media/Eventi/2007/05/MappaValdossola.pdf (accessed on 15 January 2022).
- Zichella, L.; Dino, G.A.; Bellopede, R.; Marini, P.; Padoan, E.; Passarella, I. Environmental impacts, management and potential recovery of residual sludge from the stone industry: The piedmont case. Resour. Policy 2020, 65, 101562. [Google Scholar] [CrossRef]
- Chipera, S.J.; Bish, D.L. FULLPAT: A full-pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns. J. Appl. Crystallogr. 2002, 35, 744–749. [Google Scholar] [CrossRef] [Green Version]
- Bigioggero, B.; Boriani, A.; Giobbi, E. Microstructure and mineralogy of an orthogneiss (Antigorio gneiss—Lepontine Alps). Rend. Soc. Ital. Mineral. Petrogr. 1977, 33, 99–108. [Google Scholar]
- Nakamura, N. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 1974, 38, 757–775. [Google Scholar] [CrossRef]
- Wood, D.A.; Joron, J.L.; Treuil, M.; Norry, M.; Tarney, J. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib. Mineral. Petrol. 1979, 70, 319–339. [Google Scholar] [CrossRef]
- Gieré, R.; Sorensen, S.S. Allanite and other REE-rich epidote minerals. In Epidotes, Reviews in Mineralogy & Geochemistry; Liebscher, A., Franz, G., Eds.; American Mineralogical Society and Geochemical Society: Washington, DC, USA, 2004; Volume 56, pp. 431–493. [Google Scholar]
- Janots, E.; Engi, M.; Berger, A.; Allaz, J.; Schwarz, J.-O.; Spandler, C. Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: Implications for allanite–monazite–xenotime phase relations from 250 to 610 °C. J. Metamorph. Geol. 2008, 26, 509–526. [Google Scholar] [CrossRef]
- Hentschel, F.; Janots, E.; Trepmann, C.A.; Magnin, V.; Lanari, P. Corona formation around monazite and xenotime during greenschist-facies metamorphism and deformation. Eur. J. Mineral. 2020, 32, 521–544. [Google Scholar] [CrossRef]
- Regis, D.; Cenki-Tok, B.; Darling, J.; Engi, M. Redistribution of REE, Y, Th, and U at high pressure: Allanite-forming reactions in impure meta-quartzites (Sesia Zone, Western Italian Alps). Am. Mineral. 2012, 97, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Dondi, M. Feldspathic fluxes for ceramics: Sources, production trends and technological value. Resour. Conserv. Recycl. 2018, 133, 191–205. [Google Scholar] [CrossRef]
- Martın-Hernandez, F.; Hirt, A.M. The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics 2003, 367, 13–28. [Google Scholar] [CrossRef]
- Odiseevitch Filippov, L.; Duverger, A.; Vladimirovna Filippova, I.; Kasaini, H.; Thiry, J. Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation. Miner. Eng. 2012, 36–38, 314–323. [Google Scholar] [CrossRef]
- Wang, L.; Sun, W.; Liu, R. Mechanism of separating muscovite and quartz by flotation. J. Cent. South Univ. 2014, 21, 3596–3602. [Google Scholar] [CrossRef]
- Vasić, M.V.; Pezo, L.; Vasić, M.R.; Mijatović, N.; Mitrić, M.; Radojević, Z. What is the most relevant method for water absorption determination in ceramic tiles produced by illitic-kaolinitic clays? The mystery behind the greisification diagram. Boletín Soc. Española Ceram. Vidr. 2020; in press. [Google Scholar] [CrossRef]
- Voncken, J.H.L. The ore minerals and major ore deposits of the Rare Earths. In The Rare Earth Elements: An Introduction; Voncken, J.H.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1, pp. 15–52. [Google Scholar]
- Afum, B.O.; Caverson, D.; Ben-Awuah, E.A. A conceptual framework for characterizing mineralized waste rocks as future resource. Int. J. Min. Sci. Technol. 2019, 29, 429–435. [Google Scholar] [CrossRef]
Serizzo (Median) | Serizzo (Range) | Beola (Median) | Beola (Range) | |
---|---|---|---|---|
SiO2 | 67.82 | 65.32–71.21 | 72.68 | 57.35–75.49 |
TiO2 | 0.29 | 0.19–0.41 | 0.24 | 0.02–1.09 |
Al2O3 | 17.21 | 15.85–18.33 | 14.43 | 12.81–15.38 |
Fe2O3 | 1.35 | 0.85–1.74 | 1.90 | 0.39–6.88 |
MnO | 0.18 | 0.09–0.25 | 0.17 | 0.01–0.11 |
MgO | 0.74 | 0.41–1.05 | 0.47 | 0.21–5.16 |
CaO | 3.25 | 2.86–3.86 | 1.22 | 0.72–7.06 |
Na2O | 3.39 | 2.85–4.06 | 3.58 | 2.89–7.09 |
K2O | 3.12 | 2.67–4.11 | 4.28 | 0.39–5.93 |
P2O5 | 0.19 | 0.14–0.36 | 0.17 | 0.11–0.26 |
LOI | 1.2 | 0.5–1.9 | 0.7 | 0.4–2.7 |
C | 0.02 | 0.01–0.07 | 0.03 | 0.01–0.13 |
S | 0.06 | 0.01–0.18 | 0.05 | <0.01–0.13 |
ΣREE * (ppm) | 379 | 125–520 | 174 | 101–320 |
Serizzo (Mean) | Serizzo (Range) | Beola (Mean) | Beola (Range) | |
---|---|---|---|---|
Qtz | 35.1 | 28.2–35.6 | 40.6 | 14.3–52.2 |
Pl | 30.2 | 28.2–36.4 | 27.1 | 21.1–32.5 |
Kfs | 19.2 | 15.1–23.7 | 16.3 | 5.6–26.1 |
Bt | 9.5 | 4.3–16.1 | 8.1 | 2.2–12.3 |
WM | 4.2 | 1.9–8.6 | 5.3 | 3.5–15.4 |
Chl | 1.8 | 0.8–3.2 | 2.6 | 2.5–9.6 |
Serizzo Pl (Median) | Serizzo Pl (Range) | Beola Pl (Median) | Beola Pl (Range) | |
---|---|---|---|---|
SiO2 | 62.05 | 61.65–63.87 | 64.94 | 63.51–65.33 |
TiO2 | <0.01 | <0.01–0.02 | <0.01 | <0.01–0.05 |
Al2O3 | 23.51 | 22.82–23.94 | 20.97 | 20.68–22.14 |
FeO | 0.10 | 0.05–0.17 | 0.08 | 0.03–0.21 |
MnO | <0.01 | <0.01–0.02 | <0.01 | <0.01–0.06 |
MgO | <0.01 | <0.01–0.05 | 0.01 | <0.01–0.14 |
CaO | 5.19 | 4.68–5.42 | 4.12 | 3.88–5.21 |
Na2O | 8.36 | 7.88–8.47 | 9.44 | 7.96–10.12 |
K2O | 0.54 | 0.37–0.71 | 0.36 | 0.26–0.62 |
Total | 99.75 | 99.92 | ||
Number of ions calculated on the basis of 8 O | ||||
Si | 2.761 | 2.873 | ||
Ti | 0.000 | 0.000 | ||
Al | 1.233 | 1.093 | ||
Fe2+ | 0.003 | 0.003 | ||
Mn | 0.000 | 0.000 | ||
Mg | 0.000 | 0.001 | ||
Ca | 0.247 | 0.195 | ||
Na | 0.721 | 0.810 | ||
K | 0.030 | 0.020 | ||
Total | 4.997 | 4.995 | ||
Ab% | 72.17 | 78.97 | ||
An% | 24.76 | 19.05 | ||
Or% | 3.07 | 1.98 |
Serizzo Kfs (Median) | Serizzo Kfs (Range) | Beola Kfs (Median) | Beola Kfs (Range) | |
---|---|---|---|---|
SiO2 | 64.83 | 63.89–66.97 | 64.54 | 63.65–65.84 |
TiO2 | 0.01 | <0.01–0.06 | <0.01 | <0.01–0.09 |
Al2O3 | 19.18 | 18.35–19.87 | 19.57 | 17.23–20.23 |
FeO | 0.07 | 0.02–0.18 | 0.12 | 0.04–0.32 |
MnO | <0.01 | <0.01–0.05 | <0.01 | <0.01–0.08 |
MgO | 0.02 | 0.01–0.09 | 0.04 | 0.01–0.10 |
CaO | 0.18 | 0.09–0.34 | 0.16 | 0.03–0.50 |
Na2O | 0.96 | 0.75–1.27 | 0.74 | 0.60–2.52 |
K2O | 14.70 | 13.65–15.60 | 14.67 | 11.79–15.24 |
Total | 99.95 | 99.84 | ||
Number of ions calculated on the basis of 8 O | ||||
Si | 2.978 | 2.966 | ||
Ti | 0.000 | 0.000 | ||
Al | 1.038 | 1.060 | ||
Fe2+ | 0.003 | 0.005 | ||
Mn | 0.000 | 0.000 | ||
Mg | 0.001 | 0.003 | ||
Ca | 0.009 | 0.008 | ||
Na | 0.085 | 0.066 | ||
K | 0.860 | 0.860 | ||
Total | 4.976 | 4.967 | ||
Ab% | 8.95 | 7.06 | ||
An% | 0.93 | 0.84 | ||
Or% | 90.13 | 92.10 |
Aln | Range | |
---|---|---|
Sio2 | 35.21 | 33.76–35.86 |
TiO2 | 0.08 | 0.05–0.13 |
ThO2 | 0.86 | 0.55–1.38 |
Al2O3 | 19.54 | 17.35–20.65 |
FeO | 7.85 | 6.65–12.14 |
MnO | 0.05 | 0.02–0.12 |
MgO | 0.16 | 0.08–0.31 |
CaO | 14.04 | 12.21–16.18 |
Y2O3 | 0.32 | 0.21–0.50 |
La2O3 | 3.67 | 2.86–5.12 |
Ce2O3 | 9.32 | 6.89–12.24 |
Pr2O3 | 1.21 | 0.82–1.95 |
Nd2O3 | 4.36 | 3.54–5.68 |
Sm2O3 | 0.67 | 0.34–1.11 |
Na2O | 0.04 | 0.02–0.10 |
K2O | 0.05 | 0.03–0.12 |
Total | 97.43 | |
Number of ions calculated on the basis of 25 O | ||
Si | 6.350 | |
Ti | 0.011 | |
Th | 0.076 | |
Al | 4.153 | |
Fe2+ | 1.184 | |
Mn | 0.008 | |
Mg | 0.043 | |
Ca | 2.713 | |
Y | 0.031 | |
La | 0.244 | |
Ce | 0.615 | |
Pr | 0.079 | |
Nd | 0.281 | |
Sm | 0.042 | |
Na | 0.014 | |
K | 0.011 | |
Total | 15.854 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallo, A.; Dino, G.A. Extractive Waste as a Resource: Quartz, Feldspars, and Rare Earth Elements from Gneiss Quarries of the Verbano-Cusio-Ossola Province (Piedmont, Northern Italy). Sustainability 2022, 14, 4536. https://doi.org/10.3390/su14084536
Cavallo A, Dino GA. Extractive Waste as a Resource: Quartz, Feldspars, and Rare Earth Elements from Gneiss Quarries of the Verbano-Cusio-Ossola Province (Piedmont, Northern Italy). Sustainability. 2022; 14(8):4536. https://doi.org/10.3390/su14084536
Chicago/Turabian StyleCavallo, Alessandro, and Giovanna Antonella Dino. 2022. "Extractive Waste as a Resource: Quartz, Feldspars, and Rare Earth Elements from Gneiss Quarries of the Verbano-Cusio-Ossola Province (Piedmont, Northern Italy)" Sustainability 14, no. 8: 4536. https://doi.org/10.3390/su14084536
APA StyleCavallo, A., & Dino, G. A. (2022). Extractive Waste as a Resource: Quartz, Feldspars, and Rare Earth Elements from Gneiss Quarries of the Verbano-Cusio-Ossola Province (Piedmont, Northern Italy). Sustainability, 14(8), 4536. https://doi.org/10.3390/su14084536