Using the Halophyte Crithmum maritimum in Green Roofs for Sustainable Urban Horticulture: Effect of Substrate and Nutrient Content Analysis including Potentially Toxic Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up (Plant Material, Cultivation System and Site)
2.2. Substrate
2.3. Irrigation
2.4. Meteorological Data
2.5. Plant-Growth Evaluation
2.6. PTE and Nutrient Determination
2.7. Statistical Analysis
3. Results
3.1. Plant Growth
3.2. Heavy Metals
3.3. Nutrient Content
4. Discussion
4.1. Plant Growth
4.2. Heavy-Metal Concentration
4.3. Nutrient Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Whittinghill, L.J.; Rowe, D.B. The role of green roof technology in urban agriculture. Renew. Agric. Food Syst. 2012, 27, 314–322. [Google Scholar] [CrossRef]
- Berardi, U.; Ghaffarian Hoseini, A.H.; Ghaffarian Hoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Caneva, G.; Kumbaric, A.; Savo, V.; Casalini, R. Ecological approach in selecting extensive green roof plants: A data-set of Mediterranean plants. Plant Biosyst. 2015, 149, 374–383. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Joshi, M.Y.; Teller, J. Urban Integration of Green Roofs: Current Challenges and Perspectives. Sustainability 2021, 13, 12378. [Google Scholar] [CrossRef]
- Bus, A.; Szelągowska, A. Green Water from Green Roofs—The Ecological and Economic Effects. Sustainability 2021, 13, 2403. [Google Scholar] [CrossRef]
- Walters, S.A.; Midden, K.S. Sustainability of Urban Agriculture: Vegetable Production on Green Roofs. Agriculture 2018, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Khan, M.M.; Akram, M.T.; Janke, R.; Qadri, R.W.K.; Al-Sadi, A.M.; Farooque, A.A. Urban horticulture for food secure cities through and beyond COVID-19. Sustainability 2020, 12, 9592. [Google Scholar] [CrossRef]
- Lu, N.; Song, C.; Kuronuma, T.; Ikei, H.; Miyazaki, Y.; Takagaki, M. The Possibility of sustainable urban horticulture based on nature therapy. Sustainability 2020, 12, 5058. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.; Bacci, D. Initial agronomic performances of Mediterranean xerophytes in simulated dry green roofs. Urban Ecosyst. 2010, 13, 349–363. [Google Scholar] [CrossRef]
- Papafotiou, M.; Pergialioti, N.; Tassoula, L.; Massas, I.; Kargas, G. Growth of native aromatic xerophytes in an extensive Mediterranean green roof as affected by substrate type and depth and irrigation frequency. HortScience 2013, 48, 1327–1333. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Mediterranean open habitat vegetation offers great potential for extensive green roof design. Landsc. Urban Plan. 2014, 121, 81–91. [Google Scholar] [CrossRef]
- Ondoño, S.; Martínez-Sánchez, J.J.; Moreno, J.L. Evaluating the growth of several Mediterranean endemic species in artificial substrates: Are these species suitable for their future use in green roofs? Ecol. Eng. 2015, 81, 405–417. [Google Scholar] [CrossRef]
- Tassoula, L.; Papafotiou, M.; Liakopoulos, G.; Kargas, G. Water use efficiency, growth and anatomic-physiological parameters of Mediterranean xerophytes as affected by substrate and irrigation on a green roof. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12283. [Google Scholar] [CrossRef]
- Nikalje, G.C.; Bhaskar, S.D.; Yadav, K.; Penna, S. Halophytes: Prospective Plants for Future. In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Hasanuzzaman, M., Nahar, K., Öztürk, M., Eds.; Springer: Singapore, 2019; pp. 221–234. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Lorente, B.; Ortuño, M.F.; Medina, S.; Gil-Izquierdo, Á.; Bañón, S.; Sánchez-Blanco, M.J. Recycled wastewater and reverse osmosis brine use for halophytes irrigation: Differences in physiological, nutritional and hormonal responses of Crithmum maritimum and Atriplex halimus plants. Agronomy 2021, 11, 627. [Google Scholar] [CrossRef]
- Diamond, M.; Hodge, E. Urban contaminant dynamics: From source to effect. Environ. Sci. Technol. 2007, 41, 3796–3805. [Google Scholar] [CrossRef] [Green Version]
- Blagojenié, N.; Damjanovié-Vratnica, B.; Vukašinovié-Pešié, V.; Durovié, D. Heavy metals content in leaves and extracts of wild-growing Salvia οfficinalis from Montenegro. Pol. J. Environ. Stud. 2009, 18, 167–173. [Google Scholar]
- Suruchi, K.; Jilani, A. Assessment of heavy metal concentration in washed and unwashed vegetables exposed to different degrees of pollution in Agra, India. Electr. J. Environ. Agric. Food Chem. 2011, 10, 2700–2710. [Google Scholar]
- Säumel, I.; Kotsyuk, I.; Hölscher, M.; Lenkereit, C.; Weber, F.; Kowarik, I. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ. Pollut. 2012, 165, 124–132. [Google Scholar] [CrossRef]
- Antisari, L.V.; Orsini, F.; Marchetti, L.; Vianello, G.; Gianquinto, G. Heavy metal accumulation in vegetables grown in urban gardens. Agron. Sustain. Dev. 2015, 35, 1139–1147. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.R.; Kim, W.I.; Owens, G.; Kim, K.H. Influence of road proximity on the concentrations of heavy metals in Korean urban agricultural soils and crops. Arch. Environ. Contam. Toxicol. 2017, 72, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Papafotiou, M.; Koutri, A.; Massas, I. Heavy metal concentration in sage plants cultivated on an urban green roof or roadside location as affected by substrate type and fertilization. Acta Hortic. 2017, 1189, 439–442. [Google Scholar] [CrossRef]
- Papafotiou, M.; Koutri, A.; Massas, I. Urban green roof versus roadside cultivation: Effect of pollution, substrate type and fertilization on heavy metal concentration in oregano plants. Acta Hortic. 2017, 1189, 443–446. [Google Scholar] [CrossRef]
- Suruchi, K.; Khanna, P. Assessment of heavy metal contamination in different vegetables grown in and around urban areas. Res. J. Environ. Toxicol. 2011, 5, 162–179. [Google Scholar]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. Available online: http://www.geocities.com/Lenviron_biol/ (accessed on 7 April 2020).
- Srinivas, N.; Rao, S.R.; Kumar, K.S. Trace metal accumulation in vegetables grown in industrial and semi-urban areas: A case study. Appl. Ecol. Environ. Res. 2009, 7, 131–139. Available online: http://www.ecology.uni-corvinus.hu (accessed on 7 April 2020). [CrossRef]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vincity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef]
- Peris, M.; Micó, C.; Recalatá, L.; Sánchez, R.; Sánchez, J. Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci. Total Environ. 2007, 378, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Ullah, R.; Khurram, M.; Ullah, N.; Baseer, A.; Khan, F.A.; Khan, N.; Khattak, M.R.; Zahoor, M.; Khan, J. Heavy metals and inorganic constituents in medicinal plants of selected districts of Khyber Pakhtoonkhwa, Pakistan. Afr. J. Biotechnol. 2011, 10, 8517–8522. [Google Scholar] [CrossRef] [Green Version]
- Abou-Arab, A.A.K.; Abou Donia, M.A. Heavy metals in egyptian spices and medicinal plants and the effect of processing on their levels. J. Agric. Food Chem. 2000, 48, 2300–2304. [Google Scholar] [CrossRef] [PubMed]
- Chizzola, R.; Michitsch, H.; Franz, C. Monitoring of metallic micronutrients and heavy metals in herbs, spices and medicinal plants from Austria. Eur. Food Res. Technol. 2003, 216, 407–411. [Google Scholar] [CrossRef]
- Huxley, A.; Taylor, W. Flowers of Greece and the Aegean; Chatto and Windus Ltd.: London, UK, 1977; p. 110. [Google Scholar]
- Blamey, M.; Grey-Wilson, C. Mediterranean Wild Flowers; Harper Collins Publishers: London, UK, 1993; p. 157. [Google Scholar]
- Atia, A.; Barhoumi, Z.; Mokded, R.; Abdelly, C.; Smaoui, A. Environmental eco-physiology and economical potential of the halophyte Crithmum maritimum L. (Apiaceae). J. Med. Plants Res. 2011, 5, 3564–3571. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M. The use of the sea fennel as a new spice-colorant in culinary preparations. Inter. J. Gastron. Food Sci. 2012, 1, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Gonnella, M.; Caretto, S.; Mita, G.; Serio, F. Sea fennel (Crithmum maritimum L.): From underutilized crop to new dried product for food use. Genet. Resour. Crop Evol. 2016, 64, 205–216. [Google Scholar] [CrossRef]
- Atia, A.; Debez, A.; Barhoumi, Z.; Abdelly, C.; Smaoui, A. Histochemical localization of essential oils and bioactive substances in the seed coat of the halophyte Crithmum maritimum L. (Apiaceae). J. Plant Biol. 2009, 52, 448–452. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Cérantola, S.; Talarmin, H.; Le Meur, C.; Le Floch, G.; Magné, C. New antibacterial and cytotoxic activities of falcarindiol isolated in Crithmum maritimum L. leaf extract. Food Chem. Toxicol. 2010, 48, 553–557. [Google Scholar] [CrossRef]
- Houta, O.; Akrout, A.; Najja, H.; Neffati, M.; Amri, H. Chemical composition, antioxidant and antimicrobial activities of essential oil from Crithmum maritimum cultivated in Tunisia. J. Essent. Oil Bear. Plants 2015, 18, 1459–1466. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; da Rosa Neng, N.; Nogueira, J.M.F.; Marques, C.; Santos, T.F.; Varela, J.; Custódio, L. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem. Toxicol. 2017, 107, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Polatoğlu, K.; Karakoç, O.C.; Yücel, Y.Y.; Gücel, S.; Demirci, B.; Can Başer, K.H.; Demirci, F. Insecticidal activity of edible Crithmum maritimum L. essential oil against Coleopteran and Lepidopteran insects. Ind. Crop. Prod. 2016, 89, 383–389. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; Dauvergne, X.; Bruno, M.; Benelli, G. Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind. Crop. Prod. 2017, 109, 603–610. [Google Scholar] [CrossRef]
- Renna, M. Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef] [Green Version]
- Karkanis, A.; Polyzos, N.; Kompocholi, M.; Petropoulos, S.A. Rock Samphire, a Candidate Crop for Saline Agriculture: Cropping Practices, Chemical Composition and Health Effects. Appl. Sci. 2022, 12, 737. [Google Scholar] [CrossRef]
- Zenobi, S.; Fiorentini, M.; Zitti, S.; Aquilanti, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Orsini, R. Crithmum maritimum L.: First results on phenological development and biomass production in Mediterranean areas. Agronomy 2021, 11, 773. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Nydrioti, E.; Kapsali, T.; Ntoulas, N. Crithmum maritimum growth in extensive green roof systems with different substrate type, depth and irrigation regime. Acta Hortic. 2016, 1108, 303–308. [Google Scholar] [CrossRef]
- Schweitzer, O.; Erell, E. Evaluation of the energy performance and irrigation requirements of extensive green roofs in a water-scarce Mediterranean climate. Energy Build. 2014, 68, 25–32. [Google Scholar] [CrossRef]
- Azeñas, V.; Janner, I.; Medrano, H.; Gulías, J. Evaluating the establishment performance of six native perennial Mediterranean species for use in extensive green roofs under water-limiting conditions. Urban For. Urban Green. 2019, 41, 158–169. [Google Scholar] [CrossRef]
- Cirrincione, L.; La Gennusa, M.; Peri, G.; Rizzo, G.; Scaccianoce, G.; Sorrentino, G.; Aprile, S. Green Roofs as Effective Tools for Improving the Indoor Comfort Levels of Buildings-An Application to a Case Study in Sicily. Appl. Sci. 2020, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Martini, A.N.; Papafotiou, M.; Evangelopoulos, K. Effect of substrate type and depth on the establishment of the edible and medicinal native species Crithmum maritimum on an extensive urban Mediterranean green roof. Acta Hortic. 2017, 1189, 451–454. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Massas, Ι.; Chorianopoulou, N.; Živanović, I. Effect of substrate type and cultivation position on growth and safety to consume of the edible medicinal species Crithmum maritimum L., in an extensive urban green roof in Athens (Greece). Acta Hortic. 2020, 1298, 413–418. [Google Scholar] [CrossRef]
- Tassoula, L.; Papafotiou, M.; Liakopoulos, G.; Kargas, G. Growth of the native xerophyte Convolvulus cneorum L. on an extensive Mediterranean green roof under different substrate types and irrigation regimens. HortScience 2015, 50, 1118–1124. [Google Scholar] [CrossRef] [Green Version]
- FAO; WHO. Food Standards Programme Codex Committee on Contaminants in Foods, Fifth Session; WHO: Geneva, Switzerland, 2011; pp. 64–89. [Google Scholar]
- Page, A.L. Methods of Soil Analysis, Part 2, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Alarcón, J.J.; Morales, M.A.; Ferrández, T.; Sánchez-Blanco, M.J. Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. J. Hortic. Sci. Biotechnol. 2006, 81, 845–853. [Google Scholar] [CrossRef]
- Savi, T.; Dal Borgo, A.; Love, V.L.; Andri, S.; Tretiach, M.; Nardini, A. Drought versus heat: What’s the major constraint on Mediterranean green roof plants? Sci. Total Environ. 2016, 566, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Toscano, S.; Ferrante, A.; Romano, D.; Tribulato, A. Interactive Effects of Drought and Saline Aerosol Stress on Morphological and Physiological Characteristics of Two Ornamental Shrub Species. Horticulturae 2021, 7, 517. [Google Scholar] [CrossRef]
- Papafotiou, M.; Tassoula, L.; Kefalopoulou, R. Effect of substrate type and irrigation frequency on growth of Pallenis maritima on an urban extensive green roof at the semi-arid Mediterranean region. Acta Hortic. 2017, 1189, 275–278. [Google Scholar] [CrossRef]
- Nagase, A.; Dunnett, N. Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landsc. Urban Plan. 2012, 104, 356–363. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; Nie, Y.; Bai, S.H.; Zhou, L.; Shao, J.; Cheng, W.; Wang, J.; Hu, F.; Fu, Y. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environ. 2018, 41, 2589–2599. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Gabarrell, X.; Rieradevall, J. A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). J. Clean. Prod. 2018, 195, 385–395. [Google Scholar] [CrossRef]
- Yusuf, K.A.; Oluwole, S.O. Heavy metal (Cu, Zn, Pb) contamination of vegetables in urban city: A case study in Lagos. Res. J. Environ. Sci. 2009, 3, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, K.R.; Lim, G.H.; Kim, J.W.; Kim, K.H. Influence of airborne dust on the metal concentrations in crop plants cultivated in a rooftop garden in Seoul. Soil Sci. Plant Nutr. 2015, 61, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Kinnersley, R.P.; Scott, L.K. Aerial contamination of fruit through wet deposition and particulate dry deposition. J. Environ. Radioact. 2001, 52, 191–213. [Google Scholar] [CrossRef]
- Progiou, A.G.; Ziomas, I.C. Road traffic emissions impact on air quality of the Greater Athens Area based on a 20 year emissions inventory. Sci. Total Environ. 2011, 410, 1–7. [Google Scholar] [CrossRef]
- Vassilakos, C.; Veros, D.; Michopoulos, J.; Maggosa, T.; O’Connor, C.M. Estimation of selected heavy metals and arsenic in PM10 aerosols in the ambient air of the Greater Athens Area, Greece. J. Hazard. Mater. 2007, 140, 389–398. [Google Scholar] [CrossRef]
- Kokkoris, V.; Massas, I.; Polemis, E.; Koutrotsios, G.; Zervakis, G.I. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci. Total Environ. 2019, 685, 280–296. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Craker, L.E.; Xing, B.; Nielsen, N.E.; Wilcox, A. Aromatic plant production on metal contaminated soils. Sci. Total Environ. 2008, 395, 51–62. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Jeliazkova, E.A.; Kovacheva, N.; Dzhurmanski, A. Metal uptake by medicinal plant species grown in soils contaminated by a smelter. Environ. Exp. Bot. 2008, 64, 207–216. [Google Scholar] [CrossRef]
- Thomas, C.S. Transportation options in a carbon-constrained world: Hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles. Int. J. Hydrogen Energy 2009, 34, 9279–9296. [Google Scholar] [CrossRef]
- Nanaki, E.A.; Koroneos, C.J. Comparative economic and environmental analysis of conventional, hybrid and electric vehicles–the case study of Greece. J. Clean. Product. 2013, 53, 261–266. [Google Scholar] [CrossRef]
- Zhao, J.; Xi, X.; Na, Q.; Wang, S.; Kadry, S.N.; Kumar, P.M. The technological innovation of hybrid and plug-in electric vehicles for environment carbon pollution control. Environ. Imp. Assess. Rev. 2021, 86, 106506. [Google Scholar] [CrossRef]
- Ferrero, E.; Alessandrini, S.; Balanzino, A. Impact of the electric vehicles on the air pollution from a highway. Appl. Energy 2016, 169, 450–459. [Google Scholar] [CrossRef]
- Guil Guerrero, J.L.; Giménez Martínez, J.J.; Torija Isasa, M.E. Mineral Nutrient Composition of Edible Wild Plants. J. Food Compos. Anal. 1998, 11, 322–328. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
Cu * | Pb * | Ni * | Mn * | Zn * | Fe * | N | P-Olsen | Kexch | Naexch | |
---|---|---|---|---|---|---|---|---|---|---|
Soil | 0.159 | 0.459 | 0.038 | 1.222 | 0.19 | 0.74 | 0.091 | 11.52 ** | 60 ** | 380 ** |
Grape marc compost | 0.248 | 0.759 | 0.045 | 0.428 | 0.213 | 4.646 | 2.814 | 0.5 | 1.96 | 0.16 |
Cult. Site | Substrate Type (v/v) | Cu S16/J17 | Pb S16/J17 | Ni S16/J17 | Mn S16/J17 | Zn S16/J17 | Fe S16/J17 |
---|---|---|---|---|---|---|---|
Roof | 3C:3Pe:4Pu | 4.4 b †/4.5 b | 20.1 az/21.6 bz | 5.3 az/5.2 az | 28.1 c/32.0 cz | 28.6 ab/35.2 a | 73.2 a/51.3 b |
3C:3Pe:2Pu:2S | 5.2 ab/5.0 b | 23.0 az/24.5 az | 5.9 az/5.8 az | 35.6 bz/38.7 bz | 33.6 a/32.6 a | 58.9 a/54.5 b | |
Street | 3C:3Pe:4Pu | 5.8 a/5.4 b | 20.6 az/24.0 az | 5.8 az/5.9 az | 25.8 c/32.9 bcz | 22.1 bc/31.2 a | 82.7 a/71.3 a |
3C:3Pe:2Pu:2S | 6.4 a/6.5 a | 21.6 az/23.2 abz | 5.6 az/6.0 az | 41.9 az/45.9 az | 20.6 c/38.1 a | 100.3 a/80.9 a | |
Significance § | |||||||
Fcultivation site | */** | NS/- | NS/* | NS/NS | **/NS | NS/** | |
Fsubstrate type | NS/* | */- | NS/NS | **/** | NS/ NS | NS/* | |
Finteraction | NS/NS | NS/** | NS/NS | NS/NS | NS/ NS | NS/NS | |
Fone-way ANOVA | */** | NS/* | NS/NS | **/** | **/ NS | NS/** |
Cultivation Site | Substrate Type (v/v) | Cu | Pb | Ni | Mn | Zn | Fe | N | P | K | Na |
---|---|---|---|---|---|---|---|---|---|---|---|
Roof | 3C:3Pe:4Pu | 9.3 a † | 20.6 bcz | 7.5 az | 26.2 a | 30.8 a | 229.9 c | 0.8 a | 0.3 a | 2.5 a | 0.2 c |
3C:3Pe:2Pu:2S | 7.5 a | 20.3 cz | 7.2 az | 22.6 a | 24.4 b | 336.9 b | 0.7 a | 0.5 a | 2.9 a | 0.2 c | |
Street | 3C:3Pe:4Pu | 7.4 a | 22.3 bz | 10.0 az | 24.7 a | 24.1 b | 233.0 c | 0.9 a | 0.3 a | 2.7 a | 0.4 a |
3C:3Pe:2Pu:2S | 7.1 a | 24.4 az | 6.6 az | 26.3 a | 20.4 c | 454.2 a | 0.9 a | 0.3 a | 2.7 a | 0.3 b | |
Significance § | |||||||||||
Fcultivation site | NS | ** | NS | NS | ** | NS | * | NS | NS | ** | |
Fsubstrate type | NS | NS | * | NS | ** | ** | NS | NS | NS | NS | |
Finteraction | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
Fone-way ANOVA | NS | ** | NS | NS | ** | ** | NS | NS | NS | ** |
Cultivation Site | Substrate Type (v/v) | N S16/J17 | P S16/J17 | K S16/J17 | Na S16/J17 |
---|---|---|---|---|---|
Roof | 3C:3Pe:4Pu | 1.4 b †/1.0 b | 0.4 b/0.5 a | 4.6 b/5.4 a | 0.4 b/0.2 c |
3C:3Pe:2Pu:2S | 1.5 b/1.2 ab | 0.5 a/0.5 a | 3.7 b/4.3 b | 0.4 b/0.2 c | |
Street | 3C:3Pe:4Pu | 2.1 a/1.6 a | 0.4 b/0.3 b | 7.7 a/5.1 a | 0.7 a/1.1 a |
3C:3Pe:2Pu:2S | 2.2 a/1.5 a | 0.4 b/0.3 b | 7.2 a/5.3 a | 0.6 a/0.8 b | |
Significance § | |||||
Fcultivation site | **/** | -/** | **/- | **/- | |
Fsubstrate type | NS/NS | -/NS | NS/- | NS/- | |
Finteraction | NS/NS | */NS | NS/** | NS/** | |
Fone-way ANOVA | **/* | **/** | **/** | **/** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, A.N.; Papafotiou, M.; Massas, I.; Chorianopoulou, N. Using the Halophyte Crithmum maritimum in Green Roofs for Sustainable Urban Horticulture: Effect of Substrate and Nutrient Content Analysis including Potentially Toxic Elements. Sustainability 2022, 14, 4713. https://doi.org/10.3390/su14084713
Martini AN, Papafotiou M, Massas I, Chorianopoulou N. Using the Halophyte Crithmum maritimum in Green Roofs for Sustainable Urban Horticulture: Effect of Substrate and Nutrient Content Analysis including Potentially Toxic Elements. Sustainability. 2022; 14(8):4713. https://doi.org/10.3390/su14084713
Chicago/Turabian StyleMartini, Aikaterini N., Maria Papafotiou, Ioannis Massas, and Nikoleta Chorianopoulou. 2022. "Using the Halophyte Crithmum maritimum in Green Roofs for Sustainable Urban Horticulture: Effect of Substrate and Nutrient Content Analysis including Potentially Toxic Elements" Sustainability 14, no. 8: 4713. https://doi.org/10.3390/su14084713
APA StyleMartini, A. N., Papafotiou, M., Massas, I., & Chorianopoulou, N. (2022). Using the Halophyte Crithmum maritimum in Green Roofs for Sustainable Urban Horticulture: Effect of Substrate and Nutrient Content Analysis including Potentially Toxic Elements. Sustainability, 14(8), 4713. https://doi.org/10.3390/su14084713