Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Downscaling Methods
2.3.1. Quantile Mapping
2.3.2. The CNN Model Considering Teleconnection
Convolutional Neural Network
Teleconnection
2.4. Evaluation Metrics
3. Results
3.1. Application of Quantile Mapping (QM)
3.2. Application of the CNN
3.2.1. Teleconnection Analysis Using SST
3.2.2. CNN Model Training
3.3. Performance Evaluation for Each Method
3.4. Forecasting Precipitation Using the Final Model
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whetton, P.H.; Fowler, A.M.; Haylock, M.R.; Pittock, A.B. Implications of climate change due to the enhanced greenhouse effect on floods and droughts in Australia. Clim. Chang. 1993, 25, 289–317. [Google Scholar] [CrossRef]
- Zhang, Q.; Gemmer, M.; Chen, J. Climate changes and flood/drought risk in the Yangtze Delta, China, during the past millennium. Quat. Int. 2008, 176, 62–69. [Google Scholar] [CrossRef]
- Yang, C.; Yu, Z.; Hao, Z.; Zhang, J.; Zhu, J. Impact of climate change on flood and drought events in Huaihe River Basin, China. Hydrol. Res. 2012, 43, 14–22. [Google Scholar] [CrossRef]
- Zhao, Y.; Weng, Z.; Chen, H.; Yang, J. Analysis of the evolution of drought, flood, and drought-flood abrupt alternation events under climate change using the daily SWAP index. Water 2020, 12, 1969. [Google Scholar] [CrossRef]
- Gebre, S.L.; Ludwig, F. Hydrological response to climate change of the upper blue Nile River Basin: Based on IPCC fifth assessment report (AR5). J. Climatol. Weather Forecast. 2015, 3, 1–15. [Google Scholar]
- Kim, S.; Noh, H.; Jung, J.; Jun, H.; Kim, H.S. Assessment of the impacts of global climate change and regional water projects on streamflow characteristics in the Geum River Basin in Korea. Water 2016, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.; Kim, S.; Jung, J.; Singh, V.P.; Lee, D.R.; Kim, H.S. Assessment of meteorological drought in Korea under climate change. Adv. Meteorol. 2016, 2016, 1879024. [Google Scholar] [CrossRef]
- Onencan, A.; Enserink, B.; Van de Walle, B.; Chelang’a, J. Coupling Nile Basin 2050 scenarios with the IPCC 2100 projections for climate-induced risk reduction. Procedia Eng. 2016, 159, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ma, Y.; Liu, T.; Luo, M. Climate change impacts on extreme flows under IPCC RCP scenarios in the mountainous Kaidu watershed, Tarim River basin. Sustainability 2020, 12, 2090. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kwak, J.; Noh, H.S.; Kim, H.S. Evaluation of drought and flood risks in a multipurpose dam under climate change: A case study of Chungju Dam in Korea. Nat. Hazards 2014, 73, 1663–1678. [Google Scholar] [CrossRef]
- Jung, J.; Han, H.; Kim, K.; Kim, H.S. Machine Learning-Based Small Hydropower Potential Prediction under Climate Change. Energies 2021, 14, 3643. [Google Scholar] [CrossRef]
- Jung, J.; Jung, S.; Lee, J.; Lee, M.; Kim, H.S. Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change. Energies 2021, 14, 3001. [Google Scholar] [CrossRef]
- Xu, C.Y. From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr. 1999, 23, 229–249. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Leconte, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar] [CrossRef]
- Chen, H.; Xu, C.Y.; Guo, S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J. Hydrol. 2012, 434, 36–45. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Hermans, T.H.; Tinker, J.; Palmer, M.D.; Katsman, C.A.; Vermeersen, B.L.; Slangen, A.B. Improving sea-level projections on the Northwestern European shelf using dynamical downscaling. Clim. Dyn. 2020, 54, 1987–2011. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Wang, A. Application of the bias correction and spatial downscaling algorithm on the temperature extremes from CMIP5 multimodel ensembles in China. Earth Space Sci. 2019, 6, 2508–2524. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D. Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Clim. 2013, 26, 2137–2143. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Pierce, D.W. Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci. 2014, 18, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Shepherd, T.G.; Widmann, M.; Zappa, G.; Walton, D.; Gutiérrez, J.M.; Hagemann, S.; Richter, I.; Soares, P.M.; Hall, A.; et al. Towards process-informed bias correction of climate change simulations. Nat. Clim. Chang. 2017, 7, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Landman, W.A.; Mason, S.J.; Tyson, P.D.; Tennant, W.J. Statistical downscaling of GCM simulations to streamflow. J. Hydrol. 2001, 252, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Tisseuil, C.; Vrac, M.; Lek, S.; Wade, A.J. Statistical downscaling of river flows. J. Hydrol. 2010, 385, 279–291. [Google Scholar] [CrossRef]
- Prudhomme, C.; Reynard, N.; Crooks, S. Downscaling of global climate models for flood frequency analysis: Where are we now? Hydrol. Process. 2002, 16, 1137–1150. [Google Scholar] [CrossRef]
- Leung, L.R.; Qian, Y.; Bian, X. Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part I: Seasonal statistics. J. Clim. 2003, 16, 1892–1911. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Coulibaly, P. Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol. 2005, 307, 145–163. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Dawes, W.R.; Charles, S.P.; Mpelasoka, F.S.; Aryal, S.; Barron, O.; Summerell, G.K. Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys. Res. Lett. 2011, 38, 11. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, T.; Wu, B.; Li, T.; Luo, J.J. Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv. Atmos. Sci. 2011, 28, 464–476. [Google Scholar] [CrossRef]
- Teutschbein, C.; Wetterhall, F.; Seibert, J. Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Clim. Dyn. 2011, 37, 2087–2105. [Google Scholar] [CrossRef]
- Bao, J.; Feng, J.; Wang, Y. Dynamical downscaling simulation and future projection of precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 8227–8243. [Google Scholar] [CrossRef] [Green Version]
- Boulard, D.; Castel, T.; Camberlin, P.; Sergent, A.S.; Bréda, N.; Badeau, V.; Rossi, A.; Pohl, B. Capability of a regional climate model to simulate climate variables requested for water balance computation: A case study over northeastern France. Clim. Dyn. 2016, 46, 2689–2716. [Google Scholar] [CrossRef]
- Xu, Z.; Han, Y.; Yang, Z. Dynamical downscaling of regional climate: A review of methods and limitations. Sci. China Earth Sci. 2019, 62, 365–375. [Google Scholar] [CrossRef]
- Ouyang, F.; Lü, H.; Zhu, Y.; Zhang, J.; Yu, Z.; Chen, X.; Li, M. Uncertainty analysis of downscaling methods in assessing the influence of climate change on hydrology. Stoch. Environ. Res. Risk Assess. 2014, 28, 991–1010. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H.; Wherry, S.A. Statistical downscaling of precipitation using machine learning with optimal predictor selection. J. Hydrol. Eng. 2011, 16, 650–664. [Google Scholar] [CrossRef]
- Goyal, M.K.; Burn, D.H.; Ojha, C.S.P. Evaluation of machine learning tools as a statistical downscaling tool: Temperatures projections for multi-stations for Thames River Basin, Canada. Theor. Appl. Climatol. 2012, 108, 519–534. [Google Scholar] [CrossRef]
- Sachindra, D.A.; Ahmed, K.; Rashid, M.M.; Shahid, S.; Perera, B.J.C. Statistical downscaling of precipitation using machine learning techniques. Atmos. Res. 2018, 212, 240–258. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Huang, W.; Zhou, P. Performance of statistical and machine learning ensembles for daily temperature downscaling. Theor. Appl. Climatol. 2020, 140, 571–588. [Google Scholar] [CrossRef]
- Anaraki, M.V.; Farzin, S.; Mousavi, S.F.; Karami, H. Uncertainty analysis of climate change impacts on flood frequency by using hybrid machine learning methods. Water Resour. Manag. 2021, 35, 199–223. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Xiong, W.; Guo, S.; Xu, C.Y. Downscaling GCMs using the Smooth Support Vector Machine method to predict daily precipitation in the Hanjiang Basin. Adv. Atmos. Sci. 2010, 27, 274–284. [Google Scholar] [CrossRef]
- Ahmadi, A.; Moridi, A.; Lafdani, E.K.; Kianpisheh, G. Assessment of climate change impacts on rainfall using large scale climate variables and downscaling models—A case study. J. Earth Syst. Sci. 2014, 123, 1603–1618. [Google Scholar] [CrossRef] [Green Version]
- Gan, T.Y.; Gobena, A.K.; Wang, Q. Precipitation of southwestern Canada: Wavelet, scaling, multifractal analysis, and teleconnection to climate anomalies. J. Geophys. Res. Atmos. 2007, 112, D10110. [Google Scholar] [CrossRef]
- Ionita, M.; Lohmann, G.; Rimbu, N. Prediction of spring Elbe discharge based on stable teleconnections with winter global temperature and precipitation. J. Clim. 2008, 21, 6215–6226. [Google Scholar] [CrossRef] [Green Version]
- Mamalakis, A.; Yu, J.Y.; Randerson, J.T.; AghaKouchak, A.; Foufoula-Georgiou, E. A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US. Nat. Commun. 2018, 9, 2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booij, M.J. Extreme daily precipitation in Western Europe with climate change at appropriate spatial scales. Int. J. Climatol. A J. R. Meteorol. Soc. 2002, 22, 69–85. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Prudhomme, C.; Davies, H. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: Baseline climate. Clim. Chang. 2009, 93, 177–195. [Google Scholar] [CrossRef]
- Panofsky, H.A.; Brier, G.W.; Best, W.H. Some Application of Statistics to Meteorology; Mineral Industries Extension Services, School of Mineral Industries, Pennsylvania State College: State College, PA, USA, 1953. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Mateen, M.; Wen, J.; Nasrullah; Song, S.; Huang, Z. Fundus Image Classification Using VGG-19 Architecture with PCA and SVD. Symmetry 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, C.; Robertson, C. CliGAN: A structurally sensitive convolutional neural network model for statistical downscaling of precipitation from multi-model ensembles. Water 2020, 12, 3353. [Google Scholar] [CrossRef]
- Schepen, A.; Wang, Q.J.; Robertson, D. Evidence for using lagged climate indices to forecast Australian seasonal rainfall. J. Clim. 2012, 25, 1230–1246. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.; Li, J.; Liu, J.; Chang, C.P.; Ding, Y.; Wu, G. How to measure the strength of the East Asian summer monsoon. J. Clim. 2008, 21, 4449–4463. [Google Scholar] [CrossRef]
- Chang, C.P.; Zhang, Y.S.; Li, T. Interannual and interdecadal variations of the east asian summer monsoon and the tropical pacific SSTs. Part II: Meridional structure of the monsoon. J. Clim. 2000, 13, 4326–4340. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.G.; Fu, X.H. Pacific-East asian teleconnection: How does ENSO affect east asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maierreimer, E. Climate variability in a coupled GCM. Part II: The Indian Ocean and monsoon. J. Clim. 1994, 7, 1449–1462. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.O.; Cole, J.E.; Webster, P.J. Indian ocean SST and indian summer rainfall: Predictive relationships and their decadal variability. J. Clim. 2000, 13, 2503–2518. [Google Scholar] [CrossRef]
- Huang, R.; Chen, W.; Yang, B.; Zhang, R. Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Adv. Atmos. Sci. 2004, 21, 407–424. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
Data Type | Description | Resolution (Lon. × Lat.) | Cell Size | Period (Monthly) |
---|---|---|---|---|
Historical data | - | 1.41° × 1.41° | 256 × 128 | 1850-01-01–2014-12-31 |
SSP 8.5 scenario data | Extreme scenario | 1.41° × 1.41° | 256 × 128 | 2015-01-01–2100-12-31 |
Station Name | Location | Elevation | Observation Start Date | Institutions |
---|---|---|---|---|
Incheon | lat: 37.4777° lon: 126.6249° | 68.99 m | 1904-08-29 | Korea Meteorological Administration |
Seoul | lat: 37.5714° lon: 126.9658° | 85.67 m | 1907-10-01 | Korea Meteorological Administration |
Suwon | lat: 37.2723° lon: 126.9853° | 34.84 m | 1964-01-01 | Korea Meteorological Administration |
Data Type | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|
GCM data | 0 mm | 743 mm | 106.9 mm | 113.3 mm |
Incheon station | 0 mm | 1364 mm | 111.3 mm | 147.6 mm |
Seoul station | 0 mm | 1105 mm | 94 mm | 119.2 mm |
Suwon station | 0 mm | 967 mm | 111 mm | 137.8 mm |
Station | Most Positively Correlated Grid | Most Negatively Correlated Grid |
---|---|---|
Incheon | Longitude: 114° E Latitude: 65° S | Longitude: 126° E Latitude: 10° N |
Seoul | Longitude: 112° E Latitude: 65° S | Longitude: 126° E Latitude: 10° N |
Suwon | Longitude: 58° E Latitude: 66° S | Longitude: 135° E Latitude: 20° N |
Variable | Abbreviation | Description |
---|---|---|
Target variable | Obs. pr | Reference precipitation data for each station |
Explanatory variable | Clt | Cloud area fraction of the GCM |
Hurs | Relative humidity of the GCM | |
Pr | Precipitation of the GCM | |
Prw | Atmosphere mass content of water vapor of the GCM | |
Ps | Surface air pressure | |
Psl | Sea level pressure | |
Tas | Air temperature of the GCM | |
SST+ | Most positively correlated SST | |
SST- | Most negatively correlated SST |
Station | Clt | Hurs | Pr | Prw | Ps | Psl | Tas | SST+ | SST- |
---|---|---|---|---|---|---|---|---|---|
Incheon | 56% | 47% | 52% | 69% | −59% | −59% | 57% | 71% | −66% |
Seoul | 55% | 47% | 51% | 68% | −58% | −58% | 57% | 68% | −66% |
Suwon | 56% | 47% | 51% | 71% | −60% | −60% | 60% | 74% | −68% |
List | Parameter |
---|---|
Loss function | Mean Squared Error |
Activation function | Conv1D layer: Relu, Output layer: Linear |
Kernel size | 3 |
Optimizer function | Adam |
Batch size | 128 |
Epoch | 100 |
Stations | QM | CNN | ||
---|---|---|---|---|
CC (%) | RMSE | CC (%) | RMSE | |
Incheon | 36.68 | 199.67 mm | 60.92% | 146.92 mm |
Seoul | 40.87 | 152.55 mm | 72.71% | 102.16 mm |
Suwon | 45.25 | 157.64 mm | 73.35% | 102.46 mm |
Station | Reference Data (For 30 Years) | 2015–2040 (Short-Term) | 2041–2070 (Medium-Term) | 2071–2100 (Long-Term) |
---|---|---|---|---|
Incheon | 1187.5 mm | 1227.0 mm | 1356.8 mm | 1338.4 mm |
3.3% | 14.3% | 12.7% | ||
Seoul | 1125.5 mm | 1486.4 mm | 1475.9 mm | 1516.6 mm |
32.1% | 31.1% | 34.7% | ||
Suwon | 1177.9 mm | 1109.7 mm | 1091.63 mm | 1198.2 mm |
−5.8% | −7.3% | 1.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, M.; Han, H.; Kim, D.; Bae, Y.; Kim, H.S. Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario. Sustainability 2022, 14, 4719. https://doi.org/10.3390/su14084719
Kim J, Lee M, Han H, Kim D, Bae Y, Kim HS. Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario. Sustainability. 2022; 14(8):4719. https://doi.org/10.3390/su14084719
Chicago/Turabian StyleKim, Jongsung, Myungjin Lee, Heechan Han, Donghyun Kim, Yunghye Bae, and Hung Soo Kim. 2022. "Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario" Sustainability 14, no. 8: 4719. https://doi.org/10.3390/su14084719
APA StyleKim, J., Lee, M., Han, H., Kim, D., Bae, Y., & Kim, H. S. (2022). Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario. Sustainability, 14(8), 4719. https://doi.org/10.3390/su14084719