Bibliometric Analysis of Global Research on Ecological Networks in Nature Conservation from 1990 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Screening
2.2. Research Method
3. Results and Discussion
3.1. Publication Characteristics
3.1.1. Temporal Development
3.1.2. Distribution and Collaboration
3.1.3. Influential Journals
3.1.4. Subject Categories
3.2. Knowledge Base Analysis
3.2.1. Frequent Co-Citation Literature
3.2.2. Co-Citation Clustering
3.3. Research Hotspots and Emerging Trends
3.3.1. Keyword Co-Words
3.3.2. Term Co-Occurrence
4. Conclusions and Future Prospects
- (1)
- Building ENs by investigating spatiotemporal changes of the ecological sources can provide a deeper insight into their heterogeneity, internal mechanism, and even resilience in coping with climate change effects. Existing studies suggest that ecological sources change over time. However, the current construction of ENs is mainly based on static connections, and there are few practices to evaluate the dynamic changes of sources. Thus, monitoring and assessing the dynamics of ecological sources in terrestrial ecosystems is necessary to stabilize the structure of ENs. New models and methods must also be developed to quantify dynamic processes and integrate dynamics into the planning or construction of ENs.
- (2)
- To maintain ecological functions and landscape sustainability, it is necessary to sufficiently stabilize the structure and function of ENs to enhance the adaptability to disturbances and stresses. Resilience is an essential property of ENs, referring to the ability to remain stable and still function in the face of disturbances. If the resilience of ENs is ignored, ecological sources may not be able to sustain ecosystem services when the system is disturbed. The state of the ecological source determines the stability of the EN structure, which is particularly important for the resilience of ENs. Therefore, more research should be conducted on enhancing the resilience of ENs by investigating spaciotemporal changes in the sources and improving the dynamic evaluation of ENs.
- (3)
- Most developing countries are experiencing rapid urbanization with a high intensity of urban expansion and population concentration. Habitat isolation has become a major challenge for urban development. A recent hotspot is to study the landscape fragmentation effects on natural habitats or biodiversity under land-use changes in urbanized areas. Future studies on ENs could be extended from urbanized areas to urban agglomerations, which have a high level of urbanization and population size. Building ENs in urban agglomerations can mitigate land-use change and landscape fragmentation caused by cross-regional urban expansion, enhance the spatial connectivity between landscapes and habitat patches, and promote regional cooperation in improving biodiversity loss and ecosystem services.
- (4)
- Landscape sustainability requires balancing regional ecosystem conservation and socio-economic development, such as biodiversity conservation and infrastructure construction. Therefore, researchers need to explore the coupling of natural and socio-economic systems to gain insights into the relationship between nature and socio-economic or other systems. Understanding how the interaction of economic, social, ecological, and cultural factors influences urban landscape patterns is important for achieving sustainability in urbanized areas. This trend has prompted researchers to further consider complex urban properties (such as economic growth, population agglomeration, and social equity) and pay close attention to the natural and socio-economic factors and their complex interaction within the system.
- (5)
- ENs are a tool to improve landscape management for conservation. Research on integrated EN management is needed to maximize biodiversity conservation or ecosystem services, which emphasizes the integration of transdisciplinary knowledge, methods, and multi-source data. EN management should be combined with national or regional policy objectives (e.g., Convention on Biological Diversity). There is also a challenge to integrating the management of ENs into planning (e.g., spatial planning or landscape planning) to achieve sustainable landscapes. In addition, developing ENs with diverse stakeholders can ensure relevance to the local contexts, values, and interests. Such a participatory approach may help reconstruct a more positive relationship between humans and nature, especially in dealing with the challenges of sustainable land use under climate change.
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Take Action for the Sustainable Development Goals. Available online:https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 15 January 2022).
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Glob. Chang. Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Synes, N.W.; Ponchon, A.; Palmer, S.C.F.; Osborne, P.E.; Bocedi, G.; Travis, J.M.J.; Watts, K. Prioritising conservation actions for biodiversity: Lessening the impact from habitat fragmentation and climate change. Biol. Conserv. 2020, 252, 108819. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [Green Version]
- Ahern, J. Urban landscape sustainability and resilience: The promise and challenges of integrating ecology with urban planning and design. Landsc. Ecol. 2013, 28, 1203–1212. [Google Scholar] [CrossRef]
- Baguette, M.; Blanchet, S.; Legrand, D.; Stevens, V.M.; Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. Camb. Philos. Soc. 2013, 88, 310–326. [Google Scholar] [CrossRef]
- Opdam, P.; Wascher, D. Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Su, J.; Yin, H.; Kong, F. Ecological networks in response to climate change and the human footprint in the Yangtze River Delta urban agglomeration, China. Landsc. Ecol. 2020, 36, 2095–2112. [Google Scholar] [CrossRef]
- Beier, P.; Spencer, W.; Baldwin, R.F.; McRae, B.H. Toward best practices for developing regional connectivity maps. Conserv. Biol. 2011, 25, 879–892. [Google Scholar] [CrossRef]
- Jongman, R.H.G.; Kulvik, M.; Kristiansen, I. European ecological networks and greenways. Landsc. Urban Plan. 2004, 68, 305–319. [Google Scholar] [CrossRef]
- Linehan, J.; Gross, M.; Finn, J. Greenway Planning—Developing a Landscape Ecological Network Approach. Landsc. Urban Plan. 1995, 33, 179–193. [Google Scholar] [CrossRef]
- Opdam, P.; Steingrover, E.; van Rooij, S. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Saura, S.; Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 2010, 33, 523–537. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Nature Conservation Planning in Europe—Developing Ecological Networks. Landsc. Urban Plan. 1995, 32, 169–183. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Ecological networks are an issue for all of us. J. Landsc. Ecol. 2008, 1, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Opdam, P.; Foppen, R.; Reijnen, R.; Schotman, A. The Landscape Ecological Approach in Bird Conservation—Integrating the Metapopulation Concept into Spatial Planning. J. Landsc. Ecol. 1995, 137, S139–S146. [Google Scholar] [CrossRef]
- Beier, P.; Noss, R.F. Do Habitat Corridors Provide Connectivity? Conserv. Biol. 1998, 12, 1241–1252. [Google Scholar] [CrossRef]
- Jordan, F.; Baldi, A.; Orci, K.M.; Racz, I.; Varga, Z. Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landsc. Ecol. 2003, 18, 83–92. [Google Scholar] [CrossRef]
- Sepp, K.; Palang, H.; Mander, U.; Kaasik, A. Prospects for nature and landscape protection in Estonia. Landsc. Urban Plan. 1999, 46, 161–167. [Google Scholar] [CrossRef]
- Bennett, G.; Mulongoy, K. Review of Experience with Ecological Networks, Corridors and Buffer Zones; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2006. [Google Scholar]
- Gurrutxaga, M.; Lozano, P.J.; del Barrio, G. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. J. Nat. Conserv. 2010, 18, 318–326. [Google Scholar] [CrossRef]
- Boitani, L.; Falcucci, A.; Maiorano, L.; Rondinini, C. Ecological networks as conceptual frameworks or operational tools in conservation. Conserv. Biol. 2007, 21, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Jongman, R.H.G.; Bouwma, I.M.; Griffioen, A.; Jones-Walters, L.; Van Doorn, A.M. The Pan European Ecological Network: PEEN. Landsc. Ecol. 2011, 26, 311–326. [Google Scholar] [CrossRef]
- Fabos, J.G. Introduction and Overview—The Greenway Movement, Uses and Potentials of Greenways. Landsc. Urban Plan. 1995, 33, 1–13. [Google Scholar] [CrossRef]
- Minor, E.S.; Urban, D.L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 2008, 22, 297–307. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Ricotta, C.; Stanisci, A.; Avena, G.C.; Blasi, C. Quantifying the network connectivity of landscape mosaics: A graph-theoretical approach. Community Ecol. 2000, 1, 89–94. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity Is a Vital Element of Landscape Structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Tischendorf, L.; Fahrig, L. How should we measure landscape connectivity? Landsc. Ecol. 2000, 15, 633–641. [Google Scholar] [CrossRef]
- Baranyi, G.; Saura, S.; Podani, J.; Jordan, F. Contribution of habitat patches to network connectivity: Redundancy and uniqueness of topological indices. Ecol. Indic. 2011, 11, 1301–1310. [Google Scholar] [CrossRef]
- Saura, S.; Torne, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Bodin, O.; Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Modell. 2010, 221, 2393–2405. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Gippoliti, S.; Battisti, C. More cool than tool: Equivoques, conceptual traps and weaknesses of ecological networks in environmental planning and conservation. Land Use Policy 2017, 68, 686–691. [Google Scholar] [CrossRef]
- Van Der Windt, H.J.; Swart, J.A.A. Ecological corridors, connecting science and politics: The case of the Green River in the Netherlands. J. Appl. Ecol. 2007, 45, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 2002, 58, 269–280. [Google Scholar] [CrossRef]
- Damschen, E.I.; Haddad, N.M.; Orrock, J.L.; Tewksbury, J.J.; Levey, D.J. Corridors increase plant species richness at large scales. Science 2006, 313, 1284–1286. [Google Scholar] [CrossRef] [Green Version]
- Samways, M.J.; Pryke, J.S. Large-scale ecological networks do work in an ecologically complex biodiversity hotspot. Ambio 2016, 45, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Noss, R.F.; Quigley, H.B.; Hornocker, M.G.; Merrill, T.; Paquet, P.C. Conservation biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 1996, 10, 949–963. [Google Scholar] [CrossRef]
- Liang, J.; He, X.; Zeng, G.; Zhong, M.; Gao, X.; Li, X.; Li, X.; Wu, H.; Feng, C.; Xing, W.; et al. Integrating priority areas and ecological corridors into national network for conservation planning in China. Sci. Total Environ. 2018, 626, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Auffret, A.G.; Plue, J.; Cousins, S.A. The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 2015, 44, S51–S59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Zhou, B.; Wang, H.H.X. Urban Landscape Ecological Design and Stereo Vision Based on 3D Mesh Simplification Algorithm and Artificial Intelligence. Neural Process. Lett. 2021, 53, 2421–2437. [Google Scholar] [CrossRef]
- Dong, J.H.; Dai, W.T.; Shao, G.Q.; Xu, J.R. Ecological Network Construction Based on Minimum Cumulative Resistance for the City of Nanjing, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2045–2060. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2020, 36, 2059–2076. [Google Scholar] [CrossRef]
- Cui, L.; Wang, J.; Sun, L.; Lv, C.D. Construction and optimization of green space ecological networks in urban fringe areas: A case study with the urban fringe area of Tongzhou district in Beijing. J. Clean Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Lee, D.; Oh, K. The Green Infrastructure Assessment System (GIAS) and Its Applications for Urban Development and Management. Sustainability 2019, 11, 3798. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhao, Y. Bibliometric analysis of global environmental assessment research in a 20-year period. Environ. Impact Assess. Rev. 2015, 50, 158–166. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, Y.; Lin, C.; He, M.; Hao, F.; Liu, H.; Zhu, W. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci. Total Environ. 2018, 637–638, 208–220. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, Y.; Zhang, J.; Fu, C.L.; Zhang, X.L. Progress in urban metabolism research and hotspot analysis based on CiteSpace analysis. J. Clean Prod. 2021, 281, 125224. [Google Scholar] [CrossRef]
- Chen, C.M. An information-theoretic view of visual analytics. IEEE Comput. Graph. Appl. 2008, 28, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. JASIS 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M.; Ibekwe-SanJuan, F.; Hou, J.H. The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. JASIS 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.N.; Porter, A.L.; Wang, Z.L. Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling. Nano Energy 2017, 34, 93–102. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Sole, R.V.; Montoya, J.M. Complexity and fragility in ecological networks. Proc. Biol. Sci. 2001, 268, 2039–2045. [Google Scholar] [CrossRef]
- Jalkanen, J.; Toivonen, T.; Moilanen, A. Identification of ecological networks for land-use planning with spatial conservation prioritization. Landsc. Ecol. 2020, 35, 353–371. [Google Scholar] [CrossRef] [Green Version]
- Saura, S.; Bertzky, B.; Bastin, L.; Battistella, L.; Mandrici, A.; Dubois, G. Protected area connectivity: Shortfalls in global targets and country-level priorities. Biol. Conserv. 2018, 219, 53–67. [Google Scholar] [CrossRef]
- Serret, H.; Raymond, R.; Foltete, J.C.; Clergeau, P.; Simon, L.; Machon, N. Potential contributions of green spaces at business sites to the ecological network in an urban agglomeration: The case of the Ile-de-France region, France. Landsc. Urban Plan. 2014, 131, 27–35. [Google Scholar] [CrossRef]
- Samways, M.J.; Bazelet, C.S.; Pryke, J.S. Provision of ecosystem services by large scale corridors and ecological networks. Biodivers. Conserv. 2010, 19, 2949–2962. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.H.; Yin, H.W.; Nakagoshi, N.; Zong, Y.G. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Cui, B.S.; Zhang, Z.M.; Lei, X.X. Implementation of Diversified Ecological Networks to Strengthen Wetland Conservation. Clean-Soil Air Water 2012, 40, 1015–1026. [Google Scholar] [CrossRef]
- Singh, J.S.; Roy, P.S.; Murthy, M.S.R.; Jha, C.S. Application of Landscape Ecology and Remote Sensing for Assessment, Monitoring and Conservation of Biodiversity. J. Indian Soc. Remote Sens. 2010, 38, 365–385. [Google Scholar] [CrossRef]
- Bourdouxhe, A.; Duflot, R.; Radoux, J.; Dufrene, M. Comparison of methods to model species habitat networks for decision-making in nature conservation: The case of the wildcat in southern Belgium. J. Nat. Conserv. 2020, 58, 125901. [Google Scholar] [CrossRef]
- Peterson, E.E.; Hanks, E.M.; Hooten, M.B.; Ver Hoef, J.M.; Fortin, M.J. Spatially structured statistical network models for landscape genetics. Ecol. Monogr. 2019, 89, 1355. [Google Scholar] [CrossRef] [Green Version]
- Khoroshev, A. Landscape-Ecological Approach to Spatial Planning as a Tool to Minimize Socio-Ecological Conflicts: Case Study of Agrolandscape in the Taiga Zone of Russia. Land 2020, 9, 192. [Google Scholar] [CrossRef]
- Rayfield, B.; Fortin, M.J.; Fall, A. Connectivity for conservation: A framework to classify network measures. Ecology 2011, 92, 847–858. [Google Scholar] [CrossRef]
- Ayram, C.A.C.; Mendoza, M.E.; Etter, A.; Salicrup, D.R.P. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Prog. Phys. Geogr.-Earth Environ. 2016, 40, 7–37. [Google Scholar] [CrossRef]
- Marulli, J.; Mallarach, J.M. A GIS methodology for assessing ecological connectivity: Application to the Barcelona Metropolitan Area. Landsc. Urban Plan. 2005, 71, 243–262. [Google Scholar] [CrossRef]
- Adriaensen, F.; Chardon, J.P.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Sawyer, S.C.; Epps, C.W.; Brashares, J.S. Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscapes? J. Appl. Ecol. 2011, 48, 668–678. [Google Scholar] [CrossRef]
- Bunn, A.G.; Urban, D.L.; Keitt, T.H. Landscape connectivity: A conservation application of graph theory. J. Environ. Manag. 2000, 59, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Galpern, P.; Manseau, M.; Fall, A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biol. Conserv. 2011, 144, 44–55. [Google Scholar] [CrossRef]
- Dale, M.R.T.; Fortin, M.J. From Graphs to Spatial Graphs. Annual Review of Ecology, Evolution, and Systematics; Futuyma, D.J., Shafer, H.B., Simberloff, D., Eds.; Annual Reviews: Palo Alto, CA, USA, 2010; Volume 41, pp. 21–38. [Google Scholar]
- Schumaker, N.H. Using landscape indices to predict habitat connectivity. Ecology 1996, 77, 1210–1225. [Google Scholar] [CrossRef] [Green Version]
- Cantwell, M.D.; Forman, R.T.T. Landscape Graphs—Ecological Modeling with Graph-Theory to Detect Configurations Common to Diverse Landscapes. Landsc. Ecol. 1993, 8, 239–255. [Google Scholar] [CrossRef]
- Urban, D.L.; Minor, E.S.; Treml, E.A.; Schick, R.S. Graph models of habitat mosaics. Ecol. Lett. 2009, 12, 260–273. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. In USDA Forest Service−General Technical Report PNW; USDA Forest Service: Washington, DC, USA, 1995. [Google Scholar]
- Foltete, J.C.; Clauzel, C.; Vuidel, G. A software tool dedicated to the modelling of landscape networks. Environ. Model. Softw. 2012, 38, 316–327. [Google Scholar] [CrossRef]
- Hofman, M.P.G.; Hayward, M.W.; Kelly, M.J.; Balkenhol, N. Enhancing conservation network design with graph-theory and a measure of protected area effectiveness: Refining wildlife corridors in Belize, Central America. Landsc. Urban Plan. 2018, 178, 51–59. [Google Scholar] [CrossRef]
- Walker, N.J.; Schaffer-Smith, D.; Swenson, J.J.; Urban, D.L. Improved connectivity analysis using multiple low-cost paths to evaluate habitat for the endangered San Martin titi monkey (Plecturocebus oenanthe) in north-central Peru. Landsc. Ecol. 2019, 34, 1859–1875. [Google Scholar] [CrossRef]
- Keitt, T.; Urban, D.; Milne, B.T. Detecting critical scales in fragmented landscapes. Conserv. Ecol. 1997, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Rae, C.; Rothley, K.; Dragicevic, S. Implications of error and uncertainty for an environmental planning scenario: A sensitivity analysis of GIS-based variables in a reserve design exercise. Landsc. Urban Plan. 2007, 79, 210–217. [Google Scholar] [CrossRef]
- O’Brien, D.; Manseau, M.; Fall, A.; Fortin, M.J. Testing the importance of spatial configuration of winter habitat for woodland caribou: An application of graph theory. Biol. Conserv. 2006, 130, 70–83. [Google Scholar] [CrossRef]
- Lhyver, M.A. The European network of biogenetic reserves. Environ. Conserv. 1992, 19, 275–276. [Google Scholar] [CrossRef] [Green Version]
- Biondi, E.; Casavecchia, S.; Pesaresi, S.; Zivkovic, L. Natura 2000 and the Pan-European Ecological Network: A new methodology for data integration. Biodivers. Conserv. 2012, 21, 1741–1754. [Google Scholar] [CrossRef]
- Saura, S.; Bastin, L.; Battistella, L.; Mandrici, A.; Dubois, G. Protected areas in the world’s ecoregions: How well connected are they? Ecol. Indic. 2017, 76, 144–158. [Google Scholar] [CrossRef]
- Zeller, K.A.; McGarigal, K.; Whiteley, A.R. Estimating landscape resistance to movement: A review. Landsc. Ecol. 2012, 27, 777–797. [Google Scholar] [CrossRef]
- Yu, K.J. Security patterns and surface model in landscape ecological planning. Landsc. Urban Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Carlier, J.; Moran, J. Landscape typology and ecological connectivity assessment to inform Greenway design. Sci. Total Environ. 2019, 651, 3241–3252. [Google Scholar] [CrossRef]
- Xu, J.; Fan, F.; Liu, Y.; Dong, J.; Chen, J. Construction of Ecological Security Patterns in Nature Reserves Based on Ecosystem Services and Circuit Theory: A Case Study in Wenchuan, China. Int. J. Environ. Res. Public Health 2019, 16, 3220. [Google Scholar] [CrossRef] [Green Version]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recog. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Ding, R. The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies. Complexity 2019, 2019, 4180890. [Google Scholar] [CrossRef]
- Gao, J.; Barzel, B.; Barabasi, A.L. Universal resilience patterns in complex networks. Nature 2016, 530, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Slotine, J.J.; Barabasi, A.L. Controllability of complex networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef]
- De Montis, A.; Ganciu, A.; Cabras, M.; Bardi, A.; Peddio, V.; Caschili, S.; Massa, P.; Cocco, C.; Mulas, M. Resilient ecological networks: A comparative approach. Land Use Policy 2019, 89, 104207. [Google Scholar] [CrossRef]
- Nathwani, J.; Lu, X.; Wu, C.; Fu, G.; Qin, X. Quantifying security and resilience of Chinese coastal urban ecosystems. Sci. Total Environ. 2019, 672, 51–60. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.B.; Huang, Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecol. Indic. 2021, 130, 108101. [Google Scholar] [CrossRef]
- Coskun Hepcan, C. Quantifying landscape pattern and connectivity in a Mediterranean coastal settlement: The case of the Urla district, Turkey. Environ. Monit. Assess 2013, 185, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Thompson, P.; Loreau, M. Spatial ecological networks: Planning for sustainability in the long-term. Curr. Opin. Environ. Sustain. 2017, 29, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.X.; Carpenter, S.R.; Booth, E.G.; Motew, M.; Zipper, S.C.; Kucharik, C.J.; Loheide, S.P.; Turner, A.G. Understanding relationships among ecosystem services across spatial scales and over time. Environ. Res. Lett. 2018, 13, 054020. [Google Scholar] [CrossRef]
- Perrin, M.; Bertrand, N.; Vanpeene, S.; PACA, I. Ecological connectivity in spatial planning: From the EU framework to its territorial implementation in the French context. Environ. Sci. Policy 2022, 129, 118–125. [Google Scholar] [CrossRef]
- Saura, S.; Bodin, O.; Fortin, M.J. Stepping stones are crucial for species long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 2014, 51, 171–182. [Google Scholar] [CrossRef]
- Haidir, I.A.; Kaszta, Z.; Sousa, L.L.; Lubis, M.I.; Macdonald, D.W.; Linkie, M. Felids, forest and farmland: Identifying high priority conservation areas in Sumatra. Landsc. Ecol. 2021, 36, 475–495. [Google Scholar] [CrossRef]
- Nunez, T.A.; Lawler, J.J.; McRae, B.H.; Pierce, D.J.; Krosby, M.B.; Kavanagh, D.M.; Singleton, P.H.; Tewksbury, J.J. Connectivity planning to address climate change. Conserv. Biol. 2013, 27, 407–416. [Google Scholar] [CrossRef]
- Prieto-Torres, D.A.; Navarro-Siguenza, A.G.; Santiago-Alarcon, D.; Rojas-Soto, O.R. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation. Glob. Chang. Biol. 2016, 22, 364–379. [Google Scholar] [CrossRef]
- Ings, T.C.; Montoya, J.M.; Bascompte, J.; Bluthgen, N.; Brown, L.; Dormann, C.F.; Edwards, F.; Figueroa, D.; Jacob, U.; Jones, J.I.; et al. Ecological networks—Beyond food webs. J. Anim. Ecol. 2009, 78, 253–269. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.J.; Liu, Y.X.; Zhao, H.J.; Wang, Y.L. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Journal | N | P | TC | TC/N | IF 2020 | h-Index |
---|---|---|---|---|---|---|
LandscapeEcology | 126 | 9.2% | 4779 | 37.9 | 3.848 | 33 |
Landscape and Urban Planning | 69 | 5.0% | 5517 | 80.0 | 6.142 | 34 |
Biological Conservation | 49 | 3.6% | 1532 | 31.3 | 5.990 | 23 |
Journal of Applied Ecology | 34 | 2.5% | 1728 | 50.8 | 6.528 | 22 |
Ecological Indicators | 33 | 2.4% | 880 | 26.7 | 4.958 | 15 |
Ecological Modeling | 31 | 2.3% | 621 | 20.0 | 2.974 | 14 |
Ecological Applications | 29 | 2.1% | 1279 | 44.1 | 4.657 | 19 |
Sustainability | 26 | 1.9% | 103 | 4.0 | 3.251 | 6 |
Biodiversity and Conservation | 23 | 1.7% | 669 | 29.1 | 3.549 | 13 |
Plos One | 23 | 1.7% | 337 | 14.7 | 3.240 | 10 |
Ecology | 22 | 1.6% | 2848 | 129.5 | 5.499 | 16 |
Conservation Biology | 21 | 1.5% | 1623 | 77.3 | 6.560 | 17 |
Journal For Nature Conservation | 20 | 1.5% | 355 | 17.8 | 2.831 | 12 |
Ecology Letters | 17 | 1.2% | 1198 | 70.5 | 9.492 | 11 |
Freshwater Biology | 15 | 1.1% | 1604 | 106.9 | 3.809 | 9 |
Index Name | Calculation Formula | References |
---|---|---|
Correlation length (C) | , where Rs is the radius of gyration of component s, x and y are the mean coordinates of all the habitat cells in that component, xi and yi are the coordinates of each habitat cell in that component, ns is the number of habitat cells, and m is the number of components in the landscape. is the number of habitat cells, and m is the number of components in the landscape. | [88,89] |
Closeness centrality (CC) | , where d(i,j) is the number of links in the shortest path from node i to node j. | [83] |
Flux | , where θ is a distance decay coefficient is the quality weighted area (equal to patch size multiplied by patch quality). | [27] |
Area-weighted flux (AWF) | , where Pi, ai and aj are the areas of the habitat patches i and j, and is the probability of direct dispersal between patches i and j. | [77,83] |
Betweenness centrality (BC) | , where ρ(i,j) is the number of shortest paths from node i to node j, and is the number of these shortest paths that pass through node k in the network. | [58] |
Harary index (H) | where n is the total number of habitat patches, and is the shortest path from node i to node j. | [29] |
Landscape coincidence probability (LCP) | , where NC is the number of components, is the total area of each component, and is the total landscape area. | [28] |
Integral index of connectivity (IIC) | , where ai and aj are the areas of the habitat patches i and j, is the number of links in the shortest path (topological distance) between patches i and j, and is the total landscape area. | [28] |
Probability of connectivity (PC) | , where is the maximum product probability of all possible paths between patches i and j, are the areas of the habitat patches i and j, and is the total landscape area. | [83] |
Expected cluster size (ECS) | , where aj is the area of cluster j, and a is the total area of habitat. | [90] |
1990–2004 | 2005–2014 | 2015–2020 | ||||||
---|---|---|---|---|---|---|---|---|
Term | Count | Centrality | Term | Count | Centrality | Term | Count | Centrality |
ecological network | 24 | 0.27 | ecological network | 92 | 0.11 | landscape connectivity | 149 | 0.05 |
landscape ecology | 19 | 0.21 | landscape connectivity | 73 | 0.12 | ecological network | 132 | 0.04 |
landscape structure | 9 | 0.03 | landscape ecology | 50 | 0.21 | protected area | 65 | 0.03 |
landscape connectivity | 9 | 0.05 | habitat patches | 40 | 0.11 | habitat patches | 56 | 0.04 |
agricultural landscapes | 7 | 0.21 | functional connectivity | 36 | 0.04 | habitat fragmentation | 54 | 0.06 |
conservation biology | 6 | 0.04 | protected area | 29 | 0.13 | functional connectivity | 49 | 0.05 |
fragmented landscapes | 6 | 0.02 | network analysis | 29 | 0.02 | climate change | 46 | 0.09 |
habitat patches | 5 | 0.04 | habitat fragmentation | 28 | 0.07 | biodiversity conservation | 45 | 0.05 |
biological diversity | 4 | 0.11 | habitat connectivity | 28 | 0.05 | landscape ecology | 42 | 0.11 |
biodiversity conservation | 4 | 0.15 | climate change | 28 | 0.14 | graph theory | 41 | 0.07 |
ecological stability | 3 | 0.02 | ecosystem service | 27 | 0.04 | ecosystem service | 40 | 0.06 |
natural habitats | 3 | 0.02 | landscape structure | 23 | 0.17 | habitat connectivity | 33 | 0.06 |
climate change | 3 | 0.06 | spatial pattern | 22 | 0.08 | network analysis | 30 | 0.01 |
agricultural policy | 2 | 0.03 | conservation planning | 22 | 0.11 | habitat loss | 30 | 0.06 |
aesthetic principles | 2 | 0.05 | biodiversity conservation | 22 | 0.07 | human activity | 29 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Li, W.; Wang, Y.; Zhou, S. Bibliometric Analysis of Global Research on Ecological Networks in Nature Conservation from 1990 to 2020. Sustainability 2022, 14, 4925. https://doi.org/10.3390/su14094925
Lu Z, Li W, Wang Y, Zhou S. Bibliometric Analysis of Global Research on Ecological Networks in Nature Conservation from 1990 to 2020. Sustainability. 2022; 14(9):4925. https://doi.org/10.3390/su14094925
Chicago/Turabian StyleLu, Zhonggui, Wei Li, Yidi Wang, and Siyang Zhou. 2022. "Bibliometric Analysis of Global Research on Ecological Networks in Nature Conservation from 1990 to 2020" Sustainability 14, no. 9: 4925. https://doi.org/10.3390/su14094925
APA StyleLu, Z., Li, W., Wang, Y., & Zhou, S. (2022). Bibliometric Analysis of Global Research on Ecological Networks in Nature Conservation from 1990 to 2020. Sustainability, 14(9), 4925. https://doi.org/10.3390/su14094925