Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite-Image Acquisition and Atmospheric Correction
2.3. Land-Use Classification and Marsh Loss Assessment
2.4. Detection of Changes in Seasonal Marsh Aerial Coverage
2.5. Land-Use-Classification Accuracy: Confusion Matrix and Kappa Coefficient
3. Results
3.1. Land-Use Classification and Marsh Loss
3.2. Detection of Changes in Marsh and Water Aerial Coverage
4. Discussion
4.1. Population Growth and Food Demands Are the Major Factors for Marsh Loss in Lake Burullus
4.2. Rising Sea-Level Is a Real Threat for Marsh Loss in Egypt
4.3. Implications and Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaheen, S.M.; Abdelrazek, M.A.S.; Elthoth, M.; Moghanm, F.S.; Mohamed, R.; Hamza, A.; El-Habashi, N.; Wang, J.X.; Rinklebe, J. Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at North Nile Delta, Egypt: A survey and risk assessment. Sci. Total Environ. 2019, 649, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Salem, A.; Xu, Z.; Zhang, W. Ecological implications of heavy metal concentrations in the sediments of Burullus Lagoon of Nile Delta, Egypt. Estuar. Coast. Shelf Sci. 2010, 86, 491–498. [Google Scholar] [CrossRef]
- Bocci, M.; Pastres, R.; Kholeif, S.; Dalla Barba, D.; Brigolin, D. Modelling the impacts of semi-intensive aquaculture on the foodweb functioning of a Nile Delta coastal lake. Afr. J. Mar. Sci. 2017, 39, 237–249. [Google Scholar] [CrossRef]
- Eid, A.N.M.; Olatubara, C.O.; Ewemoje, T.A.; Farouk, H.; El-Hennawy, M.T. Coastal wetland vegetation features and digital Change Detection Mapping based on remotely sensed imagery: El-Burullus Lake, Egypt. Int. Soil Water Conserv. Res. 2020, 8, 66–79. [Google Scholar]
- Okbah, M.A.; Hussein, N.R. Impact of environmental conditions on the phytoplankton structure in Mediterranean Sea lagoon, Lake Burullus, Egypt. Water Air Soil Pollut. 2006, 172, 129–150. [Google Scholar] [CrossRef]
- Arshad, M.; Khedher, K.M.; Ayed, H.; Mouldi, A.; Moghanm, F.S.; El Ouni, M.H.; Benkahla, N.; Laatar, E.; Bilal, M.; Zaher, M.A. Effects of land use and cultivation histories on the distribution of soil organic carbon stocks in the area of the Northern Nile Delta in Egypt. Carbon Manag. 2020, 11, 341–354. [Google Scholar] [CrossRef]
- Abukila, A.F. Assessing the drain estuaries’ water quality in response to pollution abatement. Water Sci. 2015, 29, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P. Remote sensing-based detection of agricultural land losses around Greater Cairo since the Egyptian revolution of 2011. Land Use Pol. 2020, 97, 8. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.Y.; Xie, P.; Rao, Y.X.; He, Q.S. revisiting spatiotemporal changes in global urban expansion during 1995 to 2015. Complexity 2020, 2020, 11. [Google Scholar] [CrossRef]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang. 2020, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Blasco, J.M.D.; Cian, F.; Hanssen, R.E.; Verstraeten, G. Mapping and quantifying the human-environment interactions in middle Egypt using machine learning and satellite data fusion techniques. Remote Sens. 2020, 12, 22. [Google Scholar]
- Khalil, M.; El-Dawy, F. Ecological Survey of Burullus Nature Protectorate: Fishes and Fisheries; MedWetCoast, Global Environmental Facility (GEF) and Egyptian Environmental Affairs Agency (EEAA): Cairo, Egypt, 2002; p. 69. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- MEA. Ecosystems and Human Well-Being: Wetlands and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Weise, K.; Hofer, R.; Franke, J.; Guelmami, A.; Simonson, W.; Muro, J.; O’Connor, B.; Strauch, A.; Flink, S.; Eberle, J.; et al. Wetland extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS). Remote Sens. Environ. 2020, 247, 12. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; 5th Report; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IPCC. Special Report on the Impacts of Global Warming of 1.5 C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; De Gusmao, D.; Hinkel, J.; Tol, R.S. Sea-level rise and its possible impacts given a ‘beyond 4 C world’in the twenty-first century. Philos. Trans. R. Soc. A 2011, 369, 161–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, E.L.; Friess, D.A.; Krauss, K.W.; Cahoon, D.R.; Guntenspergen, G.R.; Phelps, J. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat. Clim. Chang. 2013, 3, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Mills, L.; Janeiro, J.; Neves, A.A.S.; Martins, F. The impact of Sea level rise in the Guadiana Estuary. J. Comput. Sci. 2020, 44, 101169. [Google Scholar] [CrossRef]
- Hong, B.; Liu, Z.; Shen, J.; Wu, H.; Gong, W.; Xu, H.; Wang, D. Potential physical impacts of sea-level rise on the Pearl River Estuary, China. J. Mar. Syst. 2020, 201, 103245. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Hensel, P.F.; Spencer, T.; Reed, D.J.; McKee, K.L.; Saintilan, N. Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls. In Wetlands and Natural Resource Management; Verhoeven, J.T.A., Beltman, B., Bobbink, R., Whigham, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 271–292. [Google Scholar]
- Beckett, L.H.; Baldwin, A.H.; Kearney, M.S. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise. PLoS ONE 2016, 11, 12. [Google Scholar] [CrossRef]
- Spidalieri, K. Where the Wetlands Are—And Where They Are Going: Legal and Policy Tools for Facilitating Coastal Ecosystem Migration in Response to Sea-Level Rise. Wetlands 2020, 40, 1765–1776. [Google Scholar] [CrossRef]
- Mohsen, A.; Elshemy, M.; Zeidan, B.A. Change detection for Lake Burullus, Egypt using remote sensing and GIS approaches. Environ. Sci. Pollut. Res. 2018, 25, 30763–30771. [Google Scholar] [CrossRef]
- Masria, A.; El-Adawy, A.A.; Sarhan, T. A holistic evaluation of human-induced LULCC and shoreline dynamics of El-Burullus Lagoon through remote sensing techniques. Innov. Infrastruct. Solut. 2020, 5, 10. [Google Scholar] [CrossRef]
- El-Zeiny, A.; El-Kafrawy, S. Assessment of water pollution induced by human activities in Burullus Lake using Landsat 8 operational land imager and GIS. Egypt. J. Remote Sens. Space Sci. 2017, 20, S49–S56. [Google Scholar] [CrossRef] [Green Version]
- Moghanm, F.S.; Belal, A.B. Assessment and Mapping of Environmentally Sensitive Areas To Desertification Using Gis in An Area of The North Delta Region of Egypt. Egypt. J. Soil Sci. 2018, 58, 325–335. [Google Scholar]
- El-Asmar, H.M.; Hereher, M.E. Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ. Earth Sci. 2011, 62, 769–777. [Google Scholar] [CrossRef]
- Sameh, B.; Khalafallah, A.; Omar, M.; Khalil, M.M.; Yehia, A.; Allam, M. An integrated field and remote sensing approach for water quality mapping of Lake Burullus, Egypt. Int. J. Environ. Sci. Eng. 2015, 6, 15–20. [Google Scholar]
- El-Asmar, H.M.; Hereher, M.E.; El Kafrawy, S.B. Surface area change detection of the Burullus Lagoon, North of the Nile Delta, Egypt, using water indices: A remote sensing approach. Egypt. J. Remote Sens. Space Sci. 2013, 16, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Eid, E.M.; Keshta, A.E.; Shaltout, K.H.; Baldwin, A.H.; El-Din, S.; Ahmed, A. Carbon sequestration potential of the five Mediterranean lakes of Egypt. Fundam. Appl. Limnol. 2017, 190, 87–96. [Google Scholar] [CrossRef]
- El-Shinnawy, I. Al-Burullus Wetland’s Hydrological Study; MedWetCoast, Global Environmental Facility (GEF) and Egyptian Environmental Affairs Agency (EEAA): Cairo, Egypt, 2002. [Google Scholar]
- El-Sheikh, M.A.; Al-Sodany, Y.M.; Eid, E.M.; Shaltout, K.H. Ten years primary succession on a newly created landfill at a lagoon of the Mediterranean Sea (Lake Burullus RAMSAR site). Flora 2012, 207, 459–468. [Google Scholar] [CrossRef]
- Shaltout, K.; Khalil, M. Lake Burullus: Burullus Protected Area; Egyptian Environmental Affairs Agency: Cairo, Egypt, 2005. [Google Scholar]
- Ghoraba, S.M.M.; Halmy, M.W.A.; Salem, B.B.; Badr, N.B.E. Assessing risk of collapse of Lake Burullus Ramsar site in Egypt using IUCN Red List of Ecosystems. Ecol. Indic. 2019, 104, 172–183. [Google Scholar] [CrossRef]
- Keshta, A.E.; Shaltout, K.H.; Baldwin, A.H.; El-Din, A.A.S. Sediment clays are trapping heavy metals in urban lakes: An indicator for severe industrial and agricultural influence on coastal wetlands at the Mediterranean coast of Egypt. Mar. Pollut. Bull. 2020, 151, 110816. [Google Scholar] [CrossRef]
- El Baz, S.M. Benthic foraminifera as bioindicators of heavy metal pollution in Lake Burullus, Egypt. Arab. J. Geosci. 2015, 8, 5491–5509. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review Of Assessing The accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Shaltout, K.H.; Al-Sodany, Y.M. Vegetation analysis of Burullus Wetland: A RAMSAR site in Egypt. Wetl. Ecol. Manag. 2008, 16, 421–439. [Google Scholar] [CrossRef]
- EVIS. ENVI User’s Guide; ITT Visual Information Solutions: Boulder, CO, USA, 2010. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Berk, A.; Adler-Golden, S.; Ratkowski, A.; Felde, G.; Anderson, G.; Hoke, M.; Cooley, T.; Chetwynd, J.; Gardner, J.; Matthew, M. Exploiting MODTRAN Radiation Transport for Atmospheric Correction: The FLAASH Algorithm. In Proceedings of the Fifth International Conference on Information Fusion, Annapolis, MD, USA, 8–11 July 2002; pp. 798–803. [Google Scholar]
- Ball, G.H.; Hall, D.J. ISODATA, A Novel Method of Data Analysis and Pattern Classification; Stanford Research Institute: Menlo Park, CA, USA, 1965. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction; Springer: Berlin/Heidelberg, Germany, 2013; Volume 3. [Google Scholar]
- Eastman, J.R. Guide to GIS and Image Processing Volume 1; Clark University: Worcester, MA, USA, 2001. [Google Scholar]
- Ejiagha, I.R.; Ahmed, M.R.; Hassan, Q.K.; Dewan, A.; Gupta, A.; Rangelova, E. Use of remote sensing in comprehending the influence of urban landscape’s composition and configuration on land surface temperature at neighbourhood scale. Remote Sens. 2020, 12, 2508. [Google Scholar] [CrossRef]
- Popescu, C.A.; Herbei, M.V.; Sala, F. Remote sensing in the analysis and characterization of spatial variability of the territory. A study case in Timis County, Romania. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2020, 20, 505–514. [Google Scholar]
- Ahmed, M.H.; El Leithy, B.M.; Thompson, J.R.; Flower, R.J.; Ramdani, M.; Ayache, F.; Hassan, S.M. Application of remote sensing to site characterisation and environmental change analysis of North African coastal lagoons. Hydrobiologia 2009, 622, 147–171. [Google Scholar] [CrossRef]
- Dobermann, A.; Ping, J.L.; Adamchuk, V.I.; Simbahan, G.C.; Ferguson, R.B. Classification of crop yield variability in irrigated production fields. Agron. J. 2003, 95, 1105–1120. [Google Scholar] [CrossRef] [Green Version]
- Anderberg, M.R. Cluster Analysis for Applications: Probability and Mathematical Statistics: A Series of Monographs and Textbooks; Academic Press: Cambridge, MA, USA, 2014; Volume 19. [Google Scholar]
- Panda, S.S.; Hoogenboom, G.; Paz, J. Distinguishing blueberry bushes from mixed vegetation land use using high resolution satellite imagery and geospatial techniques. Comput. Electron. Agric. 2009, 67, 51–58. [Google Scholar] [CrossRef]
- Johnson, B.A.; Jozdani, S.E. Confusion matrices help prevent reader confusion: Reply to Bechtel, B.; et al. A weighted accuracy measure for land cover mapping: Comment on Johnson et al. Local Climate Zone (LCZ) Map accuracy assessments should account for land cover physical characteristics that affect the local thermal environment. Remote Sens. 2019, 11, 2420. Remote Sens. 2020, 12, 6. [Google Scholar]
- Rajendran, S.; Nasir, S.; Al Jabri, K. Mapping and accuracy assessment of siltation of recharge dams using remote sensing technique. Sci. Rep. 2020, 10, 19. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Johnson, B.A.; Jozdani, S.E. Local Climate Zone (LCZ) Map accuracy assessments should account for land cover physical characteristics that affect the local thermal environment. Remote Sens. 2019, 11, 2420. [Google Scholar] [CrossRef] [Green Version]
- Sutton, K.; Fahmi, W. Cairo’s urban growth and strategic master plans in the light of Egypt’s 1996 population census results. Cities 2001, 18, 135–149. [Google Scholar] [CrossRef]
- International Data Base (Demographic Data) and Central Intelligence Agency. United Nations Data, World Population Prospects: The 2019 Revision. US Census Bureau; 2019. Available online: https://www.census.gov/popclock/world/eg#world-footer (accessed on 21 October 2020).
- Zedler, J.B.; Kercher, S. Wetland resources: Status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, L.M.; McCartney, M.P.; Finlayson, C.M. Wetlands of Sub-Saharan Africa: Distribution and contribution of agriculture to livelihoods. Wetl. Ecol. Manag. 2010, 18, 557–572. [Google Scholar] [CrossRef]
- El-Reefy, H.I.; Badran, H.M.; Sharshar, T.; Hilal, M.A.; Elnimr, T. Factors affecting the distribution of natural and anthropogenic radionuclides in the coastal Burullus Lake. J. Environ. Radioact. 2014, 134, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Ma, K.M.; Fu, B.J. Wetland loss under the impact of agricultural development in the Sanjiang Plain, NE China. Environ. Monit. Assess. 2010, 166, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondiek, R.A.; Vuolo, F.; Kipkemboi, J.; Kitaka, N.; Lautsch, E.; Hein, T.; Schmid, E. Socio-Economic Determinants of Land Use/Cover Change in Wetlands in East Africa: A Case Study Analysis of the Anyiko Wetland, Kenya. Front. Environ. Sci. 2020, 7, 16. [Google Scholar] [CrossRef]
- Isunju, J.B.; Kemp, J. Spatiotemporal analysis of encroachment on wetlands: A case of Nakivubo wetland in Kampala, Uganda. Environ. Monit. Assess. 2016, 188, 203. [Google Scholar] [CrossRef]
- Troy, B.; Sarron, C.; Fritsch, J.M.; Rollin, D. Assessment of the impacts of land use changes on the hydrological regime of a small rural catchment in South Africa. Phys. Chem. Earth 2007, 32, 984–994. [Google Scholar] [CrossRef]
- Watson, E.B.; Wigand, C.; Davey, E.W.; Andrews, H.M.; Bishop, J.; Raposa, K.B. Wetland Loss Patterns and Inundation-Productivity Relationships Prognosticate Widespread Salt Marsh Loss for Southern New England. Estuaries Coasts 2017, 40, 662–681. [Google Scholar] [CrossRef] [PubMed]
- Poulos, S.E.; Collins, M.B. Fluviatile sediment fluxes to the Mediterranean Sea: A quantitative approach and the influence of dams. Geol. Soc. Lond. Spec. Publ. 2002, 191, 227–245. [Google Scholar] [CrossRef]
- Elkafrawy, S.B.; Basheer, M.A.; Mohamed, H.M.; Naguib, D.M. Applications of remote sensing and GIS techniques to evaluate the effectiveness of coastal structures along Burullus headland-Eastern Nile Delta, Egypt. Egypt. J. Remote Sens. Space Sci. 2020, 24, 247–254. [Google Scholar] [CrossRef]
- Crossland, C.J.; Kremer, H.H.; Lindeboom, H.; Crossland, J.I.M.; Le Tissier, M.D. Coastal Fluxes in the Anthropocene: The Land-Ocean Interactions in the Coastal Zone Project of the International Geosphere-Biosphere Programme; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Rateb, A.; Abotalib, A.Z. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Sci. Total Environ. 2020, 729, 138868. [Google Scholar] [CrossRef]
- Shalby, A.; Elshemy, M.; Zeidan, B.A. Assessment of climate change impacts on water quality parameters of Lake Burullus, Egypt. Environ. Sci. Pollut. Res. 2020, 27, 32157–32178. [Google Scholar] [CrossRef]
- Shaban, M.; Farag, H.N. Data driven water quality modeling for drain/canal inflows to Lake Burullus. Ain Shams Eng. J. 2018, 9, 3197–3205. [Google Scholar] [CrossRef]
- Delaune, R.D.; Nyman, J.A.; Patrick, W.H. Peat Collapse, Pending And Wetland Loss In A Rapidly Submerging Coastal Marsh. J. Coast. Res. 1994, 10, 1021–1030. [Google Scholar]
- Charles, S.P.; Kominoski, J.S.; Troxler, T.G.; Gaiser, E.E.; Servais, S.; Wilson, B.J.; Davis, S.E.; Sklar, F.H.; Coronado-Molina, C.; Madden, C.J.; et al. Experimental Saltwater Intrusion Drives Rapid Soil Elevation and Carbon Loss in Freshwater and Brackish Everglades Marshes. Estuaries Coasts 2019, 42, 1868–1881. [Google Scholar] [CrossRef]
- Best, U.S.N.; Van der Wegen, M.; Dijkstra, J.; Willemsen, P.; Borsje, B.W.; Roelvink, D.J.A. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environ. Modell. Softw. 2018, 109, 152–166. [Google Scholar] [CrossRef]
- Reed, D.; Wang, Y.; Meselhe, E.; White, E. Modeling wetland transitions and loss in coastal Louisiana under scenarios of future relative sea-level rise. Geomorphology 2020, 352, 106991. [Google Scholar] [CrossRef]
- Stanley, J.-D.; Clemente, P.L. Increased land subsidence and sea-level rise are submerging Egypt’s Nile Delta coastal margin. GSA Today 2017, 27, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Said, T.O.; El Moselhy, K.M.; Rashad, A.A.M.; Shreadah, M.A. Organochlorine contaminants in water, sediment and fish of Lake Burullus, Egyptian Mediterranean Sea. Bull. Environ. Contam. Toxicol. 2008, 81, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.M. Environmental impacts on Egyptian Delta Lakes’ biodiversity: A case study on Lake Burullus. In Egyptian Coastal Lakes and Wetlands: Part II; Springer: Berlin/Heidelberg, Germany, 2018; pp. 107–128. [Google Scholar]
- Ali, E.M. Impact of drain water on water quality and eutrophication status of Lake Burullus, Egypt, a southern Mediterranean lagoon. Afr. J. Aquat. Sci. 2011, 36, 267–277. [Google Scholar] [CrossRef]
- Baldwin, A.H. Nitrogen and Phosphorus Differentially Affect Annual and Perennial Plants in Tidal Freshwater and Oligohaline Wetlands. Estuaries Coasts 2013, 36, 547–558. [Google Scholar] [CrossRef]
Land-Use Classification | Landsat 5 TM 28 July 1985 | Landsat 5 TM 21 July 2000 | Landsat 8 OLI 28 July 2020 | % | ||||
---|---|---|---|---|---|---|---|---|
Number of Pixels | Area km2 | Number of Pixels | Area km2 | Number of Pixels | Area km2 | % Loss (−) or Gain (+) Since 1985 | % Loss (−) or Gain (+) Since 2000 | |
Water | 286,073 | 257.5 | 301,855 | 271.7 | 443,251 | 398.9 | 54.9 | 46.8 |
Marsh | 372,853 | 335.6 | 366,309 | 329.7 | 205,903 | 185.3 | −44.8 | −43.8 |
Unvegetated lands | 109,633 | 98.7 | 56,758 | 51.1 | 30,762 | 27.7 | −71.9 | −45.8 |
Agricultural lands and/or fish farms | -- | -- | 43,621 | 39.3 | 88,639 | 79.8 | -- | 103.2 |
Total area km2 | 691.7 | 691.7 | 691.7 | -- | -- |
Land-Use Classification | Reference Water | Reference Marsh | Reference Unvegetated Lands | Reference Agricultural Lands and/or Fish Farms | Total Points |
---|---|---|---|---|---|
Water | 42 | 0 | 0 | 2 | 44 |
Marsh | 0 | 42 | 0 | 1 | 43 |
Unvegetated lands | 0 | 0 | 40 | 1 | 41 |
Agricultural lands and/or fish farms | 0 | 0 | 2 | 38 | 40 |
Total pixels | 42 | 42 | 42 | 42 | -- |
Producer’s accuracy (%) | 100.0 | 100.0 | 95.2 | 90.5 | -- |
User’s accuracy (%) | 95.5 | 97.7 | 97.6 | 95.0 | -- |
Overall classification accuracy (%) | 96 | ||||
Kappa coefficient | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keshta, A.E.; Riter, J.C.A.; Shaltout, K.H.; Baldwin, A.H.; Kearney, M.; Sharaf El-Din, A.; Eid, E.M. Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study. Sustainability 2022, 14, 4980. https://doi.org/10.3390/su14094980
Keshta AE, Riter JCA, Shaltout KH, Baldwin AH, Kearney M, Sharaf El-Din A, Eid EM. Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study. Sustainability. 2022; 14(9):4980. https://doi.org/10.3390/su14094980
Chicago/Turabian StyleKeshta, Amr E., J. C. Alexis Riter, Kamal H. Shaltout, Andrew H. Baldwin, Michael Kearney, Ahmed Sharaf El-Din, and Ebrahem M. Eid. 2022. "Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study" Sustainability 14, no. 9: 4980. https://doi.org/10.3390/su14094980
APA StyleKeshta, A. E., Riter, J. C. A., Shaltout, K. H., Baldwin, A. H., Kearney, M., Sharaf El-Din, A., & Eid, E. M. (2022). Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study. Sustainability, 14(9), 4980. https://doi.org/10.3390/su14094980