Agricultural Land: Crop Production or Photovoltaic Power Plants
Abstract
:1. Introduction
- The clarifying of weather conditions in the area of field experiments;
- The determining of gross income and profit of crop production;
- The analysis of the actual status of power generation, including renewables;
- The assessing of the net present value and the profitability index of PV plants;
- The calculation of the carbon dioxide footprint of crop production and solar power generation;
- The carrying out of the sensitivity analysis of a PV project.
2. Materials and Methods
2.1. System Boundary
2.2. Economic Indicators
2.3. Levelized Cost of Electricity
2.4. Carbon Dioxide Emissions
2.5. Sensitivity Analysis
- The identification of key variables;
- The determination of their switching values;
- The identification of crucial variables.
2.6. Solar Field
3. Results
3.1. Climate and Weather Conditions
3.2. Status of Solar Photovoltaic
3.3. Efficiency of Crop Production
3.4. Gross Income and Profit of Crop Production
3.5. Power Generation
3.6. Carbon Dioxide Emission Saving
3.7. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, P.R.; Connors, S.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. In Summary for Policymakers; IPCC: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf (accessed on 15 March 2022).
- IEA. Global Energy Review 2019. 2020. Available online: https://iea.blob.core.windows.net/assets/dc48c054-9c96-4783-9ef7-462368d24397/Global_Energy_Review_2019.pdf (accessed on 14 March 2022).
- IRENA. Global Energy Transformation: A Roadmap to 2050. 2018. Available online: https://www.irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050 (accessed on 15 March 2022).
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 2017, 42, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 2020, 26, 1532–1575. [Google Scholar] [CrossRef] [Green Version]
- Boysen, L.R.; Lucht, W.; Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 2017, 23, 4303–4317. [Google Scholar] [CrossRef]
- Kotenko, S.; Nitsenko, V.; Hanzhurenko, I.; Havrysh, V. The Mathematical Modeling Stages of Combining the Carriage of Goods for Indefinite, Fuzzy and Stochastic Parameters. Int. J. Integr. Eng. 2020, 12, 173–180. [Google Scholar] [CrossRef]
- Thomas, R.; Reed, M.; Clifton, K.; Appadurai, N.; Mills, A.; Zucca, C.; Kodsi, E.; Sircely, J.; Haddad, F.; Hagen, C.; et al. A framework for scaling sustainable land management options. Land Degrad. Dev. 2018, 29, 3272–3284. [Google Scholar] [CrossRef] [Green Version]
- Poggi, F.; Firmino, A.; Amado, M. Planning renewable energy in rural areas: Impacts on occupation and land use. Energy 2018, 155, 630–640. [Google Scholar] [CrossRef]
- Aburas, M.M.; Abdullah, S.H.O.; Ramli, M.F.; Asha’ari, Z.H. Land Suitability Analysis of Urban Growth in Seremban Malaysia, Using GIS Based Analytical Hierarchy Process. Procedia Eng. 2017, 198, 1128–1136. [Google Scholar] [CrossRef]
- Choi, Y.; Suh, J.; Kim, S.-M. GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Appl. Sci. 2019, 9, 1960. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, S. Estimation of Biomass Resources Potential. Journal of the Korean Solar Energy Society. Korean Sol. Energy Soc. 2016, 36, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Hobbie, S.E.; Hernandez, R.R.; Fargione, J.; Grodsky, S.M.; Tilman, D.; Zhu, Y.-G.; Luo, Y.; Smith, T.M.; Jungers, J.M.; et al. Restoring abandoned farmland to mitigate climate change on a full earth. One Earth 2020, 3, 176–186. [Google Scholar] [CrossRef]
- Goodrich, A.; James, T.; Woodhouse, M. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities. Photovolt. Costs U.S. Anal. Prices Trends. 2012. Available online: https://www.nrel.gov/docs/fy12osti/53347.pdf (accessed on 15 March 2022).
- International Renewable Energy Agency IRENA, Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects. 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (accessed on 15 March 2022).
- Dijkman, T.J.; Benders, R.M.J. Comparison of renewable fuels based on their land use using energy densities. Renew. Sustain. Energy Rev. 2010, 14, 3148–3155. [Google Scholar] [CrossRef]
- Pillot, B.; Al-Kurdi, N.; Gervet, C.; Linguet, L. An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale. Appl. Energy 2020, 260, 114257. [Google Scholar] [CrossRef] [Green Version]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [Green Version]
- Moscatelli, M.C.; Marabottini, R.; Massaccesi, L.; Marinari, S. Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Reg. 2022, 29, e00500. [Google Scholar] [CrossRef]
- Charabi, Y.; Gastli, A. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renew. Energy 2011, 36, 2554–2561. [Google Scholar] [CrossRef]
- Kienast, F.; Huber, N.; Hergert, R.; Bolliger, J.; Moran, L.S.L.S.; Hersperger, A.M.A.M. Conflicts between decentralized renewable electricity production and landscape services—A spatially-explicit quantitative assessment for Switzerland. Renew. Sustain. Energy Rev. 2017, 67, 397–407. [Google Scholar] [CrossRef]
- Breyer, C.; Bogdanov, D.; Gulagi, A.; Aghahosseini, A.; Barbosa, L.S.N.S.; Koskinen, O.; Barasa, M.; Caldera, U.; Afanasyeva, S.; Child, M.; et al. On the role of solar photovoltaics in global energy transition scenarios. Prog. Photovolt. Res. Appl. 2017, 25, 727–745. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef] [Green Version]
- van de Ven, D.J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef] [PubMed]
- Elshout, P.; van Zelm, R.; Balkovic, J.; Obersteiner, M.; Schmid, E.; Skalsky, R.; Van Der Velde, M.; Huijbregts, M.A.J. Greenhouse-gas payback times for crop-based biofuels. Nat. Clim. Change 2015, 5, 604–610. [Google Scholar] [CrossRef]
- Kalinichenko, A.; Havrysh, V. Feasibility study of biogas project development: Technology maturity, feedstock, and utilization pathway. Arch. Environ. Prot. 2019, 45, 68–83. [Google Scholar] [CrossRef]
- Hall, C.; Balogh, S.; Murphy, D. What Is the Minimum EROI That a Sustainable Society Must Have? Energies 2009, 2, 25–47. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; Miguel González, L.J. Dynamic Energy Return on Energy Investment (EROI) and Material Requirements in Scenarios of Global Transition to Renewable Energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- Fizaine, F.; Court, V. Energy Expenditure, Economic Growth, and the Minimum EROI of Society. Energy Policy 2016, 95, 172–186. [Google Scholar] [CrossRef]
- Lambert, J.G.; Hall, C.A.S.; Balogh, S.; Gupta, A.; Arnold, M. Energy, EROI and Quality of Life. Energy Policy 2014, 64, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, K.P.; Collier, J.M.; Ellingson, R.J.; Apul, D.S. Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Solar Photovoltaic Systems: A Systematic Review and Meta-Analysis. Renew. Sustain. Energy Rev. 2015, 47, 133–141. [Google Scholar] [CrossRef]
- Prananta, W.; Kubiszewski, I. Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI). Energies 2021, 14, 2803. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. Snapshot of Photovoltaics—February 2020. Energies 2020, 13, 930. [Google Scholar] [CrossRef] [Green Version]
- Hoffacker, M.K.; Allen, M.F.; Hernandez, R.R. Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States. Environ. Sci. Technol. 2017, 51, 14472–14482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cialdea, D.; Maccarone, A. The Energy Networks Landscape. Impacts on Rural Land in the Molise Region. TeMA-J. Land Use Mobil. Environ. 2014, 14, 223–234. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, B. Land utilization performance of ground mounted photovoltaic power plants: A case study. Renew. Energy 2017, 114, 1238–1246. [Google Scholar] [CrossRef]
- Maye, D. The New Food Insecurity. In Routledge Handbook of Landscape and Food; Zeunert, J., Waterman, T., Eds.; Routledge: London, UK, 2014; pp. 380–390. Available online: https://www.routledgehandbooks.com/doi/10.4324/9781315647692-26 (accessed on 15 March 2022).
- Sacchelli, S.; Garegnani, G.; Geri, F.; Grilli, G.; Paletto, A.; Zambelli, P.; Ciolli, M.; Vettorato, D. Trade-off between photovoltaic systems installation and agricultural practices on arable lands: An environmental and socio-economic impact analysis for Italy. Land Use Policy 2016, 56, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Turconi, R.; Boldrin, A.; Astrup, T. Life cycle assessment (LCA) of electricitygeneration technologies: Overview, comparability and limitations. Renew. Sust. Energ. Rev. 2013, 28, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.; Jadhav, N.Y.; Zakirova, B. Socio-economic and environmental impacts of silicon based photovoltaic (PV) technologies. Energy Procedia 2013, 33, 322–334. [Google Scholar] [CrossRef] [Green Version]
- Hastik, R.; Basso, S.; Geitner, C.; Haida, C.; Poljanec, A.; Portaccio, A.; Vrščcaj, B.; Walzer, C. Renewable energies and ecosystem service impacts. Renew. Sust. Energ. Rev. 2015, 48, 608–623. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, V.B. Assessment of the renewable energy-mix and land usetrade-off at a regional level: A case study for the Kujawsko–Pomorskie. Land Use Policy 2013, 35, 257–270. [Google Scholar] [CrossRef]
- Calvert, K.; Mabee, W. More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada. Appl. Geogr. 2015, 56, 209–221. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energ. 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Hammad, M.; Ebaid, M.S.Y. Comparative economic viability and environmental impact of PV, diesel and grid systems for large underground water pumping application (55 wells) in Jordan. Renewables 2015, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Kalinichenko, A.; Havrysh, V.; Perebyynis, V. Sensitivity analysis in investment project of biogas plant. Appl. Ecol. Env. Res. 2017, 15, 969–985. [Google Scholar] [CrossRef]
- Brzozowska, A.; Bubel, D.; Kalinichenko, A.; Nekrasenko, L. Transformation of the agricultural financial system in the age of globalisation. Agric. Econ. 2017, 63, 548–558. [Google Scholar] [CrossRef] [Green Version]
- International Renewable Energy Agency. Session 3: Economic Assessment of PV and Wind for Energy Planning. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Events/2014/Jul/15/15_Economic_assessment_of_PV_and_wind_for_energy_planning_Arusha_Tanzania.pdf?la=en&hash=ED061A535145DD86023F615866220C220B601FFC (accessed on 15 March 2022).
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Oladigbolu, J.O.; Al-Turki, Y.A.; Olatomiwa, L. Comparative study and sensitivity analysis of a standalone hybrid energy system for electrification of rural healthcare facility in Nigeria. Alex. Engineer. J. 2021, 60, 5547–5565. [Google Scholar] [CrossRef]
- Nacer, T.; Hamidat, A.; Nadjemi, O.; Bey, M. Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas. Renew. Energy 2016, 96, 305–318. [Google Scholar] [CrossRef]
- Havrysh, V.; Kalinichenko, A.; Mentel, G.; Mentel, U.; Vasbieva, D.G. Husk Energy Supply Systems for Sunflower Oil Mills. Energies 2020, 13, 361. [Google Scholar] [CrossRef] [Green Version]
- Havrysh, V.; Hruban, V.; Sadovoy, O.; Kalinichenko, A.; Taikhrib, K. Sustainable Energy Supply Based on Sunflower Seed Husk for Oil Mills. In Proceedings of the International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 23–25 September 2019. [Google Scholar] [CrossRef]
- Jakhrani, A.Q.; Othman, A.; Rigit, A.R.H.; Samo, S.R.; Kamboh, S.A. Sensitivity Analysis of a Standalone Photovoltaic System Model Parameters. J. Appl. Sci. 2013, 13, 220–231. [Google Scholar] [CrossRef]
- Iloiu, M.; Csiminga, D. Project Risk Evaluation Methods-Sensitivity Analysis. Ann. Univ. Petrosani Econ. 2009, 9, 33–38. Available online: https://ideas.repec.org/a/pet/annals/v9i2y2009p33-38.html (accessed on 15 March 2022).
- Monthly and Annual Precipitation in Nikolaev. 2021. Available online: http://www.pogodaiklimat.ru/history/33846_2.htm (accessed on 5 December 2021).
- IRENA. Renewable Power Generation Costs in 2020; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021; Available online: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed on 26 December 2021).
- Global Petrol Prices. Ukraine Electricity Prices. Available online: https://www.globalpetrolprices.com/Ukraine/electricity_prices/ (accessed on 26 December 2021).
- Liga.Biznes. Ukraine Again Faced a Shortage of Coal at Power Plants. Available online: https://biz.liga.net/ekonomika/tek/cards/ukraina-vnov-stolknulas-s-nehvatkoy-uglya-na-elektrostantsiyah-nastupit-blekaut-razbor (accessed on 26 December 2021).
- The Cost of Electricity Produced by Ukrainian Thermal Power Plants Grew by 16% over the Month to a New Record. Available online: https://hromadske.ua/ru/amp/posts/stoymost-elektroenerhyy-proyzvedennoi-ukraynskymy-tes-za-mesiats-vyrosla-na-16-do-novoho-rekorda-nashy-denhy (accessed on 26 December 2021).
- Feed-in Tariff: New Rats. Available online: https://home.kpmg/ua/en/home/insights/2020/08/fit.html (accessed on 26 December 2021).
- International Energy Agency; Nuclear Energy Agency. Fuel Report—December 2020. In Projected Costs of Generating Electricity; 2020 edition; Available online: https://www.oecd-nea.org/upload/docs/application/pdf/2020-12/egc-2020_2020-12-09_18-26-46_781.pdf (accessed on 26 December 2021).
- Average Monthly Electricity Wholesale Prices in Selected Countries in the European Union (EU) from January 2020 to January 2022. Available online: https://www.statista.com/statistics/1267500/eu-monthly-wholesale-electricity-price-country/ (accessed on 15 March 2022).
- Purchase Prices on the Day-Ahead Market for Group b Consumers in 2021. Available online: https://tek.energy/electricity/prices (accessed on 20 December 2021).
- Electricity Prices for Non-Household Consumers. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics#Electricity_prices_for_non-household_consumers (accessed on 20 December 2021).
- BP Statistical Review of World Energy. 2021. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 26 December 2021).
- IRENA. Energy Profile of Ukraine. 2021. Available online: https://www.irena.org/IRENADocuments/Statistical_Profiles/Europe/Ukraine_Europe_RE_SP.pdf (accessed on 26 December 2021).
- State Statistics Service of Ukraine. Plant Growing in Ukraine 2020. Kyiv; 2021. Available online: http://www.ukrstat.gov.ua/druk/publicat/kat_u/2021/zb/05/zb_rosl_2020.pdf (accessed on 15 December 2021).
- Agriculture of Ukraine. Statistical Yearbook 2020. Kyiv; 2021. Available online: http://www.ukrstat.gov.ua/druk/publicat/kat_u/2019/zb/09/Zb_sg_2020.pdf (accessed on 15 December 2021).
- Crop Production of Ukraine 2019. Statistical Yearbook. Kyiv; 2020. Available online: http://www.ukrstat.gov.ua/druk/publicat/kat_u/2020/zb/04/zb_rosl_2019.pdf (accessed on 15 December 2021).
- Agrotender. Available online: https://agrotender.com.ua/traders/region_ukraine/yachmen (accessed on 15 December 2021).
- Equator of the Grain Season-2019/20 in Ukraine: Success & Challenges. Available online: https://www.apk-inform.com/ru/exclusive/topic/1507460 (accessed on 29 December 2021).
- Ukraine: Average Demand Prices for Grains and Oilseeds (13.06–20.06.2019). Available online: https://www.apk-inform.com/ru/news/price/1500863 (accessed on 29 December 2021).
- United States Department of Agriculture, Foreign Agricultural Service. Grain and Feed Annual. Ukraine. UP2021-0017; 2021. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Grain%20and%20Feed%20Annual_Kyiv_Ukraine_04-15-2021 (accessed on 15 March 2022).
- United States Department of Agriculture, Foreign Agricultural Service. Oilseeds and Products Annual. Ukraine. UP2021-0016; 2021. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Oilseeds%20and%20Products%20Annual_Kyiv_Ukraine_04-15-2021 (accessed on 15 March 2022).
- Costs of Agricultural Production in Enterprises in 2020. Available online: http://www.ukrstat.gov.ua/operativ/operativ2018/sg/vytr_na%20ver_sg_prod/arch_vytr_na%20ver_sg_prod_u.htm (accessed on 29 December 2021).
- Rodríguez-Martinez, Á.; Rodríguez-Monroy, C. Economic Analysis and Modelling of Rooftop Photovoltaic Systems in Spain for Industrial Self-Consumption. Energies 2021, 14, 7307. [Google Scholar] [CrossRef]
- Rodríguez-Ossorio, R.-J.; González-Martínez, A.; de Simón-Martín, M.; Diez-Suárez, A.-M.; Colmenar-Santos, A.; Rosales-Asensio, E. Levelized cost of electricity for the deployment of solar photovoltaic plants: The region of León (Spain) as case study. Energy Rep. 2021, 7, 199–203. [Google Scholar] [CrossRef]
- SolarPower Europe. EU Market Outlook for Solar Power 2020–2024. Report 2020. Available online: https://www.solarpowereurope.org/european-market-outlook-for-solar-power-2020-2024/ (accessed on 20 December 2021).
- Zachmann, G. Reaching Ukraine’s Energy and Climate Targets; Berlin Economics: Berlin, Germany; Available online: https://www.lowcarbonukraine.com/wp-content/uploads/LCU_Reaching-Ukraines-energy-and-climate-targets.pdf (accessed on 29 December 2021).
- Shlapak, M. Carbon Emission Factor for Ukrainian Electricity Grid. 2017. Available online: https://www.linkedin.com/pulse/carbon-emission-factor-ukrainian-electricity-grid-mykola-shlapak/?articleId=6324279390976962560 (accessed on 29 December 2021).
- Warner, E.S.; Heath, G.A. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation. J. Ind. Ecol. 2012, 16 (Suppl. 1), 73–92. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems. Sustainability 2016, 8, 539. [Google Scholar] [CrossRef] [Green Version]
- World Nuclear Association Report. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. July 2011. Available online: http://www.world-nuclear.org/uploadedFiles/org/WNA/Publications/Working_Group_Reports/comparison_of_lifecycle.pdf (accessed on 29 December 2021).
- Ukrenergo. In 2020, the Installed Capacity of WPPs and SPPs Increased by 41% and Their Share in the Generation Mix Doubled. Available online: https://ua.energy/general-news/in-2020-the-installed-capacity-of-wpps-and-spps-increased-by-41-and-their-share-in-the-generation-mix-doubled/ (accessed on 29 December 2021).
- Moro, A.; Lonza, L. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transp. Res. Part D 2018, 64, 5–14. [Google Scholar] [CrossRef]
- Hou, G.; Sun, H.; Jiang, Z.; Pan, Z.; Wang, Y.; Zhang, X.; Zhao, Y.; Yao, Q. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China. Appl. Energy 2016, 164, 882–890. [Google Scholar] [CrossRef]
- Holka, M.; Bieńkowski, J. Carbon Footprint and Life-Cycle Costs of Maize Production in Conventional and Non-Inversion Tillage Systems. Agronomy 2020, 10, 1877. [Google Scholar] [CrossRef]
- O’Neill, M.; Lanigan, G.J.; Forristal, P.D.; Osborne, B.A. Greenhouse Gas Emissions and Crop Yields From Winter Oilseed Rape Cropping Systems are Unaffected by Management Practices. Front. Environ. Sci. 2021, 9, 716636. [Google Scholar] [CrossRef]
- Debaeke, P.; Casadebaig, P.; Flenet, F.; Langlade, N. Sunflower crop and climate change: Vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL 2017, 24, D102. [Google Scholar] [CrossRef] [Green Version]
- Rajaniemi, M.; Mikkola, H.J.; Ahokas, J. Greenhouse Gas Emissions from Oats, Barley, Wheat and Rye Production. Agron. Res. 2011, 9, 189–194. Available online: https://agronomy.emu.ee/vol09Spec1/p09s123.pdf (accessed on 20 December 2021).
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Liang, C.; May, W.E.; Malhi, S.S.; Niu, J.; Wang, X. Carbon footprint of spring barley in relation to preceding oilseeds and N fertilization. Int. J. Life Cycle Assess. 2012, 17, 635–645. [Google Scholar] [CrossRef]
- Farja, Y.; Maciejczak, M. Economic Implications of Agricultural Land Conversion to Solar Power Production. Energies 2021, 14, 6063. [Google Scholar] [CrossRef]
Indicator | Unit | World | Ukraine |
---|---|---|---|
Total | Exajoules | 556.63 | 3.31 |
Hydroelectricity | Exajoules | 38.16 | 0.06 |
Renewables | Exajoules | 31.71 | 0.09 |
Total hydroelectricity and renewables | Exajoules | 69.87 | 0.15 |
Share of hydroelectricity and renewables | % | 12.55 | 4.53 |
Indicator | Unit | World | Ukraine |
---|---|---|---|
Total | TWh | 26,823.2 | 149.0 |
Hydroelectricity | TWh | 4296.8 | 6.3 |
Renewables | TWh | 3147.0 | 9.7 |
Total hydroelectricity and renewables | TWh | 7443.8 | 16.0 |
Share of hydroelectricity and renewables | % | 27.8 | 10.7 |
Crop | Minimum | Maximum | Average |
---|---|---|---|
Wheat | 0.248 | 0.306 | 0.290 |
Barley | 0.194 | 0.327 | 0.237 |
Corn | 0.040 | 0.103 | 0.082 |
Sunflower | 0.303 | 0.412 | 0.356 |
Rapeseed | 0.007 | 0.060 | 0.035 |
Crop | Minimum | Maximum | Average |
---|---|---|---|
Wheat | 1.640 | 4.199 | 3.081 |
Barley | 1.290 | 3.766 | 2.556 |
Corn | 2.490 | 5.170 | 3.912 |
Sunflower | 1.350 | 2.170 | 1.803 |
Rapeseed | 1.310 | 2.576 | 1.936 |
Parameter | Unit | Value |
---|---|---|
Investment costs | Thousand EUR | 432.85 |
Lifetime | Year | 25 |
Gross income | Thousand EUR | 82.37 |
Annual electricity generation | MWh | 794.87 |
Feed-in tariff | EUR/MWh | 107.00 |
Operational expenses | Thousand EUR | 18.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havrysh, V.; Kalinichenko, A.; Szafranek, E.; Hruban, V. Agricultural Land: Crop Production or Photovoltaic Power Plants. Sustainability 2022, 14, 5099. https://doi.org/10.3390/su14095099
Havrysh V, Kalinichenko A, Szafranek E, Hruban V. Agricultural Land: Crop Production or Photovoltaic Power Plants. Sustainability. 2022; 14(9):5099. https://doi.org/10.3390/su14095099
Chicago/Turabian StyleHavrysh, Valerii, Antonina Kalinichenko, Edyta Szafranek, and Vasyl Hruban. 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants" Sustainability 14, no. 9: 5099. https://doi.org/10.3390/su14095099
APA StyleHavrysh, V., Kalinichenko, A., Szafranek, E., & Hruban, V. (2022). Agricultural Land: Crop Production or Photovoltaic Power Plants. Sustainability, 14(9), 5099. https://doi.org/10.3390/su14095099