Influence of Liming Intensity on Fractions of Humified Organic Carbon in Acid Soil: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Soil Sampling and Methods of Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Alteration of Soil Chemical Properties under Different Liming Intensities
3.2. The Content of Organic Carbon in the Soil
3.3. Changes in the Humus Fractional Composition under Different Intensities of Liming
3.4. Qualitative Characteristics of SOC under the Different Intensities of Liming
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Santoiemma, G. Recent methodologies for studying the soil organic matter. Appl. Soil Ecol. 2018, 123, 546–550. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon. Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Tao, F.; Palosuo, T.; Valkama, E.; Makipaa, R. Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil Till. Res. 2019, 186, 70–78. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Adhikari, K.; Wang, Q.; Sui, Y.; Xin, G. Effect of cultivation history on soil organic carbon status of arable land in northeastern China. Geoderma 2019, 342, 55–64. [Google Scholar] [CrossRef]
- Averill, C.; Turner, B.L.; Finzi, A.C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 2014, 505, 543–545. [Google Scholar] [CrossRef]
- Wingate, V.R.; Phinn, S.R.; Kuhn, N. Mapping precipitation corrected NDVI trends across Namibia. Sci. Total Environ. 2019, 684, 96–112. [Google Scholar] [CrossRef]
- Gibson, A.J.; Hancock, G.R.; Verdon-Kidd, D.C.; Martinez, C.; Wells, T. The impact of shifting Köppen-Geiger climate zones on soil organic carbon concentrations in Australian grasslands. Glob. Planet. Chang. 2021, 202, 103523. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Han, Y.; Zhou, J.; Liu, J.; Wu, J. Mapping farmland soil organic carbon density in plains with combined cropping system extracted from NDVI time-series data. Sci. Total Environ. 2021, 754, 142120. [Google Scholar] [CrossRef]
- Kunkel, M.L.; Flores, A.N.; Smith, T.J.; McNamara, J.P.; Benner, S.G. A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma 2011, 165, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Nobili, M.; Bravo, C.; Chen, Y. The spontaneous secondary synthesis of soil organic matter components: A critical examination of the soil continuum model theory. Appl. Soil Ecol. 2020, 154, 103655. [Google Scholar] [CrossRef]
- Zhou, H.; He, H.; Xiao, M.; He, Z. Composition of humus in forest soils of Yunnan Province, China and Its influencing factors. Acta Pedol. Sin. 2021, 58, 1008–1017. [Google Scholar]
- Zanin, L.; Tomasi, N.; Cesco, S.; Varanini, Z.; Pinton, R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front. Plant Sci. 2019, 10, 675. [Google Scholar] [CrossRef] [Green Version]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerda, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef]
- Mandal, N.; Dwivedi, B.S.; Meena, M.C.; Singh, D.; Datta, S.P.; Tomar, R.K.; Sharma, B.M. Effect of induced defoliation in pigeonpea, farmyard manure and sulphitation pressmud on soil organic carbon fractions, mineral nitrogen and crop yields in a pigeonpea–wheat cropping system. Field Crop. Res. 2013, 154, 178–187. [Google Scholar] [CrossRef]
- Chaudhary, S.; Dheri, G.S.; Brar, B.S. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil Till. Res. 2017, 166, 59–66. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Shi, J.L.; Tian, X.H.; Li, X.S.; Li, Y.B.; Zhao, H.L. Impact of straw return on soil carbon indices, enzyme activity, and grain production. Soil Sci. Soc. Am. J. 2018, 81, 1475–1485. [Google Scholar] [CrossRef]
- Ovchinnikova, M.F. Changes in the content, composition, and properties of humic substances in particle-size fractions of soddy-podzolic soils under the impact of long-term drainage. Eurasian J. Soil Sci. 2018, 51, 647–657. [Google Scholar] [CrossRef]
- Rocha, J.H.T.; du Toit, B.; Gonçalves, J.L. Ca and Mg nutrition and its application in Eucalyptus and Pinus plantations. For. Ecol. Manag. 2019, 442, 63–78. [Google Scholar] [CrossRef]
- Castro, G.S.A.; Crusciol, C.A.C.; Calonego, J.C.; Rosolem, C.A. Management impacts on soil organic matter of tropical soils. Vadose Zone J. 2015, 14, vzj2014.07.0093. [Google Scholar] [CrossRef]
- Garbuio, F.J.; Jones, D.L.; Alleoni, L.R.F.; Murphy, D.V.; Caires, E.F. Carbon and nitrogen dynamics in an oxisol as affected by liming and crop residues under no-till. Soil Sci. Soc. Am. J. 2011, 75, 1723–1730. [Google Scholar] [CrossRef]
- Orlov, D.S.; Biryukova, O.N.; Rozanova, M.S. Revised system of the humus status parameters of soils and their genetic horizons. Eurasian J. Soil Sci. 2004, 8, 798–805. [Google Scholar]
- Crusciol, C.A.C.; Marques, R.R.; Filho, C.A.C.A.; Soratto, R.P.; Costa, C.H.M.; Neto, F.J.; Castro, G.S.A.; Pariz, C.M.; Castilhos, A.M.; Franzluebbers, A.J. Lime and gypsum combination improves crop and forage yields and estimated meat production and revenue in a variable charge tropical soil. Nutr. Cycl. Agroecosyst. 2019, 115, 347–372. [Google Scholar] [CrossRef] [Green Version]
- Bossolani, J.W.; Crusciol, C.A.C.; Merloti, L.F.; Moretti, L.G.; Costa, N.R.; Tsai, S.M.; Kuramae, E.E. Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma 2020, 375, 114476. [Google Scholar] [CrossRef]
- Getachew, A.; Temesgen, D.; Tolessa, D.; Adela, A.; Geremew, T.C.Y. Effect of lime and phosphorus fertilizer on acid soil properties and barley grain yield at Bedi in Western Ethiopia. Afr. J. Agric. Res. 2017, 12, 3005–3012. [Google Scholar] [CrossRef] [Green Version]
- Adane, B. Effects of liming acidic soils on improving soil properties and yield of haricot bean. J. Environ. Anal. Toxicol. 2014, 5, 1–4. [Google Scholar]
- Jafer, D.; Gebresilassie, H. Application of lime for acid soil amelioration and better Soybean performance in SouthWestern Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 95–100. [Google Scholar]
- Haynes, R.J. Effects of liming on phosphate availability in acid soils. Plant Soil 1982, 3, 289–308. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M. Aminochelates in plant nutrition: A review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Mesfin, K.; Yebo, B.; Habte, A. Liming effect on yield and yield component of haricot bean (Phaseolus vuglaris L.) varieties grown in acidic soil at Wolaita zone, Ethiopia. Int. J. Soil Sci. 2014, 9, 67–74. [Google Scholar]
- Kebede, D.; Dereje, T. Effects of liming on physicochemical properties and nutrient availability of acidic soils in Welmera Woreda, central highlands of Ethiopia. Biochem. Mol. Biol. 2017, 6, 102–109. [Google Scholar]
- Mijangos, I.; Albizu, I.; Epelde, L.; Amezaga, I.; Mendarte, S.; Garbisu, C. Effects of liming on soil properties and plant performance of temperate mountainous grasslands. J. Environ. Manag. 2010, 91, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610, 316–332. [Google Scholar] [CrossRef]
- Fornara, D.A.; Steinbeiss, S.; Mcnamara, N.P.; Gleixner, G.; Oakley, S.; Poulton, P.R.; Macdonald, A.J.; Bardgett, R.D. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Glob. Chang. Biol. 2011, 17, 1925–1934. [Google Scholar] [CrossRef]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. J. Environ. Manag. 2018, 223, 74–84. [Google Scholar] [CrossRef]
- Xu, D.; Carswell, A.; Zhu, Q.; Zhang, F.; de Vries, W. Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station. Sci. Total Environ. 2020, 713, 136249. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, M.; Chen, X.; He, X.; Zhao, K. Stratification of soil organic C, N and C:N ratio as affected by conservation tillage in two maize fields of China. Catena 2012, 95, 124–130. [Google Scholar] [CrossRef]
- Dumale, W.A.; Miyazaki, T.; Hirai, K.; Nishimura, T. SOC turnover and lime-CO2 evolution during liming of an acid Andisol and Ultisol. Open J. Soil Sci. 2011, 1, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Litvinovich, A.; Pavlova, O.; Lavrishchev, A.; Bure, V.; Saljnikov, E. Empirical models of transformations of humic acids and humin in Umbric Albeluvisol Abruptic as influenced by liming. Zemdirb. Agric. 2017, 104, 115–122. [Google Scholar] [CrossRef]
- Jokubauskaite, I.; Karčauskienė, D.; Slepetiene, A.; Repsiene, R.; Amaleviciute, K. Effect of different fertilization modes on soil organic carbon sequestration in acid soils. Acta Agric. Scand. B Soil. Plant Sci. 2016, 66, 647–652. [Google Scholar] [CrossRef]
- Tadini, A.M.; Nicolodelli, G.; Senesi, G.S.; Ishida, D.A.; Montes, C.R.; Lucas, Y.; Mounier, S.; Guimaraes, F.G.E.; Milori, D.M.B.P. Soil organic matter in podzol horizons of the Amazon region: Humification, recalcitrance, and dating. Sci. Total Environ. 2018, 613–614, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapa, V.V.; Seraya, T.M.; Bogatyreva, E.N.; Biryukova, O.M. The effect of long-term fertilizer application on the group and fractional composition of humus in a soddy-podzolic light loamy soil. Eurasian J. Soil Sci. 2011, 44, 100–104. [Google Scholar] [CrossRef]
- Burdukovskii, M.; Kiseleva, I.; Perepelkina, P.; Kosheleva, Y. Impact of different fallow durations on soil aggregate structure and humus status parameters. Soil Water Res. 2020, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barreto, M.; Ramlogan, M.; Rouff, A.; Elzinga, E.; Alleoni, L.R.F. Calcium improves humic acid adsorption by soil minerals. In Proceedings of the 19th International Conference of Humic Substances and their Contribution to the Climate Change Mitigation, Albena Resort, Bulgaria, 16–21 September 2018; pp. 253–254. [Google Scholar]
- Tobiašová, E. The effect of organic matter on the structure of soils of different land use. Soil Till Res. 2011, 114, 183–192. [Google Scholar] [CrossRef]
- Tobiašová, E.; Dębska, T.; Porhajašová, J. Influence of the fractional composition of humus substances on the proportion of water-resistant aggregates. J. Cent. Eur. Agric. 2015, 16, 131–139. [Google Scholar]
- Pinskiy, D.; Maltseva, A.; Zolotareva, B. Role of mineral matrix composition and properties in the transformation of corn residues. Eurasian J. Soil Sci. 2014, 3, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Orlov, D.S. Gumusovye Kisloty pocv i Obscaja Teorijahumifikacii; Mosk. Gos. Univ. Moskva, Nauka Publ.: Moscow, Russia, 1990; p. 325. [Google Scholar]
- Tripolskaja, L.; Marcinkonis, S. Kalkintų dirvožemių rūgštumo ir cheminių savybių pokyčių dėsningumai Rytų Lietuvos sąlygomis. Žemės Ūkio Moksl. 2005, 4, 18–26. [Google Scholar]
- Radmanović, S.B.; Đorđević, A.R.; Nikolić, N.S. Humification degree of Rendzina soil humic acids influenced by carbonate leaching and land use. J. Agric. Sci. 2015, 60, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, V.G.; Alexandrova, A.V.; Shuray, K.N.; Avdeev, A.S.; Rashid, I.D. Structural and functional characteristics of humic acid soils of Krasnodar Region. J. KubGAU 2015, 109, 1–10. (In Russian) [Google Scholar]
- Trubetskaya, O.A.; Trubetskoj, O.A.; Voyard, G.; Richard, C. Determination of hydrophobicity and optical properties of soil humic acids isolated by different methods. J. Geochem. Explor. 2013, 132, 84–89. [Google Scholar] [CrossRef]
- Wei, Z.; Zhaoa, X.; Zhub, C.; Xib, B.; Zhaoa, Y.; Yua, X. Assessment of humification degree of dissolved organic matter from different composts using fluorescence spectroscopy technology. Chemosphere 2013, 95, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Tinoco, P.; Almendros, G.; González-Vila, F.J.; Sanz, J.; González-Pérez, J.A. Impact of natural and anthropogenic pyrogenic carbon in soils and sediments. Revisiting molecular characteristics responsive for the aromaticity of soil humic acids. J. Soil Sediments 2014, 15, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Hobley, E.; Baldock, J.; Hua, Q.; Wilson, B. Land use contrasts reveal instability of subsoilorganic carbon. Glob. Chang. Biol. 2017, 23, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Romanovskaja, D.; Tripolskaja, L.; Šlepetienė, A. The effect of green manure of different chemical composition on humus formation in a Halpic Luvisol. Žem Ūkio moksl. 2013, 20, 26–33. [Google Scholar]
Liming Intensity | Total Amount of CaCO3 Applied, t ha–1 | Total Amount of CaCO3 Applied, t ha–1, 1949–2005 | pHKCl | ||
---|---|---|---|---|---|
Primary Liming, 1949 | Repeated Liming, 1965 | Periodic Liming, 1985–2005 | |||
Unlimed | 0 | 0 | 0 | – | 4.2 |
Liming using ×0.5 of the liming rate every 7 years | 3.3 | 3.4 | 11.4 | 18.1 | 5.6 |
Liming using ×2.0 of the liming rate every 3–4 years | 13.2 | 1.7 | 90.0 | 104.9 | 6.7 |
Treatments | Unlimed | Limed at 0.5 Rate | Limed at 2.0 Rate |
---|---|---|---|
pHKCl | 3.95 ± 0.072 a | 5.15 ± 0.956 b | 6.74 ± 0.457 c |
Al3+, mg kg−1 | 99.86 ± 3.581 b | 23.75 ± 2.699 a | 0.18 ± 0.023 c |
K2O, mg kg−1 | 108.2 ± 2.63 a | 89.52 ± 9.64 bc | 82.05 ± 7.38 b |
P2O5, mg kg−1 | 160.1 ± 17.97 a | 138.5 ± 15.31 ab | 117.9 ± 16.69 b |
Exchangable Ca, % | 0.001 ± 0.0006 b | 0.002 ± 0.0011 ab | 0.006 ± 0.0003 a |
Exchangable Mg, % | 0.200 ± 0.0261a | 0.281 ± 0.0396b | 0.295 ± 0.0111 b |
Ntotal, % | 0.110 ± 0.0126a | 0.115 ± 0.0214a | 0.116 ± 0.0169a |
Corg | CHA1 | CHA2 | CHA3 | |
---|---|---|---|---|
Corg | - | 0.411 | 0.317 | 0.596 |
CFA1 | 0.178 | 0.805 | 0.564 | 0.644 |
CFA1a | 0.295 | 0.461 | 0.654 | 0.561 |
CFA2 | 0.428 | 0.467 | 0.151 | 0.602 |
CFA3 | 0.262 | 0.448 | 0.244 | 0.752 |
Treatments | Unlimed | Limed at 0.5 Rate | Limed at 2.0 Rate |
---|---|---|---|
HA/FA | 0.95 | 1.19 | 1.26 |
HD, % | 29.9 | 32.7 | 38.0 |
Aggressiviness | 11.74 | 9.107 | 7.857 |
Mobility | 2.93 | 2.119 | 1.509 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mockeviciene, I.; Karcauskiene, D.; Slepetiene, A.; Vilkiene, M.; Repsiene, R.; Braziene, Z.; Anne, O. Influence of Liming Intensity on Fractions of Humified Organic Carbon in Acid Soil: A Case Study. Sustainability 2022, 14, 5297. https://doi.org/10.3390/su14095297
Mockeviciene I, Karcauskiene D, Slepetiene A, Vilkiene M, Repsiene R, Braziene Z, Anne O. Influence of Liming Intensity on Fractions of Humified Organic Carbon in Acid Soil: A Case Study. Sustainability. 2022; 14(9):5297. https://doi.org/10.3390/su14095297
Chicago/Turabian StyleMockeviciene, Ieva, Danute Karcauskiene, Alvyra Slepetiene, Monika Vilkiene, Regina Repsiene, Zita Braziene, and Olga Anne. 2022. "Influence of Liming Intensity on Fractions of Humified Organic Carbon in Acid Soil: A Case Study" Sustainability 14, no. 9: 5297. https://doi.org/10.3390/su14095297
APA StyleMockeviciene, I., Karcauskiene, D., Slepetiene, A., Vilkiene, M., Repsiene, R., Braziene, Z., & Anne, O. (2022). Influence of Liming Intensity on Fractions of Humified Organic Carbon in Acid Soil: A Case Study. Sustainability, 14(9), 5297. https://doi.org/10.3390/su14095297