Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System
Abstract
:1. Introduction
2. Background Study
2.1. Description of IES
2.2. GSA
3. Proposed Methods
3.1. Objective Function
3.2. Constraints
3.3. Optimization Algorithm
4. Result and Discussion
4.1. Simulation Parameters
4.2. Results
4.3. Discussion
5. Conclusions
- The CES system has a green growth system operation, flexibility, scheduling ability, and excellent operation of multi-type energy supply. Through the IES of multi-type energy supply, the economic benefits of wind are reduced. Thus, participating in the scheduling of energy consumption and other power equipment is needed to optimize the operation of the supply system.
- The low-carbon environmental protection operation adds a CES ESS to IES, which improves its primary energy saving rate and carbon emission reduction.
- In terms of sensitivity to energy prices, IES containing CES has stable price fluctuations, and its operational efficiency is higher than that of traditional IES.
- The hGSA-LS algorithm requires 5.87 s for solving the problem; however, the GA, PSO, and GSA require 12.56, 10.33, and 7.95 s, respectively. Thus, the hGSA-LS algorithm shows better time performance than other methods, such as GA, PSO, and GSA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slowik, A.; Cpalka, K. Hybrid Approaches to Nature-inspired Population-based Intelligent Optimization for Industrial Applications. IEEE Trans. Ind. Inform. 2022, 18, 546–558. [Google Scholar] [CrossRef]
- Hassan, M.H.; Houssein, E.H.; Mahdy, M.A.; Kamel, S. An improved Manta ray foraging optimizer for cost-effective emission dispatch problems. Eng. Appl. Artif. Intell. 2021, 100, 104155. [Google Scholar] [CrossRef]
- Tahmasebi, M.; Pasupuleti, J.; Mohamadian, F.; Shakeri, M.; Guerrero, J.; Khan, M.B.; Nazir, M.; Safari, A.; Bazmohammadi, N. Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm. Sustainability 2021, 13, 7710. [Google Scholar] [CrossRef]
- Tan, H.; Ren, Z.; Yan, W.; Wang, Q.; Mohamed, M.A. A Wind Power Accommodation Capability Assessment Method for Multi-Energy Microgrids. IEEE Trans. Sustain. Energy 2021, 12, 2482–2492. [Google Scholar] [CrossRef]
- Nadeem, F.; Hussain, S.M.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access 2018, 7, 4555–4585. [Google Scholar] [CrossRef]
- Liserre, M.; Sauter, T.; Hung, J.Y. Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. IEEE Ind. Electron. Mag. 2010, 4, 18–37. [Google Scholar] [CrossRef]
- Borri, E.; Tafone, A.; Romagnoli, A.; Comodi, G. A review on liquid air energy storage: History, state of the art and recent developments. Renew. Sustain. Energy Rev. 2021, 137, 110572. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Almalaq, A.; Abdullah, H.M.; Alnowibet, K.A.; Alrasheedi, A.F.; Zaindin, M.S.A. A Distributed Stochastic Energy Management Framework Based-Fuzzy-PDMM for Smart Grids Considering Wind Park and Energy Storage Systems. IEEE Access 2021, 9, 46674–46685. [Google Scholar] [CrossRef]
- Khadanga, R.K.; Kumar, A. Analysis of PID controller for the load frequency control of static synchronous series compensator and capacitive energy storage source-based multi-area multi-source interconnected power system with HVDC link. Int. J. Bio-Inspired Comput. 2019, 13, 131–139. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Nazir, M.S.; Tao, H.; Cao, S.; Ji, R.; Jiang, M.; Yao, L. Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview. J. Energy Storage 2021, 40, 102811. [Google Scholar] [CrossRef]
- Jalili, M.; Sedighizadeh, M.; Fini, A.S. Stochastic optimal operation of a microgrid based on energy hub including a solar-powered compressed air energy storage system and an ice storage conditioner. J. Energy Storage 2021, 33, 102089. [Google Scholar] [CrossRef]
- Hemmati, M.; Mirzaei, M.A.; Abapour, M.; Zare, K.; Mohammadi-Ivatloo, B.; Mehrjerdi, H.; Marzband, M. Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program. Sustain. Cities Soc. 2021, 69, 102790. [Google Scholar] [CrossRef]
- Mago, P.; Chamra, L. Analysis and optimization of CCHP systems based on energy, economical, and environmental considerations. Energy Build. 2009, 41, 1099–1106. [Google Scholar] [CrossRef]
- Tooryan, F.; HassanzadehFard, H.; Dargahi, V.; Jin, S. A cost-effective approach for optimal energy management of a hybrid CCHP microgrid with different hydrogen production considering load growth analysis. Int. J. Hydrogen Energy 2022, 47, 6569–6585. [Google Scholar] [CrossRef]
- Holagh, S.G.; Haghghi, M.A.; Chitsaz, A. Which methane-fueled fuel cell is of superior performance in CCHP applications; solid oxide or molten carbonate? Fuel 2022, 312, 122936. [Google Scholar] [CrossRef]
- Rostamzadeh, H.; Ebadollahi, M.; Ghaebi, H.; Shokri, A. Comparative study of two novel micro-CCHP systems based on organic Rankine cycle and Kalina cycle. Energy Convers. Manag. 2019, 183, 210–229. [Google Scholar] [CrossRef]
- Nazir, M.S.; Din, S.U.; Shah, W.A.; Ali, M.; Kharal, A.Y.; Abdalla, A.N.; Sanjeevikumar, P. Optimal Economic Modelling of Hybrid Combined Cooling, Heating, and Energy Storage System Based on Gravitational Search Algorithm-Random Forest Regression. Complexity 2021, 2021, 5539284. [Google Scholar] [CrossRef]
- Rey, G.; Ulloa, C.; Cacabelos, A.; Barragáns, B. Performance analysis, model development and validation with experimental data of an ICE-based micro-CCHP system. Appl. Therm. Eng. 2015, 76, 233–244. [Google Scholar] [CrossRef]
- Jannelli, E.; Minutillo, M.; Cozzolino, R.; Falcucci, G. Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models. Energy 2014, 65, 240–249. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Rashedi, E.; Rashedi, E.; Nezamabadi-Pour, H. A comprehensive survey on gravitational search algorithm. Swarm Evol. Comput. 2018, 41, 141–158. [Google Scholar] [CrossRef]
- Khadanga, R.K.; Satapathy, J. A new hybrid GA–GSA algorithm for tuning damping controller parameters for a unified power flow controller. Int. J. Electr. Power Energy Syst. 2015, 73, 1060–1069. [Google Scholar] [CrossRef]
- Garg, H. A Hybrid GA-GSA Algorithm for Optimizing the Performance of an Industrial System by Utilizing Uncertain Data. In Handbook of Research on Artificial Intelligence Techniques and Algorithms; IGI Global: Hershey, PA, USA, 2015; pp. 620–654. [Google Scholar] [CrossRef] [Green Version]
- Rostami, A.S.; Bernety, H.; Hosseinabadi, A. A novel and optimized algorithm to select monitoring sensors by GSA. In Proceedings of the 2nd International Conference on Control, Instrumentation and Automation, Shiraz, Iran, 27–29 December 2011. [Google Scholar]
- Ji, J.; Gao, S.; Wang, S.; Tang, Y.; Yu, H.; Todo, Y. Self-Adaptive Gravitational Search Algorithm with a Modified Chaotic Local Search. IEEE Access 2017, 5, 17881–17895. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Air compressor series | 4 | Air compressor inlet temperature/K | 314 |
Pressure than | 4 | Electric-press conversion efficiency | 0.92 |
Expansion ratio | 3.75 | Compression power range/kW | 80~450 |
Turbo expander series | 4 | Turbine expander efficiency | 0.86 |
Ambient temperature/K | 288 | Expansion power range/kW | 80~450 |
ηGT,elc | 0.42 | Turgor-electric conversion efficiency | 0.9 |
ηGT,h | 0.53 | Expander inlet temperature/K | 389 |
ηcha, ηdis | 0.94 | Air compressor efficiency | 0.87 |
PGT,max/kW | 2200 | Cold storage tank capacity/(kW·h) | 2000 |
Sess,t/kW | 450 | Capacity of heat storage tank/(kW·h) | 4000 |
ηRG,h | 0.92 | Liquid-air storage tank volume/m3 | 1800 |
βEC | 3.53 | βAC | 1.21 |
ηces,ele/(g·(kW·h)−1) | 1.07 | LEC,t/kW | 500 |
ηces,gas/(g·(kW·h)−1) | 967.77 | LAC,t/kW | 1000 |
ηpetc,ele | 3.62 | ηpetc,gas | 221.84 |
Purchasing Type | Time | Cost ($) |
---|---|---|
Natural gas | 00:00–24:00 | 2.2 |
Electric energy | Peak time 08:00–12:00 16:00–20:00 | 1.29 |
Electric energy | Usual time: 12:00–16:00 21:00–23:00 | 0.84 |
Electric energy | Set time 23:00–08:00 | 0.42 |
Case | Seasonal | Power Purchase Cost/$ | Gas Purchase Cost/$ | Wind Abandoning Cost/$ | Total Operating Cost/$ | Carbon Emission/t | Primary Energy/% |
---|---|---|---|---|---|---|---|
1 | summer | 29,311.97 | 15,896.64 | 0 | 45,208.61 | 33.40 | 44.03 |
winter | 27,885.71 | 15,102.11 | 0 | 42,987.82 | 33.63 | 46.18 | |
2 | summer | 31,476.91 | 16,640.19 | 0 | 48,117.10 | 33.68 | 42.96 |
winter | 30,820.05 | 15,570.61 | 0 | 46,390.66 | 34.95 | 42.86 | |
3 | summer | 33,419.64 | 16,640.19 | 7506.25 | 57,566.08 | 36.48 | 38.88 |
winter | 32,754.80 | 15,578.46 | 8582.09 | 56,915.35 | 36.51 | 40.35 |
Algorithms | Cost ($) | Time (s) | ||
---|---|---|---|---|
Case 1 | Case 2 | Case 3 | ||
hGSA-LS | 353.2189 | 286.7083 | 258.768 | 115.361 |
PSO | 358.0602 | 291.7038 | 261.614 | 118.478 |
GA | 359.6832 | 294.6581 | 263.237 | 120.364 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, M.S.; Abdalla, A.N.; M. Metwally, A.S.; Imran, M.; Bocchetta, P.; Javed, M.S. Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System. Sustainability 2022, 14, 5301. https://doi.org/10.3390/su14095301
Nazir MS, Abdalla AN, M. Metwally AS, Imran M, Bocchetta P, Javed MS. Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System. Sustainability. 2022; 14(9):5301. https://doi.org/10.3390/su14095301
Chicago/Turabian StyleNazir, Muhammad Shahzad, Ahmed N. Abdalla, Ahmed Sayed M. Metwally, Muhammad Imran, Patrizia Bocchetta, and Muhammad Sufyan Javed. 2022. "Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System" Sustainability 14, no. 9: 5301. https://doi.org/10.3390/su14095301
APA StyleNazir, M. S., Abdalla, A. N., M. Metwally, A. S., Imran, M., Bocchetta, P., & Javed, M. S. (2022). Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System. Sustainability, 14(9), 5301. https://doi.org/10.3390/su14095301