Geographical and Meteorological Evaluations of COVID-19 Spread in Iran
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Gathering
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19)-Events as They Happen. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed on 31 July 2020).
- Leung, C. The difference in the incubation period of 2019 novel coronavirus (SARS-CoV-2) infection between travelers to Hubei and nontravelers: The need for a longer quarantine period. Infect. Control. Hosp. Epidemiol. 2020, 41, 594–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katella, K. 5 Things Everyone Should Know about the Coronavirus Outbreak. Yale Medicine. 2020. Available online: https://www.yalemedicine.org/news/2019-novel-coronavirus (accessed on 2 February 2022).
- Xu, K.; Cui, K.; Young, L.H.; Wang, Y.F.; Hsieh, Y.K.; Wan, S.; Zhang, J. Air quality index, indicatory air pollutants and impact of COVID-19 event on the air quality near central China. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging 2020, 12, 6049. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.html (accessed on 25 March 2022).
- Cui, Y.; Zhang, Z.F.; Froines, J.; Zhao, J.; Wang, H.; Yu, S.Z.; Detels, R. Air pollution and case fatality of SARS in the People’s Republic of China: An ecologic study. Environ. Health 2003, 2, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef] [PubMed]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Di Gilio, A.; Palmisani, J.; Buono, P.; Fornari, G.; Perrone, M.; Pizzalunga, A.; Barbieri, P.; et al. Position Paper Relazione circa l’effetto dell’inquinamento da particolato atmosferico e la diffusione di virus nella popolazione. Available online: https://www.actu-environnement.com/media/pdf/news-35178-covid-19.pdf (accessed on 2 February 2022).
- Şahin, M. Impact of weather on COVID-19 pandemic in Turkey. Sci. Total Environ. 2020, 728, 138810. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- Bianconi, V.; Bronzo, P.; Banach, M.; Sahebkar, A.; Mannarino, M.R.; Pirro, M. Particulate matter pollution and the COVID-19 outbreak: Results from Italian regions and provinces. Arch. Med. Sci. AMS 2020, 16, 985. [Google Scholar] [CrossRef]
- Singh, P.; Dey, S.; Purohit, B.; Dixit, K.; Chakraborty, S. Robust Association between Short-Term Ambient PM2.5 Exposure and COVID Prevalence in India. Available online: https://assets.researchsquare.com/files/rs-38126/v1/81168990-fa60-41b6-9d27-c664e562c761.pdf?c=1637243072 (accessed on 2 February 2022).
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Amoatey, P.; Omidvarborna, H.; Baawain, M.S.; Al-Mamun, A. Impact of building ventilation systems and habitual indoor incense burning on SARS-CoV-2 virus transmissions in Middle Eastern countries. Sci. Total Environ. 2020, 733, 139356. [Google Scholar] [CrossRef] [PubMed]
- Suhaimi, N.F.; Jalaludin, J.; Latif, M.T. Demystifying a possible relationship between COVID-19, air quality and meteorological factors: Evidence from Kuala Lumpur, Malaysia. Aerosol Air Qual. Res. 2020, 20, 1520–1529. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2. 5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Broomandi, P.; Karaca, F.; Nikfal, A.; Jahanbakhshi, A.; Tamjidi, M.; Kim, J.R. Impact of COVID-19 event on the air quality in Iran. Aerosol Air Qual. Res. 2020, 20, 1793–1804. [Google Scholar] [CrossRef]
- Faridi, S.; Yousefian, F.; Niazi, S.; Ghalhari, M.R.; Hassanvand, M.S.; Naddafi, K. Impact of SARS-CoV-2 on ambient air particulate matter in Tehran. Aerosol Air Qual. Res. 2020, 20, 1805–1811. [Google Scholar] [CrossRef]
- Asna-ashary, M.; Farzanegan, M.R.; Feizi, M.; Sadati, S.M. COVID-19 Outbreak and Air Pollution in Iran: A Panel VAR Analysis; Joint Discussion Paper Series in Economics; Philipps-University Marburg, School of Business and Economics: Marburg, Germany, 2020. [Google Scholar]
- Pansini, R.; Fornacca, D. Early Evidence of a Higher Incidence of COVID-19 in the Air-Polluted Regions of Eight Severely Affected Countries. Available online: https://www.medrxiv.org/content/10.1101/2020.04.30.20086496v2 (accessed on 2 February 2022).
- Ahmadi, M.; Sharifi, A.; Dorosti, S.; Ghoushchi, S.J.; Ghanbari, N. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Sci. Total Environ. 2020, 729, 138705. [Google Scholar] [CrossRef]
- Jahangiri, M.; Jahangiri, M.; Najafgholipour, M. The sensitivity and specificity analyses of ambient temperature and population size on the transmission rate of the novel coronavirus (COVID-19) in different provinces of Iran. Sci. Total Environ. 2020, 728, 138872. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Costa, N.D.; Dantas, K.C.; dos Santos, G.L.; Moralles, F.N.; Lombardi, S.C.; Júnior, A.M.; Lindoso, J.A.; Ando, R.A.; Lima, F.G.; et al. Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America. Environ. Pollut. 2022, 292, 118299. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Baboli, Z.; Neisi, N.; Babaei, A.A.; Ahmadi, M.; Sorooshian, A.; Birgani, Y.T.; Goudarzi, G. On the airborne transmission of SARS-CoV-2 and relationship with indoor conditions at a hospital. Atmos. Environ. 2021, 261, 118563. [Google Scholar] [CrossRef] [PubMed]
- Czwojdzińska, M.; Terpińska, M.; Kuźniarski, A.; Płaczkowska, S.; Piwowar, A. Exposure to PM2. 5 and PM10 and COVID-19 infection rates and mortality: A one-year observational study in Poland. Biomed. J. 2021, 44, S25–S36. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.farsnews.ir/news/14010114000222/ (accessed on 3 April 2022).
- Available online: https://www.isna.ir/news/99112518091/ (accessed on 13 February 2021).
Province | Capital | Lat. (N) | Lon. (E) | Population | Geographical Feature |
---|---|---|---|---|---|
Khuzestan | Ahvaz | 31.3 | 48.7 | 3,554,205 | Plain & costal |
Markazi | Arak | 34.1 | 49.7 | 1,099,764 | Mountainous |
Hormozgan | Bandarabbas | 27.2 | 56.3 | 971,822 | Costal |
South Khorasan | Birjand | 32.9 | 59.2 | 453,827 | Dry land |
North Khorasan | Bojnurd | 37.5 | 57.3 | 484,346 | Mountainous |
Bushehr | Bushehr | 29.0 | 50.8 | 835,955 | Costal |
Ilam | Ilam | 33.6 | 46.4 | 395,263 | Mountainous |
Kerman | Kerman | 30.3 | 57.1 | 1,858,587 | Dry land |
Kermanshah | Kermanshah | 34.3 | 47.1 | 1,468,615 | Mountainous |
Lorestan | Khorramabad | 33.5 | 48.3 | 1,134,908 | Mountainous |
West Azerbaijan | Orumiyeh | 37.6 | 45.1 | 2,136,203 | Mountainous |
Kordestan | Sanandaj | 35.3 | 47.0 | 1,134,229 | Mountainous |
Chaharmahal-o-Bakhtiari | Shahrekord | 32.3 | 50.9 | 607,444 | Mountainous |
Fars | Shiraz | 29.6 | 52.5 | 3,401,675 | Mountainous |
Zanjan | Zanjan | 36.7 | 48.5 | 711,177 | Mountainous |
Provinces | PM10min & 9D | PM10mean & 7D | PM10 & #D | PM2.5min & 3D | PM2.5mean & 8D | PM2.5max & 7D | |
---|---|---|---|---|---|---|---|
Ahvaz C | 0.565 ** | 0.308 * | - | 0.443 ** | 0.542 ** | 0.348 ** | |
Pmax & 0D | Tmean & 4D | RHmean & 2D | Vmin & 8D | Tdmin & 1D | WDmean & 2D | WSmin & 1D | |
Ahvaz C | −0.817 ** | 0.910 ** | −0.806 ** | −0.334 ** | −0.423 ** | 0.541 ** | 0.259 * |
Pmin & 2D | Tmean & 14D | RHmax & 11D | Vmean & 0D | Tdmax & 0D | WDmax & 2D | WSmean & 0D | |
Bandarabbas C | −0.847 ** | 0.772 ** | −0.614 ** | −0.458 ** | 0.828 ** | −0.374 ** | 0.412 ** |
Pmax & 3D | Tmin & 1D | RHmax & 12D | Vmax & 7D | Tdmean & 4D | WDmin & 3D | WSmin & 4D | |
Bushehr C | −0.637 ** | 0.597 ** | 0.292 * | −0.508 ** | 0.663 ** | 0.373 ** | 0.372 ** |
Pmax & 9D | Tmin & 9D | RHmax & 9D | Vmin & 4D | Tdmax & 6D | WD & #D | WS & #D | |
Arak M | −0.459 ** | 0.519 ** | −0.498 ** | 0.358 * | 0.454 ** | - | - |
Pmean & 10D | Tmin & 14D | RHmin & 14D | Vmin & 9D | Tdmax & 7D | WD & #D | WS & #D | |
Bojnurd M | −0.551 ** | 0.594 ** | −0.432 ** | 0.377 ** | 0.599 ** | - | - |
Pmax & 2D | Tmean & 3D | RHmax & 4D | V & #D | Tdmean & 5D | WDmean & 6D | WSmean & 1D | |
Ilam M | −0.632 ** | 0.679 ** | −0.650 ** | - | −0.416 ** | 0.346 ** | 0.307 ** |
Pmax & 3D | Tmax & 7D | RHmax & 2D | Vmin & 9D | Tdmean & 0D | WD & #D | WS & #D | |
Kermanshah M | −0.615 ** | 0.927 ** | −0.890 ** | 0.303 * | −0.774 ** | - | - |
Pmax & 1D | Tmean & 14D | RHmean & 13D | Vmin & 0D | Tdmax & 0D | WDmax & 7D | WS & #D | |
Khorramabad M | −0.637 ** | 0.707 ** | −0.687 ** | 0.521 ** | −0.571 ** | −0.373 ** | - |
Pmax & 6D | Tmax & 6D | RHmean & 6D | Vmin & 8D | Tdmax & 13D | WD & #D | WSmin & 5D | |
Orumiyeh M | −0.362 ** | 0.757 ** | −0.633 ** | 0.447 ** | 0.650 ** | - | −0.274 * |
Pmax & 10D | Tmean & 14D | RHmax & 9D | V & #D | Tdmean & 4D | WD & #D | WS & #D | |
Sanandaj M | −0.550 ** | 0.738 ** | −0.779 ** | - | −0.434 ** | - | - |
Pmax & 5D | Tmean & 6D | RHmean & 5D | V & #D | Tdmean & 4D | WDmax & 1D | WSmean & 14D | |
Shahrekord M | −0.420 ** | 0.545 ** | −0.461 ** | - | −0.255 * | 0.363 ** | −0.299 * |
P & #D | T & #D | RH & #D | Vmax & 9D | Tdmin & 2D | WDmax & 7D | WS & #D | |
Shiraz M | - | - | - | 0.255 * | −0.273 * | 0.291 * | - |
Pmax & 0D | Tmean & 0D | RHmean & 0D | Vmin & 6D | Tdmin & 14D | WDmax & 13D | WS & #D | |
Zanjan M | 0.624 ** | −0.750 ** | 0.598 ** | −0.420 ** | −0.574 ** | −0.321 ** | - |
Pmin & 0D | Tmin & 0D | RHmax & 6D | Vmean & 12D | Tdmax & 7D | WDmean & 10D | WSmean & 1D | |
Birjand D | −0.343 ** | 0.362 ** | −0.259 * | 0.452 ** | −0.362 ** | −0.370 ** | 0.429 ** |
Pmin & 2D | Tmax & 4D | RHmax & 3D | Vmean & 10D | Tdmax & 5D | WDmean & 0D | WSmin & 10D | |
Kerman D | −0.682 ** | 0.635 ** | −0.504 ** | 0.668 ** | −0.349 ** | −0.345 ** | −0.267 * |
Provinces | PM10min & 11D | PM10mean & 8D | PM10max & 10D | PM2.5min & 6D | PM2.5mean & 10D | PM2.5max & 10D | - |
---|---|---|---|---|---|---|---|
Ahvaz C | 0.554 ** | 0.565 ** | 0.483 ** | 0.480 ** | 0.617 ** | 0.570 ** | - |
Pmax & 2D | Tmean & 5D | RHmean & 2D | Vmin & 13D | Tdmin & 1D | WDmean & 2D | WS & #D | |
Ahvaz C | −0.835 ** | 0.910 ** | −0.813 ** | −0.309 * | −0.461 ** | 0.587 ** | - |
P & #D | T & #D | RHmean & 0D | Vmax & 13D | Tdmin & 0D | WDmax & 8D | WSmax & 12D | |
Bandarabbas C | - | - | −0.618 ** | 0.625 ** | −0.606 ** | −0.622 ** | −0.481 * |
Pmax & 4D | Tmin & 6D | RHmax & 5D | Vmax & 8D | Tdmean & 9D | WDmin & 6D | WSmin & 5D | |
Bushehr C | −0.569 ** | 0.543 ** | −0.259 * | −0.599 ** | 0.623 ** | 0.445 ** | 0.322 * |
Pmax & 0D | Tmean & 2D | RHmax & 11D | V & #D | Tdmax & 1D | WDmin & 13D | WS & #D | |
Arak M | 0.739 ** | −0.602 * | −0.518 * | - | −0.566 * | 0.589 * | - |
Pmin & 12D | Tmin & 14D | RH & #D | Vmean & 4D | Tdmin & 14D | WDmin & 7D | WSmin & 8D | |
Bojnurd M | −0.321 * | 0.355 * | - | 0.571 ** | 0.399 ** | 0.357 * | 0.376 ** |
Pmax & 0D | Tmax & 14D | RHmean & 14D | Vmin & 0D | Tdmean & 4D | WDmax & 0D | WSmax & 4D | |
Khorramabad M | −0.633 ** | 0.741 ** | −0.708 ** | 0.523 ** | −0.712 ** | 0.395 * | 0.389 * |
Pmax & 13D | Tmin & 7D | RHmean & 13D | Vmin & 5D | Tdmax & 6D | WDmin & 5D | WSmean & 2D | |
Orumiyeh M | −0.456 ** | 0.394 ** | −0.489 ** | 0.380 * | 0.398 ** | −0.448 ** | −0.307 * |
Pmean & 4D | Tmean & 8D | RHmax & 7D | V & #D | Tdmean & 1D | WDmin & 1D | WS & #D | |
Sanandaj M | −0.410 ** | 0.689 ** | −0.635 ** | - | −0.488 ** | −0.271 * | - |
Pmax & 5D | Tmax & 6D | RHmean & 3D | Vmin & 13D | Td & #D | WDmax & 1D | WS & #D | |
Shahrekord M | −0.411 ** | 0.493 ** | −0.381 ** | 0.284 * | - | 0.339 ** | - |
P & #D | T & #D | RHmin & 2D | Vmean & 2D | Tdmax & 5D | WDmin & 5D | WSmin & 5D | |
Shiraz M | - | - | 0.597 ** | −0.357 ** | −0.263 * | 0.576 ** | 0.686 ** |
Pmax & 0D | Tmin & 3D | RHmin & 9D | Vmin & 1D | Tdmax & 8D | WDmax & 11D | WS & #D | |
Zanjan M | 0.453 ** | −0.537 ** | 0.412 ** | −0.355 ** | −0.424 ** | −0.309 * | - |
Pmin & 0D | Tmin & 0D | RHmin & 14D | Vmax & 12D | Td & #D | WDmean & 10D | WSmean & 1D | |
Birjand D | −0.357 ** | 0.360 ** | 0.251 * | 0.476 ** | - | −0.434 ** | 0.382 ** |
Pmean & 8D | Tmax & 8D | RHmin & 8D | Vmax & 14D | Tdmax & 5D | WDmean & 1D | WSmin & 7D | |
Kerman D | 0.452 ** | −0.526 ** | 0.379 * | 0.449 ** | −0.506 ** | 0.456 ** | 0.382 * |
Provinces | PM10min & 12D | PM10mean & 10D | PM10 & #D | PM2.5min & 4D | PM2.5mean & 12D | PM2.5max & 10D | |
---|---|---|---|---|---|---|---|
Ahvaz C | 0.532 ** | 0.336 ** | - | 0.417 ** | 0.533 ** | 0.388 ** | |
Pmax & 4D | Tmean & 0D | RHmean & 2D | Vmin & 10D | Tdmin & 2D | WDmean & 3D | WS & #D | |
Ahvaz C | −0.729 ** | 0.868 ** | −0.791 ** | −0.304 * | −0.404 ** | 0.553 ** | - |
Pmin & 7D | Tmax & 6D | RHmax & 13D | Vmean & 11D | Tdmax & 4D | WDmax & 10D | WSmean & 3D | |
Bandarabbas C | −0.613 ** | 0.503 ** | −0.356 ** | −0.361 ** | 0.603 ** | −0.553 ** | 0.380 ** |
Pmax & 5D | Tmin & 7D | RHmax & 5D | Vmax & 9D | Tdmean & 10D | WDmin & 7D | WSmin & 6D | |
Bushehr C | −0.498 ** | 0.476 ** | −0.258 * | −0.642 ** | 0.486 ** | 0.554 ** | 0.449 ** |
Pmax & 1D | Tmax & 9D | RHmin & 9D | Vmax & 1D | Tdmin & 9D | WDmin & 2D | WSmin & 2D | |
Arak M | 0.531 ** | −0.559 ** | 0.563 ** | −0.348 * | 0.397 * | 0.467 ** | 0.516 ** |
P & #D | T & #D | RH & #D | Vmax & 2D | Tdmin & 12D | WDmax & 1D | WS & #D | |
Bojnurd M | - | - | - | 0.308 * | 0.312 * | −0.323 * | - |
Pmean & 8D | T & #D | RHmin & 2D | Vmin & 3D | Tdmean & 2D | WD & #D | WS & #D | |
Ilam M | 0.275 * | - | 0.353 ** | −0.255 * | 0.327 ** | - | - |
Pmean & 1D | Tmean & 1D | RHmax & 6D | Vmin & 5D | Tdmin & 6D | WDmax & 6D | WSmin & 4D | |
Kermanshah M | −0.344 ** | 0.486 ** | −0.520 ** | 0.315 ** | −0.560 ** | 0.266 * | −0.252 * |
Pmax & 4D | Tmean & 4D | RHmean & 4D | Vmin & 9D | Tdmin & 12D | WDmean & 12D | WSmean & 8D | |
Khorramabad M | 0.383 ** | −0.343 ** | 0.333 * | −0.303 * | 0.318 * | 0.289 * | 0.311 * |
Pmean & 5D | T & #D | RH & #D | Vmax & 5D | Td & #D | WDmax & 13D | WSmax & 12D | |
Orumiyeh M | 0.390 ** | - | - | 0.285 * | - | 0.357 ** | 0.317 * |
P & #D | T & #D | RH & #D | Vmin & 3D | Tdmin & 4D | WDmin & 5D | WSmin & 0D | |
Sanandaj M | - | - | - | −0.265 * | −0.356 ** | 0.316 ** | 0.302 * |
Pmax & 14D | Tmax & 0D | RHmin & 0D | V & #D | Tdmin & 9D | WDmean & 5D | WSmean & 14D | |
Shahrekord M | 0.276 * | −0.282 * | 0.367 ** | - | −0.291 * | 0.291 * | −0.236 * |
Pmax & 7D | Tmin & 3D | RHmin & 6D | Vmax & 4D | Tdmean & 5D | WDmax & 1D | WSmax & 9D | |
Shiraz M | 0.447 ** | −0.394 ** | 0.461 ** | −0.326 ** | 0.377 ** | −0.251 * | 0.278 * |
Pmin & 12D | Tmin & 12D | RHmean & 2D | Vmin & 3D | Tdmin & 12D | WDmax & 11D | WSmin & 2D | |
Zanjan M | 0.346 ** | −0.403 ** | 0.349 ** | −0.417 ** | −0.454 ** | −0.301 * | 0.305 * |
Pmax & 0D | Tmax & 14D | RHmin & 0D | Vmin & 9D | Tdmin & 0D | WDmin & 7D | WSmean & 9D | |
Birjand D | 0.329 ** | −0.368 ** | 0.461 ** | −0.446 ** | 0.327 ** | 0.334 ** | 0.348 ** |
Pmax & 2D | Tmax & 3D | RHmax & 3D | Vmin & 10D | Tdmax & 6D | WD & #D | WSmax & 10D | |
Kerman D | −0.251 * | 0.320 ** | −0.380 ** | 0.407 ** | −0.373 ** | - | −0.255 * |
Province | Capital | NCC/ 105 Population × Day | NRC/ 105 Population × Day | ND/Day | ACC/ 105 Population | ARC/ 105 Population | AD/ 105 Population |
---|---|---|---|---|---|---|---|
Khuzestan | Ahvaz | 8.6 | 8.3 | 9 | 621.2 | 580.4 | 20.6 |
Bushehr | Bushehr | 3.7 | 1.5 | 0 | 266.8 | 108.1 | 4.1 |
Hormozgan | Bandarabbas | 9.6 | 1.3 | 1 | 681.7 | 358.3 | 10.4 |
Markazi | Arak | 2.1 | 1.4 | 1 | 227.8 | 132.8 | 16.2 |
North Khorasan | Bojnurd | 6.7 | 1.7 | 1 | 509.6 | 171.8 | 29.1 |
Ilam | Ilam | 3.7 | - | 1 | 338.8 | - | 18.5 |
Kermanshah | Kermanshah | 7.4 | - | 2 | 515.7 | - | 11.5 |
Lorestan | Khorramabad | 7.1 | 7.6 | 2 | 485.7 | 466.2 | 15.1 |
West Azerbaijan | Orumiyeh | 5.1 | 1.6 | 3 | 384.9 | 221.0 | 12.6 |
Kordestan | Sanandaj | 5.3 | 2.5 | 2 | 407.3 | 185.1 | 15.9 |
Chaharmahal-o-Bakhtiari | Shahrekord | 1.8 | 1.8 | 0 | 147.8 | 137.5 | 5.3 |
Fars | Shiraz | 2.6 | 1.5 | 1 | 209.6 | 179.0 | 3.5 |
Zanjan | Zanjan | 1.3 | 1.2 | 1 | 176.0 | 146.4 | 19.5 |
South Khorasan | Birjand | 1.7 | 1.7 | 0 | 188.0 | 172.3 | 10.4 |
Kerman | Kerman | 2.1 | 0.3 | 1 | 158.7 | 74.2 | 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudarzi, G.; Babaei, A.A.; Mohammadi, M.J.; Hamid, V.; Maleki, H. Geographical and Meteorological Evaluations of COVID-19 Spread in Iran. Sustainability 2022, 14, 5429. https://doi.org/10.3390/su14095429
Goudarzi G, Babaei AA, Mohammadi MJ, Hamid V, Maleki H. Geographical and Meteorological Evaluations of COVID-19 Spread in Iran. Sustainability. 2022; 14(9):5429. https://doi.org/10.3390/su14095429
Chicago/Turabian StyleGoudarzi, Gholamreza, Ali Akbar Babaei, Mohammad Javad Mohammadi, Vafa Hamid, and Heydar Maleki. 2022. "Geographical and Meteorological Evaluations of COVID-19 Spread in Iran" Sustainability 14, no. 9: 5429. https://doi.org/10.3390/su14095429
APA StyleGoudarzi, G., Babaei, A. A., Mohammadi, M. J., Hamid, V., & Maleki, H. (2022). Geographical and Meteorological Evaluations of COVID-19 Spread in Iran. Sustainability, 14(9), 5429. https://doi.org/10.3390/su14095429