Biofillers Improved Compression Modulus of Extruded PLA Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Biofiller-Compounded PLA and Foams
2.3. Characterization
2.4. Statistical Analysis
3. Results and Discussion
3.1. Foam Structure and Imagaing
3.2. Density
3.3. Thermal Conductivity and Diffusivity
3.4. Compression Testing
3.5. Foam Crystallinity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandra, M.; Kohn, C.; Pawlitz, J.; Powell, G. Real Cost of Styrofoam; Saint Louis University: St. Louis, MO, USA, 2016. [Google Scholar]
- EUMEPS. EPS Recycling International. Available online: https://epsrecycling.org/global-recycling-access (accessed on 12 June 2020).
- Maga, D.; Heibel, M.; Aryan, V. A comparative life cycle assessment of meat trays made of various packaing materials. Sustainability 2019, 11, 5324. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, C.-A.; Bortsie-Aryee, N.A.; Apparicio-Farrell, N.; Farrell, E. How supply chain choices affect the life cycle impacts of medical products. J. Clean. Prod. 2018, 182, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Razza, F.; Degli Innocenti, F.; Dobon, A.; Aliaga, C.; Sanchez, C.; Hortal, M. Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. J. Clean. Prod. 2015, 102, 493–500. [Google Scholar] [CrossRef]
- Inagrao, C.; Lo Guidice, A.; Bacenetti, J.; Mousavi Khaneghah, A.; Sant’Ana, A.S.; Rana, R.; Siracusa, V. Foamy polystyrene trays for fresh-meat packaging: Life-cycle inventory data collection and environmental impact assessment. Food Res. Int. 2015, 76, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Zabaniotou, A.; Kassidi, E. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. J. Clean. Prod. 2003, 11, 549–559. [Google Scholar] [CrossRef]
- Cleveland, C.J. Net energy from the extraction of oil and gas in the United States. Energy 2005, 30, 769–782. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Chiellini, E.; Solaro, R. Biodegradable polymeric materials. Adv. Mater. 1996, 8, 305–313. [Google Scholar] [CrossRef]
- Standau, T.; Zhao, C.; Castellon, S.M.; Bonten, C.; Altstadt, V. Chemical modification and foam processing of polylactide (PLA). Polymers 2019, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Rokkonen, T.; Peltola, H.; Sandquist, D. Foamability and viscosity behavior of extrusion based PLA-pulp fiber biocomposites. J. Appl. Polym. Sci. 2019, 136, 48202. [Google Scholar] [CrossRef]
- Gong, P.; Zhai, S.; Lee, R.; Zhao, C.; Buahom, P.; Li, G.; Park, C.B. Environmentally friendly polylactic acid-based thermal insulation foams blown with supercritical CO2. Ind. Eng. Chem. Res. 2018, 57, 5464–5471. [Google Scholar] [CrossRef]
- Ameli, A.; Jahani, D.; Nofar, M.; Jung, P.U.; Park, C.B. Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties. Compos. Sci. Technol. 2014, 90, 88–95. [Google Scholar] [CrossRef]
- Mihai, M.; Huneault, M.A.; Favis, B.D. Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide. J. Appl. Polym. Sci. 2009, 113, 2920–2932. [Google Scholar] [CrossRef] [Green Version]
- Suwanmanee, U.; Varabuntoonvit, V.; Chaisutthinan, P.; Tagan, M.; Mungcharoen, T.; Leejarkpai, T. Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid (PLA), and PLA/starch: Cradle to consumer gate. Int. J. Life Cycle Assess. 2013, 18, 401–417. [Google Scholar] [CrossRef]
- Nofar, M.; Scligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.-C. Poly (lactic acid) blends: Processing, properties, and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar] [CrossRef]
- Zimmermann, M.V.; Paola da Silva, M.; Zattera, A.J.; Santana, R.M. Poly(lactic acid) foams reinforced with cellulose micro and nanofibers and foamed by chemical blowing agents. J. Cell. Plast. 2017, 54, 577–596. [Google Scholar] [CrossRef]
- Kmetty, A.; Litauszki, K.; Reti, D. Characterization of different chemical blowing agents and their applicability to produce poly(lactic acid) foams by extrusion. Appl. Sci. 2018, 8, 1960. [Google Scholar] [CrossRef] [Green Version]
- Chauvet, M.; Sauceau, M.; Baillon, F.; Fages, J. Mastering the structure of PLA foams made with extrusion assisted by supercritical CO2. J. Appl. Polym. Sci. 2017, 134, 45067. [Google Scholar] [CrossRef] [Green Version]
- Vadas, D.; Igricz, T.; Sarazin, J.; Bourbigot, S.; Barosi, G.; Bocz, K. Flame retardancy of microcellular poly(lactic acid) foams prepared by supercritical CO2-assisted extrusion. Polym. Degrad. Stab. 2018, 153, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; He, G.; Liao, X.; Park, C.B.; Yang, Q.; Li, G. Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam. RSC Adv. 2017, 7, 6266–6277. [Google Scholar] [CrossRef] [Green Version]
- Ludwiczak, J.; Kozlowski, M. Foaming of polylactide in the presence of chain extender. J. Polym. Environ. 2015, 23, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Drury, J. Cheaper, greener, route to bioplastic. Innovation and Intellectual Property; Reuters: London, UK, 2016. Available online: https://reuters.com/article/us-belgium-cheaper-ecoplastic/cheaper-greener-route-to-bioplastic-idUSKCN0VO1E2 (accessed on 10 December 2021).
- Barrett, A. Advantages and Disadvantages of PLA; Bioplastics News, Brussels, Belgium. 2020. Available online: https://bioplasticsnews.com/2020/06/09/polylactic-acid-pla-dis-advantages/ (accessed on 10 December 2021).
- Wang, G.; Wang, L.; Mark, L.H.; Shaayegan, V.; Wang, G.; Li, H.; Zhao, G.; Park, C.B. Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2018, 10, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Liao, X.; He, Y.; Li, G. Novel electric conductive polylactide/carbon nanotubes foams prepared by supercritical CO2. Prog. Nat. Sci. Mater. Int. 2013, 23, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Yao, Z.; Zhou, C.; Wei, D.; Li, S. Mechanical properties of PLA/PBS foamed composites reinforced by organic montmorillonite. J. Appl. Polym. Sci. 2015, 131, 40773. [Google Scholar] [CrossRef]
- Keshtkar, M.; Nofar, M.; Park, C.B.; Carreau, P.J. Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer 2014, 55, 4077–4090. [Google Scholar] [CrossRef]
- ASTM. D1621-16 Standard Test Method for Compressive Properties of Rigid Cellular Plastics; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Quero, E.; Muller, A.J.; Signori, F.; Coltelli, M.-B.; Bronco, S. Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate. Macromol. Chem. Phys. 2012, 213, 36–48. [Google Scholar] [CrossRef]
- Tessema, A.; Zhao, D.; Moll, J.; Xu, S.; Yang, R.; Li, C.; Kumar, S.K.; Kidane, A. Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym. Test. 2017, 57, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Al-Saleh, M.H.; Sundararaj, U. Review of the mechanical properties of carbon nanofiber/polymer composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 2126–2142. [Google Scholar] [CrossRef]
- Schellenberg, J.; Wallis, M. Dependence of thermal properties of expandable polystyrene particle foam on cell size and density. J. Cell. Plast. 2010, 46, 209–222. [Google Scholar] [CrossRef]
- Williams, R.J.J.; Aldao, C.M. Thermal conductivity of plastic foam. Polym. Eng. Sci. 1983, 23, 293–298. [Google Scholar] [CrossRef]
- Chen, W.; Hao, H.; Hughes, D.; Shi, Y.; Cui, J.; Li, Z.-X. Static and dynamic mechanical properties of expanded polystyrene. Mater. Des. 2015, 69, 170–180. [Google Scholar] [CrossRef]
- Mort, R.; Vorst, K.; Curtzwiler, G.; Jiang, S. Biobased foams for thermal insulation: Material selection, processing, modelling, and performance. RSC Adv. 2021, 11, 4375–4394. [Google Scholar] [CrossRef] [PubMed]
- Hung Anh, L.D.; Pasztory, Z. An overview of factors influencing thermal conductivity of building insulation materials. J. Build. Eng. 2021, 44, 102604. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, X.; Li, Y.; Wang, Y.; Li, H.; Zhou, G. Comparison with experiment, model, and simulation for thermal conductive mechanism of polymer composites without particle network. Macromol. Chem. Phys. 2021, 222, 2100200. [Google Scholar] [CrossRef]
- Kadar, C.; Szlancsik, A.; Dombovari, Z.; Orbulov, I.N. Monitoring the failure states of a metal matrix syntactic foam by modal analysis. Mater. Lett. 2019, 257, 126733. [Google Scholar] [CrossRef] [Green Version]
- Szlancsik, A.; Katona, B.; Dombovari, Z.; Orbulov, I.N. On the effective Young’s modulus of metal matrix syntactic foams. Mater. Sci. Technol. 2017, 33, 2283–2289. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: West Sussex, UK, 2001. [Google Scholar]
Sample Name | Material | Blowing Agent | Talc (%) |
---|---|---|---|
PLAf | Virgin PLA | 9% PBA, 3% CBA | 2 |
5RHf | 5% RH | 9% PBA | 0 |
10RHf | 10% RH | 9% PBA | 0 |
5CCf | 5% CC | 9% PBA | 0 |
10CCf | 10% CC | 9% PBA | 0 |
PLAf | 5RHf | 5CCf | 10RHf | 10CCf | |
---|---|---|---|---|---|
Extruder RPM | 22 | 28 | 28 | 36 | 22 |
Melt temp (°C) | 152 | 151 | 151 | 156 | 148 |
Melt pressure (Bar) | 55 | 55 | 55 | 41 | 48 |
Zone 1 temp (°C) | 150 | 150 | 150 | 150 | 150 |
Zone 2 temp (°C) | 185 | 185 | 185 | 185 | 185 |
Zone 3 temp (°C) | 185 | 185 | 185 | 185 | 185 |
Zone 4 temp (°C) | 185 | 185 | 185 | 185 | 185 |
Zone 5 temp (°C) | 160 | 160 | 160 | 160 | 160 |
Zone 6 temp (°C) | 150 | 155 | 155 | 155 | 150 |
Zone 7 temp (°C) | 150 | 150 | 155 | 150 | 150 |
Zone 8 temp (°C) | 140 | 150 | 145 | 150 | 140 |
Zone 9 temp (°C) | 140 | 150 | 140 | 150 | 140 |
Zone 10 temp (°C) | 150 | 150 | 145 | 150 | 155 |
Die temp (°C) | 150 | 150 | 145 | 150 | 155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mort, R.; Peters, E.; Curtzwiler, G.; Jiang, S.; Vorst, K. Biofillers Improved Compression Modulus of Extruded PLA Foams. Sustainability 2022, 14, 5521. https://doi.org/10.3390/su14095521
Mort R, Peters E, Curtzwiler G, Jiang S, Vorst K. Biofillers Improved Compression Modulus of Extruded PLA Foams. Sustainability. 2022; 14(9):5521. https://doi.org/10.3390/su14095521
Chicago/Turabian StyleMort, Rebecca, Erin Peters, Greg Curtzwiler, Shan Jiang, and Keith Vorst. 2022. "Biofillers Improved Compression Modulus of Extruded PLA Foams" Sustainability 14, no. 9: 5521. https://doi.org/10.3390/su14095521
APA StyleMort, R., Peters, E., Curtzwiler, G., Jiang, S., & Vorst, K. (2022). Biofillers Improved Compression Modulus of Extruded PLA Foams. Sustainability, 14(9), 5521. https://doi.org/10.3390/su14095521