Performance Analysis of a Solar-Powered Multi-Purpose Supply Container
Abstract
:1. Introduction
2. Materials and Methods
- Region A—tropical climate: Port-au-Prince, Haiti (N 18.33°, W 72.20°), Caribbean Sea; located at active fault; high probability of earthquakes (e.g., 2010: 300,000 deaths and 1.8 million homeless), hurricanes, tsunamis and tornadoes; monthly average temperature never below 18 °C with low variation [19],
- Region B—dry climate: Djibouti, Djibouti (N 11.32°, E 43.08°), Horn of Africa; developing area with extreme temperatures [19]; neighboring country of Somalia, violence and conflicts over three decades; droughts; millions of inland refugees,
- Region C—mild climate: Colonia, Uruguay (S 34.28°, W 57.51°), South America;
- Region D—continental climate: Yakutsk, Russia (N 62.2°, E 129.44°), Eastern Siberia; one of the locations with the lowest temperatures in the world in winter [19],
- Region E—polar climate: Puerto Williams, Chile (S 54.56°, W 67.37°); wide variation in daylight over the year [19].
- First aid—designed for first-aid medical assistance; target temperature set at a range of 22 °C to 26 °C (according to UNE-EN ISO 13790 [31] for hospitals); exchange of 100% of the air every hour;
- Shower—important to help maintain a minimum level of hygiene, which is an essential aspect to avoid the spreading of diseases; target temperature is set to be at least 22 °C, and thus, no provision is made for cooling;
- Freezing—target interior temperature is 10 °C, for example, to store food;
- Refrigeration—target interior temperature is −40 °C, for instance, to store drugs and food.
3. Results
3.1. Analysis of First-Aid, Shower, Refrigeration and Freezing Modules
3.2. Supply Containers Used as Modules for Accommodation
- 45.44 kWh spent on lighting;
- 228.83 kWh spent on hot water;
- About 370 kWh to 400 kWh spent on heating;
- 110 kWh to 120 kWh spent on cooling.
3.3. Desalination of Water by Reverse Osmosis (RO)
4. Discussion
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Energy | Port-au-Pr. | Djibouti | Colonia | Yakutsk | Puerto Will. |
---|---|---|---|---|---|
Demands | Haiti | Djibouti | Uruguay | Russia | Chile |
first-aid heat | 123 | 171 | 1412 | 7422 | 3850 |
first-aid cold | 3093 | 2146 | 545 | 140 | 7 |
Shower | 43 | 60 | 1841 | 10,200 | 5407 |
Refrigeration | 2591 | 2989 | 1194 | 341 | 98 |
Freezing | 11,400 | 11,800 | 11,800 | 985 | 8068 |
Energy production | 20,385 | 21,743 | 18,279 | 15,041 | 11,221 |
References
- Neukirchen, F. Die Folgen des Klimawandels; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Thiery, B.W.; Lange, S.; Rogelj, J.; Schleussner, C.F.; Gudmundsson, L.; Seneviratne, S.I.; Andrijevic, M.; Frieler, K.; Emanuel, K.; Geiger, T.; et al. Intergenerational inequities in exposure to climate extremes. Science 2021, 374, eabi7339. [Google Scholar] [CrossRef] [PubMed]
- Buendnis-Entwicklung-Hilft. WorldRiskReport2021. 2021. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/2021-world-risk-report.pdf (accessed on 3 December 2021).
- Bagheri, F. Performance investigation of atmospheric water harvesting systems. Water Resour. Ind. 2018, 20, 23–28. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, R.; Zhang, Y.; Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2018, 2, 1452–1475. [Google Scholar] [CrossRef] [Green Version]
- Al-Furaiji, M.; Karim, U.F.; Augustijn, D.C.; Waisi, B.; Hulscher, S.J. Evaluation of water demand and supply in the south of Iraq. J. Water Reuse Desalin. 2016, 6, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Tu, R.; Hwang, Y. Reviews of atmospheric water harvesting technologies. Energy 2020, 201, 117630. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Rjoub, H.; Akinsola, G.D.; Oladipupo, S.D. The asymmetric effects of renewable energy consumption and trade openness on carbon emissions in Sweden: New evidence from quantile-on-quantile regression approach. Environ. Sci. Pollut. Res. 2022, 29, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Ahmad, M.; Rjoub, H.; Kalugina, O.A.; Hussain, N. Economic growth, renewable energy consumption, and ecological footprint: Exploring the role of environmental regulations and democracy in sustainable development. Sustain. Dev. 2021. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/sd.2251 (accessed on 29 April 2022).
- Oladipupo, S.D.; Rjoub, H.; Kirikkaleli, D.; Adebayo, T.S. Impact of Globalization and Renewable Energy Consumption on Environmental Degradation: A Lesson for South Africa. Int. J. Renew. Energy Dev. 2022, 11, 145–155. [Google Scholar] [CrossRef]
- Sibuea, M.B.; Sibuea, S.R.; Pratama, I. The impact of renewable energy and economic development on environmental quality of ASEAN countries. AgBioForum 2021, 23, 12–21. [Google Scholar]
- Lieser, J.; Dijkzeul, D. Handbuch Humanitäre Hilfe; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Seawater-Greenhouse. Available online: https://seawatergreenhouse.com/technology (accessed on 2 May 2021).
- Saharaforestproject-Foundation. Available online: https://www.saharaforestproject.com/wp-content/uploads/2015/03/synergies_illustration_01.jpg (accessed on 10 November 2021).
- Boxpower-Inc. BoxPower Is Changing the Narrative on Rural Energy. Available online: https://boxpower.io/ (accessed on 10 November 2021).
- Elemental-Water-Makers-B.V. Available online: https://www.elementalwatermakers.com/ (accessed on 10 November 2021).
- Abrasheva, G.; Senk, D.; Häußling, R. Shipping containers for a sustainable habitat perspective. Metall. Res. Technol. 2012, 109, 381–389. [Google Scholar] [CrossRef]
- arch2o. Various Applications of Shipping Container Architecture from Around the Globe. Available online: https://www.arch2o.com/applications-shipping-container-architecture (accessed on 10 November 2021).
- Ulloa, C.; Arce, M.E.; Rey, G.; Míguez, J.L.; Hernández, J. Recycling COR-TEN® Sea Containers into Service Modules for Military Applications: Thermal Analysis. Energies 2017, 10, 820. [Google Scholar] [CrossRef] [Green Version]
- Chavez, D. Super Energy Efficient Containerized Living Unit (SuperCLU) Technology Design and Development; Technical Report; Naval Facilities Engineering Command Port Hueneme Ca Engineering Service Center: Port Hueneme, CA, USA, 2012. [Google Scholar]
- Freightfinders. 20 Fuß ISO Container. Available online: https://freightfinders.com/de/container-transport/20-ft-iso-container/ (accessed on 10 November 2021).
- Álvarez-Feijoo, M.Á.; Orgeira-Crespo, P.; Arce, E.; Suárez-García, A.; Ribas, J.R. Effect of Insulation on the Energy Demand of a Standardized Container Facility at Airports in Spain under Different Weather Conditions. Energies 2020, 13, 5263. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Fernanda, H.; Shinoda, T. Effect of azimuth angle on the energy consumption of refrigerated Data sheet WM22000E-340. container. Energy Procedia 2019, 156, 201–206. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Shinoda, T. Energy efficiency on the reefer container storage yard; an analysis of thermal performance of installation roof shade. Energy Rep. 2020, 6, 686–692. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Shinoda, T. The effect of solar radiation on the energy consumption of refrigerated container. Case Stud. Therm. Eng. 2018, 12, 687–695. [Google Scholar] [CrossRef]
- Rodríguez-Bermejo, J.; Barreiro, P.; Robla, J.; Ruiz-Garcia, L. Thermal study of a transport container. J. Food Eng. 2007, 80, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Data sheet (Pdf) of Aleo Solar P23 module. Available online: https://www.aleo-solar.com/app/uploads/2020/01/P23_320-330W_AUS_web.pdf (accessed on 17 May 2021).
- Wagner, A. Komponenten von PV-Systemen, Photovoltaik Engineering: Handbuch für Planung, Entwicklung und Anwendung; Springer: Berlin/Heidelberg, Germany, 2019; pp. 109–133. [Google Scholar]
- Retscreen® Clean Energy Management Software. Available online: https://www.rncan.gc.ca/cartes-outils-et-publications/outils/outils-modelisation/retscreen/7466 (accessed on 10 November 2021).
- ISO 13790: 2008; Energy Performance of Buildings-Calculation of Energy Use for Space Heating and Cooling. International Organization for Standardization, ISO Central Secretariat: Geneva, Switzerland, 2008.
- ISO 7730 2005-11-15; Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Standards, ISO: Geneva, Switzerland, 2005.
- Schiavoni, S.; Sambuco, S.; Rotili, A.; D’Alessandro, F.; Fantauzzi, F. A nZEB housing structure derived from end of life containers: Energy, lighting and life cycle assessment. In Building Simulation; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10, pp. 165–181. [Google Scholar]
- Sanna, A.; Kaltschmitt, M.; Ernst, M. PV-betriebene Umkehrosmoseanlage zur Meerwasserentsalzung–Modellierung und Analyse verschiedener Energieversorgungsvarianten. Chemie-Ingenieur-Technik 2019, 91, 1853–1873. [Google Scholar] [CrossRef] [Green Version]
- Aqsep-A/S. Available online: https://aqsep.com/wp-content/uploads/2021/03/WM22000E-Datasheet-30-03-2021-vol-1.12.pdf (accessed on 10 November 2021).
- Al-Kebbeh, N.; Universell Einsetzbare Entsalzungsanlagen, Nieder-Olm, Germany. Personal communication, 2020.
- Lenntech-B.V. Available online: https://www.lenntech.com/systems/reverse-osmosis/ro/rosmosis.htm (accessed on 10 November 2021).
- Siddiqi, A.; Fletcher, S. Energy intensity of water end-uses. Curr. Sustain. Energy Rep. 2015, 2, 25–31. [Google Scholar] [CrossRef]
- Association, S. (Ed.) Sphere Handbook: Humanitarian Charter and Minimum Standards in Humanitarian Response; Practical Action: Geneva, Switzerland, 2018. [Google Scholar]
- Chen, M.; Kang, Y.; Wan, S.; Liu, S.P. Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agric. Water Manag. 2009, 96, 1766–1772. [Google Scholar] [CrossRef]
- Burney, J.; Woltering, L.; Burke, M.; Naylor, R.; Pasternak, D. Solar-powered drip irrigation enhances food security in the Sudano–Sahel. Proc. Natl. Acad. Sci. USA 2010, 107, 1848–1853. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.I.; Sarkar, M.M.R.; Islam, M.Q. Design and analysis of a low cost solar water pump for irrigation in Bangladesh. J. Mech. Eng. 2013, 43, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Harishankar, S.; Kumar, R.S.; Sudharsan, K.; Vignesh, U.; Viveknath, T. Solar powered smart irrigation system. Adv. Electron. Electr. Eng. 2014, 4, 341–346. [Google Scholar]
- Algarni, S.; Saleel, C.; Mujeebu, M.A. Air-conditioning condensate recovery and applications—Current developments and challenges ahead. Sustain. Cities Soc. 2018, 37, 263–274. [Google Scholar] [CrossRef]
- Magrini, A.; Cattani, L.; Cartesegna, M.; Magnani, L. Integrated systems for air conditioning and production of drinking water–Preliminary considerations. Energy Procedia 2015, 75, 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- Adewole, B.Z.; Malomo, B.O.; Olatunji, O.P.; Ikobayo, A.O. Simulation and experimental verification of electrical power output of a microcontroller based solar tracking photovoltaic module. Int. J. Sustain. Energy Environ. Res. 2020, 9, 34–45. [Google Scholar] [CrossRef]
- Gruenert, G.; Gizynski, K.; Escuela, G.; Ibrahim, B.; Gorecki, J.; Dittrich, P. Understanding networks of computing chemical droplet neurons based on information flow. Int. J. Neural Syst. 2015, 25, 1450032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, S.; Ibrahim, B.; Dittrich, P. Linking Network Structure and Dynamics to Describe the Set of Persistent Species in Reaction Diffusion Systems. SIAM J. Appl. Dyn. Syst. 2021, 20, 2037–2076. [Google Scholar] [CrossRef]
- Peter, S.; Ghanim, F.; Dittrich, P.; Ibrahim, B. Organizations in reaction-diffusion systems: Effects of diffusion and boundary conditions. Ecol. Complex. 2020, 43, 100855. [Google Scholar] [CrossRef]
- Kreyssig, P.; Wozar, C.; Peter, S.; Veloz, T.; Ibrahim, B.; Dittrich, P. Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics 2014, 30, i475–i481. [Google Scholar] [CrossRef] [Green Version]
- Kreyssig, P.; Escuela, G.; Reynaert, B.; Veloz, T.; Ibrahim, B.; Dittrich, P. Cycles and the qualitative evolution of chemical systems. PLoS ONE 2012, 7, 45772. [Google Scholar] [CrossRef]
- Gruenert, G.; Ibrahim, B.; Lenser, T.; Lohel, M.; Hinze, T.; Dittrich, P. Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinform. 2010, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschernyschkow, S.; Herda, S.; Gruenert, G.; Döring, V.; Görlich, D.; Hofmeister, A.; Hoischen, C.; Dittrich, P.; Diekmann, S.; Ibrahim, B. Rule-based modeling and simulations of the inner kinetochore structure. Prog. Biophys. Mol. Biol. 2013, 113, 33–45. [Google Scholar] [CrossRef]
- Ibrahim, B.; Henze, R.; Gruenert, G.; Egbert, M.; Huwald, J.; Dittrich, P. Spatial rule-based modeling: A method and its application to the human mitotic kinetochore. Cells 2013, 2, 506–544. [Google Scholar] [CrossRef] [PubMed]
- Gruenert, G.; Szymanski, J.; Holley, J.; Escuela, G.; Diem, A.; Ibrahim, B.; Adamatzky, A.; Gorecki, J.; Dittrich, P. Multi-scale modelling of computers made from excitable chemical droplets. Int. J. Unconv. Comput. 2013, 9, 237–266. [Google Scholar]
- Ding, Z.; Gong, W.; Li, S.; Wu, Z. System dynamics versus agent-based modeling: A review of complexity simulation in construction waste management. Sustainability 2018, 10, 2484. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.H.; Baghban, A.; Sadeghzadeh, M.; Zamen, M.; Mosavi, A.; Shamshirband, S.; Kumar, R.; Mohammadi-Khanaposhtani, M. Evaluation of electrical efficiency of photovoltaic thermal solar collector. Eng. Appl. Comput. Fluid Mech. 2020, 14, 545–565. [Google Scholar] [CrossRef] [Green Version]
- Nathal-Energy. Supply Container. Available online: https://www.nathal-energy.com (accessed on 10 November 2021).
Port-au-Pr. | Djibouti | Colonia | Yakutsk | Puerto Will. | |
---|---|---|---|---|---|
Haiti | Djibouti | Uruguay | Russia | Chile | |
First aid | yes | yes | yes | no | no |
Shower | yes | yes | yes | no | no |
Refrigeration | yes | yes | yes | yes | yes |
Freezing | yes | yes | yes | yes | no |
WRI | 14.54 | 14.48 | 12.53 | 3.53 | 11.32 |
WRI rank | 21/181 | 17/181 | 27/181 | 137/181 | 33/181 |
Port-au-Prince | Djibouti | Colonia | Yakutsk | Puerto Williams | |
---|---|---|---|---|---|
mean of daily desalinated water (m3) | 14.0 | 14.9 | 12.5 | 10.3 | 7.7 |
standard deviation (m3) | 0.6 | 1.0 | 2.4 | 4.3 | 3.2 |
number of 15-liter rations | 933 | 993 | 833 | 686 | 513 |
range of daily rain water (liters) | 36–132 | 15–124 | 123–251 | 11–76 | 60–98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peter, S.; Schirmer, M.; Lathan, P.; Stimpfl, G.; Ibrahim, B. Performance Analysis of a Solar-Powered Multi-Purpose Supply Container. Sustainability 2022, 14, 5525. https://doi.org/10.3390/su14095525
Peter S, Schirmer M, Lathan P, Stimpfl G, Ibrahim B. Performance Analysis of a Solar-Powered Multi-Purpose Supply Container. Sustainability. 2022; 14(9):5525. https://doi.org/10.3390/su14095525
Chicago/Turabian StylePeter, Stephan, Matthias Schirmer, Philippe Lathan, Georg Stimpfl, and Bashar Ibrahim. 2022. "Performance Analysis of a Solar-Powered Multi-Purpose Supply Container" Sustainability 14, no. 9: 5525. https://doi.org/10.3390/su14095525
APA StylePeter, S., Schirmer, M., Lathan, P., Stimpfl, G., & Ibrahim, B. (2022). Performance Analysis of a Solar-Powered Multi-Purpose Supply Container. Sustainability, 14(9), 5525. https://doi.org/10.3390/su14095525