Investigation on New Metaheuristic Algorithms for Solving Dynamic Combined Economic Environmental Dispatch Problems
Abstract
:1. Introduction
2. Literature Review
- Improvement of some optimization methods, such as TSA, SOA, CSA, and FFA.
- Application of the proposed algorithms to solve single-and bi-objective DEED problems.
- The four techniques are validated and tested by applying them on the IEEE standard five-unit test system to demonstrate their robustness and accuracy.
3. DCEED Problem Formulation Including VPE
3.1. Objective Function
3.1.1. Dynamic Economic Load Dispatch Model (DED)
3.1.2. Dynamic Environmental Dispatch Model (DEnD)
3.2. Constraints Functions
3.2.1. Power Balance Constraint
3.2.2. Power Output Limits
4. Metaheuristic Approaches Applied to DEED
4.1. Seagull Optimization Algorithm (SOA)
4.1.1. Migration (Exploration)
4.1.2. Attacking (Exploitation)
4.2. Crow Search Algorithm (CSA)
Algorithm 1. Crow Search Algorithm |
1: Input: N number of crows in the population, and Maximum number of iteration (tmax). |
2: Output: Optimal crow position |
3: Initialize position of crows, and crows’ memory |
4: while t < tmax do |
5: for i= 1:N (all N crows of the flock) |
6: Choose a random crow (i.e. Mj), and determine a value of an awareness probability AP |
7: if |
8: |
9: else |
10: random position of search space |
11: end if |
12: end for |
13: Check solution boundaries. |
14: Calculate the fitness of each crow |
15: Update Crows’ memory |
16: end while |
4.3. Tunicate Swarm Algorithm (TSA)
- Step 1: Create the initial tunicate population.
- Step 2: Determine the control units of TSA and stopping criteria.
- Step 3: Compute the fitness values of the initial population.
- Step 4: Select the position of the tunicate with the best fitness value.
- Step 5: Create the new position for each tunicate by using Equation (18).
- Step 6: Update the position of the tunicates that are out of the search space.
- Step 7: Compute the fitness values for the new positions of tunicates.
- Step 8: Until stopping criteria is satisfied, repeat steps 5–8.
- Step 9: After stopping criteria is satisfied, save the best tunicate position.
4.4. Overview of the Firefly Algorithm (FFA)
4.4.1. Attractiveness
4.4.2. Distance
4.4.3. Movement
5. Simulation Results and Discussion
5.1. IEEE Five-Unit Test System
- Case 1: Dynamic economic dispatch DED;
- Case 2: Dynamic environmental dispatch DEnD;
- Case 3: Dynamic economic emission dispatch DEED.
5.1.1. Case 1
Methods | Total Loss MW | Total Fuel Cost USD/h | Total Emission |
---|---|---|---|
CSA | 193.393 | 42,425.455 | 21,960.553 |
SOA | 204.660 | 48,609.770 | 32,652.860 |
TSA | 198.278 | 46,672.479 | 27,641.230 |
FFA | 191.298 | 45,474.198 | 24,862.338 |
PSOGSA [48] | NA | 42,853.339 | 22,087.887 |
NEHS [49] | NA | 43,066.073 | NA |
MHS [49] | NA | 45,497.740 | NA |
HS-NPSA [49] | NA | 43,927.305 | NA |
DE-SQP [50] | NA | 45,590.000 | 23,567.000 |
PSO [47] | NA | 47,852.000 | 22,405.000 |
5.1.2. Case 2
5.1.3. Case 3
5.2. IEEE 10-Unit Test System
- Case 4: Dynamic economic dispatch DED ;
- Case 5: Dynamic environmental dispatch DEnD ;
- Case 6: Dynamic economic emission dispatch DEED ;
5.2.1. Case 4
5.2.2. Case 5
Methods | Total Fuel Cost | Total Emission |
---|---|---|
CSA | 2.625940 | 2.93540 |
GCABC [60] | NA | 2.93416 |
TLBO [61] | 2.594148 | 2.94153 |
IHS [49] | NA | 2.96044 |
MHS [49] | NA | 3.02093 |
NSGA-II [58] | 2.656300 | 3.04120 |
CRO [62] | NA | 3.17400 |
HCRO [62] | NA | 3.27500 |
5.2.3. Case 6
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CEED | Combined economic environmental dispatch |
DED | Dynamic economic dispatch |
DEnD | Dynamic environmental dispatch |
DEED | Dynamic economic emission dispatch |
DCEELDP | Dynamic combined economic emission load dispatch problem |
EED | Economic emission dispatch |
FC | Fuel cost |
Coefficients of the fuel cost corresponding of generator i | |
Fuel cost coefficients of generator due to VPE | |
Emission curve coefficients | |
Power losses | |
Weighting factor |
References
- Larouci, B.; Benasla, L.; Belmadani, A.; Rahli, M. Cuckoo Search Algorithm for Solving Economic Power Dispatch Problem with Consideration of Facts Devices. UPB Sci. Bull. Ser. C 2017, 79, 43–54. [Google Scholar]
- Ryu, H.-S.; Kim, M.-K. Combined Economic Emission Dispatch with Environment-Based Demand Response Using WU-ABC Algorithm. Energies 2020, 13, 6450. [Google Scholar] [CrossRef]
- Razali, N.S.; Mansor, M.H.; Musirin, I.; Othman, M.M.; Akoury, M. Embedded Immune-Evolutionary Programming for Economic Dispatch of Generators with Prohibited Operating Zones. Int. J. Eng. Technol. 2018, 7, 183–186. [Google Scholar] [CrossRef]
- Vahidi, M.; Vahdani, S.; Rahimian, A.; Jamshidi, M.-N.; Kanee, A.-T. Evolutionary-base finite element model updating and damage detection using modal testing results. Struct. Eng. Mech. 2019, 70, 339–350. [Google Scholar]
- Al-Betar, M.A.; Awadallah, M.A.; Abu Doush, I.; Alsukhni, E.; Alkhraisat, H. A Non-convex Economic Dispatch Problem with Valve Loading Effect Using a New Modified β -Hill Climbing Local Search Algorithm. Arab. J. Sci. Eng. 2018, 43, 7439–7456. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X.; Dong, M.; Li, H.-P. An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation. J. Cent. South Univ. 2018, 25, 107–120. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.-M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Zhou, A. A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol. Comput. 2021, 60, 100808. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Albashish, D.; Hammouri, A.I.; Braik, M.; Atwan, J.; Sahran, S. Binary biogeography-based optimization based SVM-RFE for feature selection. Appl. Soft Comput. 2021, 101, 107026. [Google Scholar] [CrossRef]
- Li, L.-L.; Shen, Q.; Tseng, M.-L.; Luo, S. Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish algorithm. J. Clean. Prod. 2021, 316, 128318. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Li, L.-L.; Liu, Y.-W.; Liu, J.-Q.; Li, H.-Y.; Shen, Q. Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach. Energy 2021, 235, 121407. [Google Scholar] [CrossRef]
- Li, L.-L.; Liu, Z.-F.; Tseng, M.-L.; Zheng, S.-J.; Lim, M.K. Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems. Appl. Soft Comput. 2021, 108, 107504. [Google Scholar] [CrossRef]
- Qiao, B.; Liu, J.; Hao, X. A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems. Appl. Soft Comput. 2021, 108, 107419. [Google Scholar] [CrossRef]
- Zou, Y.; Zhao, J.; Ding, D.; Miao, F.; Sobhani, B.F. Solving dynamic economic and emission dispatch in power system integrated electric vehicle and wind turbine using multi-objective virus colony search algorithm. Sustain. Cities Soc. 2021, 67, 102722. [Google Scholar] [CrossRef]
- Yao, L.; Li, J.; Liang, H. Dynamic Economic/Emission Dispatch Considering Renewable Energy and PEVs. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021. [Google Scholar] [CrossRef]
- Yang, W.; Peng, Z.; Yang, Z.; Guo, Y.; Chen, X. An enhanced exploratory whale optimization algorithm for dynamic economic dispatch. Energy Rep. 2021, 7, 7015–7029. [Google Scholar] [CrossRef]
- Gul, R.N.; Ahmad, A.; Fayyaz, S.; Sattar, M.K.; Haq, S.S.U. Hybrid Flower Pollination Algorithm with Sequential Quadratic Programming Technique for Solving Dynamic Combined Economic Emission Dispatch Problem. Mehran Univ. Res. J. Eng. Technol. 2021, 40, 371–382. [Google Scholar] [CrossRef]
- Xia, A.; Wu, X.; Bai, Y. A new multi-objective hybrid optimization algorithm for wind-thermal dynamic economic emission power dispatch. Int. Trans. Electr. Energy Syst. 2021, 31, e12966. [Google Scholar] [CrossRef]
- Alshammari, M.; Ramli, M.; Mehedi, I. A New Chaotic Artificial Bee Colony for the Risk-Constrained Economic Emission Dispatch Problem Incorporating Wind Power. Energies 2021, 14, 4014. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Abualigah, L.; Eid, A. Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst. Appl. 2021, 182, 115205. [Google Scholar] [CrossRef]
- Ajayi, O.; Heymann, R. Day-ahead combined economic and emission dispatch with spinning reserve consideration using moth swarm algorithm for a data centre load. Heliyon 2021, 7, e08054. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, S.; Sattar, M.K.; Waseem, M.; Ashraf, M.U.; Ahmad, A.; Hussain, H.A.; Alsubhi, K. Solution of Combined Economic Emission Dispatch Problem Using Improved and Chaotic Population-Based Polar Bear Optimization Algorithm. IEEE Access 2021, 9, 56152–56167. [Google Scholar] [CrossRef]
- Larouci, B.; Si Tayeb, A.; Boudjella, H.; Ayad, A.N.E.I. Cuckoo search algorithm to solve the problem of economic emission dispatch with the incorporation of facts devices under the valve-point loading effect. Facta Univ. Ser. Electron. Energ. 2021, 34, 569–588. [Google Scholar] [CrossRef]
- Si Tayeb, A.; Larouci, B.; Rezzak, D.; Houam, Y.; Bouzeboudja, H.; Bouchakour, A. Application of a new hybridization to solve economic dispatch problem on an algerian power system without or with connection to a renewable energy. Diagnostyka 2021, 22, 101–112. [Google Scholar] [CrossRef]
- Kuk, J.N.; Gonçalves, R.A.; Pavelski, L.M.; Venske, S.M.G.S.; de Almeida, C.P.; Pozo, A.T.R. An empirical analysis of constraint handling on evolutionary multi-objective algorithms for the Environmental/Economic Load Dispatch problem. Expert Syst. Appl. 2021, 165, 113774. [Google Scholar] [CrossRef]
- Prasad, R.S.; Sud, R. The pivotal role of UNFCCC in the international climate policy landscape: A developing country perspective. Glob. Aff. 2021, 7, 67–78. [Google Scholar] [CrossRef]
- Van Hong, T.P.; Ngoc, D.V.; Tuan, K.D. Environmental Economic Dispatch Using Stochastic Fractal Search Algorithm. In Proceedings of the 2021 International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh, Vietnam, 15–16 April 2021; pp. 214–219. [Google Scholar]
- Chakrabarti, S.; Panja, A.K.; Mukherjee, A.; Bar, A.K. Application of Multi-Objective Particle Swarm Optimization Technique for Analytical Solution of Economic and Environmental Dispatch. In Intelligent Electrical Systems: A Step towards Smarter Earth; CRC Press: Boca Raton, FL, USA, 2021; pp. 313–319. [Google Scholar]
- Boudjella, H.; Laouer, M.; Bouzeboudja, H.; Ayad, A.N.E.I.; Benhamida, F.; Saad, A. Solution of Economic Load Dispatch Problems Using Novel Improved Harmony Search Algorithm. Int. J. Electr. Eng. Inform. 2021, 13, 218–241. [Google Scholar] [CrossRef]
- Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Rezaee Jordehi, A. Dynamic environmental-economic load dispatch in grid-connected microgrids with demand response programs considering the uncertainties of demand, renewable generation and market price. Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 34, e2798. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, D.; Kaur, M.; Singh, D.; Idris, S.A.; Alshazly, H. A Novel Binary Seagull Optimizer and its Application to Feature Selection Problem. IEEE Access 2021, 9, 103481–103496. [Google Scholar] [CrossRef]
- Sharifi, M.R.; Akbarifard, S.; Qaderi, K.; Madadi, M.R. Comparative analysis of some evolutionary-based models in optimization of dam reservoirs operation. Sci. Rep. 2021, 11, 15611. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Xing, Z.; Song, W. A New Hybrid Seagull Optimization Algorithm for Feature Selection. IEEE Access 2019, 7, 49614–49631. [Google Scholar] [CrossRef]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Han, X.; Xu, Q.; Yue, L.; Dong, Y.; Xie, G.; Xu, X. An Improved Crow Search Algorithm Based on Spiral Search Mechanism for Solving Numerical and Engineering Optimization Problems. IEEE Access 2020, 8, 92363–92382. [Google Scholar] [CrossRef]
- Meraihi, Y.; Gabis, A.B.; Ramdane-Cherif, A.; Acheli, D. A comprehensive survey of Crow Search Algorithm and its applications. Artif. Intell. Rev. 2021, 54, 2669–2716. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Fetouh, T.; Elsayed, A.M. Optimal Control and Operation of Fully Automated Distribution Networks Using Improved Tunicate Swarm Intelligent Algorithm. IEEE Access 2020, 8, 129689–129708. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Dasgotra, A.; Jately, V.; Ram, M.; Rajput, S.; Azzopardi, B.; Averbukh, M. Opposition-Based Tunicate Swarm Algorithm for Parameter Optimization of Solar Cells. IEEE Access 2021, 9, 125590–125602. [Google Scholar] [CrossRef]
- Yang, X.S. Firefly algorithms for multimodal optimization. In Proceedings of the 5th International Symposium on Stochastic Algorithms, Sapporo, Japan, 26–28 October 2009; pp. 169–178. [Google Scholar]
- Strumberger, I.; Bacanin, N.; Tuba, M. Enhanced firefly algorithm for constrained numerical optimization. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 2120–2127. [Google Scholar] [CrossRef]
- Chahnasir, E.S.; Zandi, Y.; Shariati, M.; Dehghani, E.; Toghroli, A.; Mohamad, E.T.; Shariati, A.; Safa, M.; Wakil, K.; Khorami, M. Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct. Syst. 2018, 22, 413–424. [Google Scholar]
- Wang, C.-F.; Song, W.-X. A novel firefly algorithm based on gender difference and its convergence. Appl. Soft Comput. 2019, 80, 107–124. [Google Scholar] [CrossRef]
- Basu, M. Particle Swarm Optimization Based Goal-Attainment Method for Dynamic Economic Emission Dispatch. Electr. Power Components Syst. 2006, 34, 1015–1025. [Google Scholar] [CrossRef]
- Hardiansyah, H. Hybrid PSOGSA technique for solving dynamic economic emission dispatch problem. Eng. Rev. 2020, 40, 96–104. [Google Scholar] [CrossRef]
- Li, Z.; Zou, D.; Kong, Z. A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss. Eng. Appl. Artif. Intell. 2019, 84, 18–40. [Google Scholar] [CrossRef]
- Shehata, A.M.; Elaiw, A.M. Hybrid DE-SOP for solving dynamic economic emission dispatch with prohibited operating. Int. J. Sci. Eng. Res. 2015, 6, 1136–1141. [Google Scholar]
- Zhang, H.; Yue, D.; Xie, X.; Hu, S.; Weng, S. Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch. Appl. Soft Comput. 2015, 34, 312–323. [Google Scholar] [CrossRef]
- Mehdi, M.F.; Ahmad, A.; Haq, S.S.U.; Saqib, M.; Ullah, M.F. Dynamic economic emission dispatch using whale optimization algorithm for multi-objective function. Electr. Eng. Electromech. 2021, 2, 64–69. [Google Scholar] [CrossRef]
- Mason, K.; Duggan, J.; Howley, E. A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch. Int. J. Electr. Power Energy Syst. 2018, 100, 201–221. [Google Scholar] [CrossRef]
- Basu, M. Dynamic Economic Emission Dispatch Using Evolutionary Programming and Fuzzy Satisfying Method. Int. J. Emerg. Electr. Power Syst. 2007, 8. [Google Scholar] [CrossRef]
- Alsumait, J.S.; Qasem, M.; Sykulski, J.; Al-Othman, A.K. An improved Pattern Search based algorithm to solve the Dynamic Economic Dispatch problem with valve-point effect. Energy Convers. Manag. 2010, 51, 2062–2067. [Google Scholar] [CrossRef] [Green Version]
- Kothari, D.P.; Dhillon, J.S. Power System Optimization, 2nd ed.; PHI Learning Private Ltd.: New Delhi, India, 2011. [Google Scholar]
- Pattanaik, J.K.; Basu, M.; Dash, D.P. Dynamic economic dispatch: A comparative study for differential evolution, particle swarm optimization, evolutionary programming, genetic algorithm, and simulated annealing. J. Electr. Syst. Inf. Technol. 2019, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Basu, M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II. Int. J. Electr. Power Energy Syst. 2008, 30, 140–149. [Google Scholar] [CrossRef]
- Pandit, N.; Tripathi, A.; Tapaswi, S.; Pandit, M. An improved bacterial foraging algorithm for combined static/dynamic environmental economic dispatch. Appl. Soft Comput. 2012, 12, 3500–3513. [Google Scholar] [CrossRef]
- Marouani, I.; Boudjemline, A.; Guesmi, T.; Abdallah, H.H. A Modified Artificial Bee Colony for the Non-Smooth Dynamic Economic/Environmental Dispatch. Eng. Technol. Appl. Sci. Res. 2018, 8, 3321–3328. [Google Scholar] [CrossRef]
- Alshammari, B.M. Teaching-Learning-Based Optimization Algorithm for the Combined Dynamic Economic Environmental Dispatch Problem. Eng. Technol. Appl. Sci. Res. 2020, 10, 6432–6437. [Google Scholar] [CrossRef]
- Roy, P.K.; Bhui, S. A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch. Int. Trans. Electr. Energy Syst. 2016, 26, 49–78. [Google Scholar] [CrossRef]
- Alshammari, M.E.; Ramli, M.A.; Mehedi, I.M. An Elitist Multi-Objective Particle Swarm Optimization Algorithm for Sustainable Dynamic Economic Emission Dispatch Integrating Wind Farms. Sustainability 2020, 12, 7253. [Google Scholar] [CrossRef]
- Qian, S.; Wu, H.; Xu, G. An improved particle swarm optimization with clone selection principle for dynamic economic emission dispatch. Soft Comput. 2020, 24, 15249–15271. [Google Scholar] [CrossRef]
Algorithm | Parameters |
---|---|
SOA | N = 50, tmax = 1000, u = 1, v = 0.011 |
CSA | N = 50, itermax= 1000, fl = 2, AP = 0.1 |
TSA | m = 50, itermax = 1000, VTmin= 1, VTmax= 4 |
FFA | N = 100, itermax= 1000, = 1, γ = 1, α = 0.1, |
Unit | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | 2.0 | 0.0080 | 100 | 0.042 | 80 | −0.805 | 0.0180 | 0.6550 | 0.02846 | 10 | 75 | 1.8201 | |
60 | 1.8 | 0.0030 | 140 | 0.040 | 50 | −0.555 | 0.0150 | 0.5773 | 0.02446 | 20 | 125 | 1.5436 | |
100 | 2.1 | 0.0012 | 160 | 0.038 | 60 | −1.355 | 0.0105 | 0.4968 | 0.02270 | 30 | 175 | 3.4911 | |
120 | 2.0 | 0.0010 | 180 | 0.037 | 45 | −0.600 | 0.0080 | 0.4860 | 0.01948 | 40 | 250 | 1.7278 | |
40 | 1.8 | 0.0015 | 200 | 0.035 | 30 | −0.555 | 0.0120 | 0.5035 | 0.02075 | 50 | 300 | 0.7578 |
Time (h) | Load (MW) | Time (h) | Load (MW) | Time (h) | Load (MW) |
---|---|---|---|---|---|
1 | 410 | 9 | 690 | 17 | 558 |
2 | 435 | 10 | 704 | 18 | 608 |
3 | 475 | 11 | 720 | 19 | 654 |
4 | 530 | 12 | 740 | 20 | 704 |
5 | 558 | 13 | 704 | 21 | 680 |
6 | 608 | 14 | 690 | 22 | 605 |
7 | 626 | 15 | 654 | 23 | 527 |
8 | 654 | 16 | 580 | 24 | 463 |
Time h | MW | MW | MW | MW | MW | MW | MW | Fuel Cost USD/h | Emission |
---|---|---|---|---|---|---|---|---|---|
1 | 84.804 | 98.539 | 50.652 | 40.000 | 139.759 | 410 | 3.756 | 1363.640 | 546.604 |
2 | 48.075 | 98.539 | 112.673 | 40.000 | 139.759 | 435 | 4.048 | 1380.410 | 510.742 |
3 | 88.876 | 98.539 | 112.673 | 40.000 | 139.759 | 475 | 4.849 | 1423.790 | 584.122 |
4 | 59.954 | 98.539 | 112.673 | 124.908 | 139.759 | 530 | 5.835 | 1584.710 | 590.865 |
5 | 84.139 | 98.539 | 112.673 | 40.000 | 229.519 | 558 | 6.872 | 1604.790 | 969.866 |
6 | 55.079 | 98.539 | 112.673 | 209.816 | 139.759 | 608 | 7.868 | 1777.140 | 784.062 |
7 | 73.529 | 98.539 | 112.673 | 209.816 | 139.759 | 626 | 8.317 | 1783.770 | 814.087 |
8 | 97.449 | 98.539 | 112.673 | 124.908 | 229.519 | 654 | 9.090 | 1882.450 | 1071.515 |
9 | 49.619 | 98.539 | 112.673 | 209.816 | 229.519 | 690 | 10.168 | 1977.660 | 1175.437 |
10 | 64.011 | 98.539 | 112.673 | 209.816 | 229.519 | 704 | 10.559 | 1996.590 | 1194.648 |
11 | 80.483 | 98.539 | 112.673 | 209.815 | 229.519 | 720 | 11.032 | 1989.970 | 1226.653 |
12 | 101.112 | 98.539 | 112.673 | 209.816 | 229.519 | 740 | 11.662 | 2106.450 | 1282.648 |
13 | 64.0110 | 98.539 | 112.673 | 209.816 | 229.519 | 704 | 10.559 | 1996.590 | 1194.648 |
14 | 49.619 | 98.539 | 112.673 | 209.816 | 229.519 | 690 | 10.168 | 1977.660 | 1175.437 |
15 | 97.449 | 98.539 | 112.673 | 124.908 | 229.519 | 654 | 9.090 | 1882.450 | 1071.515 |
16 | 84.800 | 40.058 | 112.673 | 209.816 | 139.759 | 580 | 7.108 | 1746.070 | 745.131 |
17 | 84.139 | 98.539 | 112.673 | 40.000 | 229.519 | 558 | 6.872 | 1604.790 | 969.866 |
18 | 55.079 | 98.539 | 112.673 | 209.816 | 139.759 | 608 | 7.868 | 1777.140 | 784.062 |
19 | 97.449 | 98.539 | 112.673 | 124.908 | 229.519 | 654 | 9.090 | 1882.450 | 1071.515 |
20 | 64.011 | 98.539 | 112.673 | 209.816 | 229.519 | 704 | 10.559 | 1996.590 | 1194.648 |
21 | 39.353 | 98.539 | 112.673 | 209.816 | 229.519 | 680 | 9.902 | 1944.590 | 1166.578 |
22 | 52.007 | 98.539 | 112.673 | 209.816 | 139.759 | 605 | 7.796 | 1771.650 | 780.351 |
23 | 56.889 | 98.539 | 112.673 | 124.908 | 139.759 | 527 | 5.771 | 1581.460 | 586.584 |
24 | 81.432 | 98.539 | 112.673 | 124.908 | 50.000 | 463 | 4.553 | 1392.530 | 468.968 |
Time h | MW | MW | MW | MW | MW | MW | MW | Fuel Cost USD/h | Emission |
---|---|---|---|---|---|---|---|---|---|
1 | 54.679 | 58.236 | 116.571 | 110.598 | 73.364 | 410 | 3.448 | 352.453 | 1723.627 |
2 | 58.067 | 62.383 | 121.851 | 117.982 | 78.601 | 435 | 3.885 | 385.960 | 1784.169 |
3 | 63.526 | 69.080 | 130.221 | 129.751 | 87.063 | 475 | 4.641 | 446.642 | 1912.114 |
4 | 71.120 | 78.439 | 141.552 | 145.801 | 98.890 | 530 | 5.797 | 544.648 | 2135.506 |
5 | 75.032 | 83.262 | 147.232 | 153.895 | 105.008 | 558 | 6.431 | 601.208 | 2203.616 |
6 | 82.107 | 92.034 | 157.218 | 168.176 | 116.119 | 608 | 7.654 | 713.801 | 2241.188 |
7 | 84.684 | 95.241 | 160.760 | 173.252 | 120.183 | 626 | 8.121 | 758.078 | 2229.487 |
8 | 88.729 | 100.286 | 166.212 | 181.072 | 126.577 | 654 | 8.876 | 831.019 | 2240.807 |
9 | 93.996 | 106.880 | 173.119 | 190.970 | 134.934 | 690 | 9.898 | 932.292 | 2270.804 |
10 | 96.065 | 109.478 | 175.772 | 194.768 | 138.227 | 704 | 10.311 | 974.021 | 2274.187 |
11 | 98.446 | 112.472 | 178.783 | 199.072 | 142.020 | 720 | 10.794 | 1023.365 | 2305.246 |
12 | 101.444 | 116.253 | 182.514 | 204.393 | 146.809 | 740 | 11.414 | 1087577 | 2365.552 |
13 | 96.065 | 109.478 | 175.772 | 194.768 | 138.227 | 704 | 10.311 | 974.021 | 2274.190 |
14 | 93.996 | 106.879 | 173.119 | 190.970 | 134.934 | 690 | 9.898 | 932.292 | 2270.804 |
15 | 88.729 | 100.286 | 166.212 | 181.072 | 126.577 | 654 | 8.876 | 831.019 | 2240.804 |
16 | 78.130 | 87.098 | 151.652 | 160.208 | 109.866 | 580 | 6.955 | 648.892 | 2233.356 |
17 | 75.032 | 83.262 | 147.233 | 153.895 | 105.008 | 558 | 6.431 | 601.208 | 2203.615 |
18 | 82.107 | 92.034 | 157.218 | 168.176 | 116.119 | 608 | 7.654 | 713.801 | 2241.189 |
19 | 88.729 | 100.286 | 166.212 | 181.072 | 126.577 | 654 | 8.876 | 831.019 | 2240.807 |
20 | 96.066 | 109.478 | 175.772 | 194.768 | 138.227 | 704 | 10.311 | 974.021 | 2274.187 |
21 | 92.525 | 105.036 | 171.212 | 188.239 | 132.596 | 680 | 9.609 | 903.298 | 2265.782 |
22 | 81.678 | 91.502 | 156.625 | 167.326 | 115.445 | 605 | 7.577 | 706.617 | 2241.906 |
23 | 70.703 | 77.915 | 140.940 | 144.931 | 98.239 | 527 | 5.727 | 538.858 | 2126.253 |
24 | 61.883 | 67.063 | 127.721 | 126.227 | 84.514 | 463 | 4.407 | 427.514 | 1850.281 |
Methods | Total Loss MW | Total Fuel Cost USD/h | Total Emission |
---|---|---|---|
CSA | 187.901 | 51,149.500 | 17,733.600 |
SOA | 189.766 | 51,385.300 | 18,743.100 |
TSA | 188.825 | 51,878.700 | 18,602.800 |
FFA | 187.070 | 51,263.500 | 19,840.200 |
NEHS [49] | NA | NA | 17,853.003 |
MHS [49] | NA | NA | 17,937.408 |
HS-NPSA [49] | NA | NA | 17,872.348 |
PSOGSA [48] | NA | 51,953.905 | 17,852.979 |
DE-SQP [50] | NA | 52,611.000 | 18,955.000 |
PSO [47] | NA | 53,086.000 | 19,094.000 |
Time h | MW | MW | MW | MW | MW | MW | MW | Fuel Cost USD/h | Emission | CEED USD/h |
---|---|---|---|---|---|---|---|---|---|---|
1 | 23.221 | 95.066 | 118.179 | 125.507 | 51.646 | 410.00 | 3.619 | 1343.493 | 400.897 | 1814.930 |
2 | 42.464 | 84.193 | 112.348 | 124.800 | 75.142 | 435.00 | 3.946 | 1607.846 | 399.951 | 2078.248 |
3 | 46.363 | 94.690 | 111.484 | 87.447 | 139.713 | 475.00 | 4.697 | 1670.469 | 519.509 | 2254.467 |
4 | 26.838 | 99.530 | 114.280 | 126.507 | 168.745 | 530.00 | 5.899 | 1745.194 | 669.218 | 2475.641 |
5 | 33.564 | 92.891 | 123.185 | 175.142 | 139.753 | 558.00 | 6.536 | 1902.752 | 665.000 | 2649.852 |
6 | 73.336 | 98.983 | 157.530 | 146.016 | 139.760 | 608.00 | 7.625 | 2031.153 | 728.731 | 2893.762 |
7 | 57.750 | 99.767 | 123.604 | 210.658 | 142.515 | 626.00 | 8.294 | 1914.203 | 816.010 | 2838.928 |
8 | 51.884 | 88.674 | 103.432 | 204.515 | 214.625 | 654.00 | 9.131 | 2131.606 | 1040.647 | 3248.435 |
9 | 53.142 | 97.776 | 114.207 | 209.557 | 225.462 | 690.00 | 10.144 | 2019.883 | 1153.740 | 3260.318 |
10 | 54.142 | 109.352 | 112.662 | 209.810 | 228.632 | 704.00 | 10.598 | 2075.861 | 1204.781 | 3370.372 |
11 | 73.636 | 100.102 | 117.640 | 210.105 | 229.527 | 720.00 | 11.010 | 2052.002 | 1223.114 | 3381.405 |
12 | 72.069 | 116.167 | 123.841 | 210.056 | 229.502 | 740.00 | 11.635 | 2224.386 | 1274.535 | 3613.856 |
13 | 66.908 | 98.680 | 173.744 | 145.451 | 229.517 | 704.00 | 10.300 | 2236.929 | 1154.978 | 3523.693 |
14 | 61.029 | 98.536 | 102.648 | 209.815 | 228.176 | 690.00 | 10.204 | 2036.995 | 1171.356 | 3293.254 |
15 | 66.581 | 117.798 | 115.698 | 213.160 | 149.886 | 654.00 | 9.123 | 2078.304 | 903.466 | 3098.415 |
16 | 22.005 | 101.970 | 112.492 | 124.576 | 226.155 | 580.00 | 7.200 | 1701.781 | 948.532 | 2700.991 |
17 | 24.788 | 95.120 | 109.230 | 195.916 | 139.614 | 558.00 | 6.667 | 1740.035 | 706.614 | 2521.975 |
18 | 66.807 | 83.120 | 156.707 | 124.906 | 184.080 | 608.00 | 7.620 | 2199.492 | 803.606 | 3116.141 |
19 | 61.025 | 110.762 | 116.453 | 209.863 | 164.984 | 654.00 | 9.087 | 2122.958 | 915.351 | 3145.552 |
20 | 61.190 | 96.517 | 118.054 | 209.294 | 229.473 | 704.00 | 10.528 | 2049.371 | 1189.705 | 3333.294 |
21 | 61.279 | 77.640 | 112.693 | 208.694 | 229.519 | 680.00 | 9.825 | 2055.372 | 1140.486 | 3280.867 |
22 | 66.280 | 38.471 | 112.702 | 209.818 | 185.459 | 605.00 | 7.729 | 2051.944 | 873.120 | 3013.830 |
23 | 47.683 | 93.663 | 126.697 | 124.929 | 139.771 | 527.00 | 5.741 | 1693.775 | 582.538 | 2357.800 |
24 | 41.562 | 70.450 | 112.609 | 124.880 | 117.903 | 463.00 | 4.404 | 1696.097 | 452.880 | 2212.678 |
Methods | Total Loss MW | Total Fuel Cost | Total Emission | Total Cost | Change % w.r.t CSA |
---|---|---|---|---|---|
CSA | 192.386 | 46,381.900 | 20,938.800 | 33,660.350 | // |
SOA | 196.961 | 48,500.800 | 21,130.100 | 34,815.450 | 3.43 |
TSA | 194.204 | 45,816.300 | 22,424.800 | 33,942.950 | 0.84 |
FFA | 192.451 | 47,030.700 | 22,069.600 | 34,550.150 | 2.64 |
NEHS [49] | NA | 45,398.016 | 18,392.337 | 31,895.177 | −5.24 |
MHS [49] | NA | 47,390.956 | 18,423.776 | 32,907.366 | −2.24 |
MOHDESAT [51] | NA | 48,214.000 | 18,011.000 | 33,112.500 | −1.63 |
WOA [52] | NA | 46,475.090 | 18,827.980 | 32,651.530 | −2.99 |
PSOGSA [48] | NA | 45,702.6001 | 18,267.179 | 31,984.985 | −5.24 |
DE-SQP [50] | NA | 46,625.000 | 20,527.000 | 33,576.000 | −0.002 |
PSO [47] | NA | 50,893.000 | 20,163.000 | 35,528.000 | 5.55 |
MONNDE [53] | NA | 49,135.000 | 18,233.000 | 33,684.240 | 0.06 |
EP [54] | NA | 48,628.000 | 21,154.000 | 34,891.000 | 3.66 |
SA [51] | NA | 48,621.000 | 21,188.000 | 33,904.500 | 0.73 |
PS [55] | NA | 47,911.000 | 18,927.000 | 33,419.000 | −0.72 |
MODE [51] | NA | 47,330.000 | 18,116.000 | 32,723.000 | −2.78 |
Case 1 | Economic Load Dispatch ELD (USD/h) | |||
---|---|---|---|---|
Algorithm | Min | Average | Worst | Std Dev |
CSA | 2142.3181 | 2164.8135 | 2593.5470 | 55.4145 |
SOA | 2456.3468 | 2537.9394 | 5577.4323 | 290.6773 |
TSA | 2269.2981 | 2293.2777 | 3635.3608 | 113.8379 |
FFA | 2265.5019 | 2310.7733 | 2926.1582 | 100.0485 |
Case 2 | Environmental Dispatch EnD (lb/h) | |||
CSA | 1090.3380 | 1111.2373 | 1421.8938 | 58.9938 |
SOA | 1160.6740 | 1757.2506 | 3536.7399 | 499.4472 |
TSA | 1295.4652 | 1506.9932 | 1728.0597 | 83.5214 |
FFA | 1241.5852 | 1323.0107 | 5121.1719 | 331.6223 |
Case 3 | Combined Economic Emission Dispatch CEED (USD/h) | |||
CSA | 1646.9098 | 1652.9305 | 1784.2619 | 22.1540 |
SOA | 1955.3266 | 2153.2196 | 3553.8243 | 418.7256 |
TSA | 1879.5231 | 1992.3606 | 2203.5179 | 99.1567 |
FFA | 1848.8820 | 1878.6942 | 2216.4237 | 67.0644 |
Unit | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
786.7988 | 38.5397 | 0.1524 | 450 | 0.0410 | 103.3908 | −2.4444 | 0.0312 | 0.5035 | 0.0207 | 150 | 470 | |
451.3251 | 46.1591 | 0.1058 | 600 | 0.0360 | 103.3908 | −2.4444 | 0.0312 | 0.5035 | 0.0207 | 135 | 470 | |
1049.9977 | 40.3965 | 0.0280 | 320 | 0.0280 | 300.3910 | −4.0695 | 0.0509 | 0.4968 | 0.0202 | 73 | 340 | |
1243.5311 | 38.3055 | 0.0354 | 260 | 0.0520 | 300.3910 | −4.0695 | 0.0509 | 0.4968 | 0.0202 | 60 | 300 | |
1658.5696 | 36.3278 | 0.0211 | 280 | 0.0630 | 320.0006 | −3.8132 | 0.0344 | 0.4972 | 0.0200 | 73 | 243 | |
1356.6592 | 38.2704 | 0.0179 | 310 | 0.0480 | 320.0006 | −3.8132 | 0.0344 | 0.4972 | 0.0200 | 57 | 160 | |
1450.7045 | 36.5104 | 0.0121 | 300 | 0.0860 | 330.0056 | −3.9023 | 0.0465 | 0.5163 | 0.0214 | 20 | 130 | |
1450.7045 | 36.5104 | 0.0121 | 340 | 0.0820 | 330.0056 | −3.9023 | 0.0465 | 0.5163 | 0.0214 | 47 | 120 | |
1455.6056 | 39.5804 | 0.1090 | 270 | 0.0980 | 350.0056 | −3.9524 | 0.0465 | 0.5475 | 0.0234 | 20 | 80 | |
1469.4026 | 40.5407 | 0.1295 | 380 | 0.0940 | 360.0012 | −3.9864 | 0.0470 | 0.5475 | 0.0234 | 10 | 55 |
0.49 | 0.14 | 0.15 | 0.15 | 0.16 | 0.17 | 0.17 | 0.18 | 0.19 | 0.20 |
0.14 | 0.45 | 0.16 | 0.16 | 0.17 | 0.15 | 0.15 | 0.16 | 0.18 | 0.18 |
0.15 | 0.16 | 0.39 | 0.10 | 0.12 | 0.14 | 0.14 | 0.16 | 0.16 | 0.16 |
0.15 | 0.16 | 0.10 | 0.40 | 0.14 | 0.10 | 0.11 | 0.12 | 0.14 | 0.15 |
0.16 | 0.17 | 0.12 | 0.14 | 0.35 | 0.11 | 0.13 | 0.13 | 0.15 | 0.16 |
0.17 | 0.15 | 0.12 | 0.10 | 0.11 | 0.36 | 0.12 | 0.12 | 0.14 | 0.15 |
0.17 | 0.15 | 0.14 | 0.11 | 0.13 | 0.12 | 0.38 | 0.16 | 0.16 | 0.18 |
0.18 | 0.16 | 0.14 | 0.12 | 0.13 | 0.12 | 0.16 | 0.40 | 0.15 | 0.16 |
0.19 | 0.18 | 0.16 | 0.14 | 0.15 | 0.14 | 0.16 | 0.15 | 0.42 | 0.19 |
0.20 | 0.18 | 0.16 | 0.15 | 0.16 | 0.15 | 0.18 | 0.16 | 0.19 | 0.44 |
Time (h) | Load (MW) | Time (h) | Load (MW) | Time (h) | Load (MW) |
---|---|---|---|---|---|
1 | 1036 | 9 | 1924 | 17 | 1480 |
2 | 1110 | 10 | 2022 | 18 | 1628 |
3 | 1258 | 11 | 2106 | 19 | 1776 |
4 | 1406 | 12 | 2150 | 20 | 1972 |
5 | 1480 | 13 | 2072 | 21 | 1924 |
6 | 1628 | 14 | 1924 | 22 | 1628 |
7 | 1702 | 15 | 1776 | 23 | 1332 |
8 | 1776 | 16 | 1554 | 24 | 1184 |
Time h | Fuel Cost | Emission | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 150.510 | 135.104 | 80.705 | 62.302 | 169.338 | 122.675 | 125.946 | 119.882 | 54.877 | 34.491 | 19.832 | 61,600.519 | 3803.894 |
2 | 150.006 | 135.034 | 146.567 | 120.465 | 175.863 | 122.983 | 128.759 | 118.303 | 20.993 | 13.373 | 22.336 | 64,906.264 | 4689.769 |
3 | 150.279 | 135.165 | 181.085 | 182.838 | 221.095 | 138.049 | 129.652 | 89.063 | 49.058 | 10.227 | 28.514 | 72,304.859 | 6228.359 |
4 | 150.009 | 135.007 | 224.237 | 191.995 | 242.419 | 159.944 | 129.963 | 119.998 | 44.613 | 43.418 | 35.606 | 80,271.190 | 7718.284 |
5 | 150.034 | 135.001 | 290.188 | 242.097 | 222.606 | 124.793 | 129.457 | 117.073 | 61.531 | 47.082 | 39.862 | 84,408.221 | 9763.984 |
6 | 150.032 | 144.110 | 339.873 | 298.516 | 242.647 | 159.853 | 98.936 | 118.058 | 79.997 | 44.509 | 48.532 | 94,297.297 | 13,307.920 |
7 | 222.445 | 135.032 | 330.607 | 299.754 | 239.465 | 159.924 | 129.960 | 116.990 | 70.059 | 51.333 | 53.563 | 100,946.056 | 13,761.749 |
8 | 224.611 | 213.686 | 339.936 | 291.807 | 242.827 | 139.143 | 129.115 | 119.997 | 79.959 | 54.035 | 59.116 | 107,884.313 | 14,564.055 |
9 | 272.168 | 323.499 | 339.776 | 299.530 | 242.880 | 159.038 | 129.950 | 120.000 | 65.817 | 42.489 | 71.142 | 124,932.384 | 17,534.742 |
10 | 299.063 | 395.517 | 339.995 | 293.040 | 242.928 | 159.991 | 122.587 | 114.212 | 79.889 | 55.000 | 80.219 | 137,626.028 | 20,656.966 |
11 | 341.347 | 449.088 | 339.950 | 296.452 | 243.000 | 159.982 | 129.965 | 110.813 | 79.997 | 44.020 | 88.609 | 150,876.695 | 26,836.868 |
12 | 386.873 | 450.590 | 339.134 | 299.972 | 242.996 | 156.337 | 129.852 | 119.998 | 79.960 | 37.402 | 93.114 | 157,522.576 | 29,006.003 |
13 | 312.707 | 441.906 | 332.353 | 299.267 | 242.973 | 144.923 | 128.829 | 119.947 | 79.461 | 54.994 | 85.359 | 145,630.761 | 24,855.409 |
14 | 272.168 | 323.499 | 339.776 | 299.530 | 242.880 | 159.038 | 129.950 | 120.000 | 65.817 | 42.489 | 71.142 | 124,932.384 | 17,534.742 |
15 | 224.611 | 213.686 | 339.936 | 291.807 | 242.827 | 139.143 | 129.115 | 119.997 | 79.959 | 54.035 | 59.116 | 107,884.313 | 14,564.055 |
16 | 152.831 | 135.356 | 293.140 | 299.998 | 237.653 | 158.625 | 129.971 | 93.751 | 52.366 | 44.230 | 43.915 | 89,095.065 | 11,635.439 |
17 | 150.034 | 135.001 | 290.188 | 242.097 | 222.606 | 124.793 | 129.457 | 117.073 | 61.531 | 47.082 | 39.862 | 84,408.221 | 9763.984 |
18 | 150.032 | 144.110 | 339.873 | 298.516 | 242.647 | 159.853 | 98.936 | 118.058 | 79.997 | 44.509 | 48.532 | 94,297.297 | 13,307.920 |
19 | 224.611 | 213.686 | 339.936 | 291.807 | 242.827 | 139.143 | 129.115 | 119.997 | 79.959 | 54.035 | 59.116 | 107,884.313 | 14,564.055 |
20 | 247.097 | 405.611 | 338.935 | 300.000 | 241.615 | 159.957 | 130.000 | 116.665 | 64.768 | 43.158 | 75.807 | 131,752.041 | 20,566.632 |
21 | 272.168 | 323.499 | 339.776 | 299.530 | 242.880 | 159.038 | 129.950 | 120.000 | 65.817 | 42.489 | 71.142 | 124,932.384 | 17,534.742 |
22 | 150.032 | 144.110 | 339.873 | 298.516 | 242.647 | 159.853 | 98.936 | 118.058 | 79.997 | 44.509 | 48.532 | 94,297.297 | 13,307.920 |
23 | 150.015 | 135.032 | 215.063 | 180.844 | 222.867 | 143.145 | 129.793 | 119.964 | 56.899 | 10.332 | 31.955 | 76,082.212 | 7006.619 |
24 | 150.001 | 135.024 | 184.626 | 131.224 | 222.612 | 123.171 | 129.588 | 86.119 | 24.598 | 22.486 | 25.447 | 68,742.483 | 5589.037 |
Time h | Fuel Cost | Emission | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 150.002 | 135.718 | 90.566 | 91.469 | 118.016 | 136.066 | 109.538 | 94.773 | 74.663 | 54.913 | 19.725 | 63,282.134 | 3479.107 |
2 | 157.856 | 153.661 | 110.735 | 93.173 | 142.569 | 139.932 | 110.889 | 89.120 | 79.790 | 54.989 | 22.712 | 68,271.277 | 3945.886 |
3 | 160.271 | 167.053 | 120.413 | 132.252 | 178.038 | 155.820 | 122.997 | 119.962 | 75.131 | 54.997 | 28.936 | 75,457.550 | 5060.796 |
4 | 204.728 | 221.786 | 134.213 | 140.423 | 197.409 | 159.938 | 129.528 | 119.976 | 79.999 | 55.000 | 37.000 | 86,669.943 | 6532.429 |
5 | 188.357 | 229.602 | 151.075 | 171.912 | 239.342 | 158.088 | 129.982 | 119.990 | 77.798 | 54.576 | 40.723 | 89,962.573 | 7507.212 |
6 | 277.420 | 270.540 | 161.914 | 183.738 | 242.939 | 159.996 | 130.000 | 117.692 | 79.999 | 54.583 | 50.822 | 105,456.159 | 9689.460 |
7 | 303.679 | 253.234 | 215.080 | 207.820 | 234.626 | 159.789 | 129.996 | 118.557 | 80.000 | 54.731 | 55.512 | 110,376.988 | 11,046.974 |
8 | 284.213 | 276.631 | 242.805 | 257.079 | 232.163 | 159.480 | 129.906 | 119.925 | 79.154 | 54.847 | 60.204 | 114,622.220 | 12,591.579 |
9 | 329.264 | 351.175 | 263.618 | 277.043 | 237.413 | 153.536 | 129.956 | 119.969 | 79.838 | 54.610 | 72.424 | 131,422.312 | 16,492.225 |
10 | 391.022 | 365.874 | 298.133 | 265.150 | 242.871 | 159.900 | 129.864 | 119.824 | 75.641 | 54.994 | 81.275 | 143,558.138 | 20,215.772 |
11 | 403.610 | 398.763 | 323.390 | 299.975 | 233.988 | 159.970 | 129.997 | 112.664 | 79.995 | 52.485 | 88.838 | 152,258.869 | 24,291.715 |
12 | 415.007 | 433.955 | 340.000 | 295.831 | 242.986 | 159.987 | 129.954 | 98.248 | 79.986 | 47.515 | 93.474 | 159,891.196 | 28,568.055 |
13 | 403.752 | 376.588 | 323.914 | 265.781 | 242.984 | 159.996 | 129.998 | 119.990 | 79.991 | 54.733 | 85.728 | 148,855.883 | 22,349.281 |
14 | 329.264 | 351.175 | 263.618 | 277.043 | 237.413 | 153.536 | 129.956 | 119.969 | 79.838 | 54.610 | 72.424 | 131,422.312 | 16,492.225 |
15 | 284.213 | 276.631 | 242.805 | 257.079 | 232.163 | 159.480 | 129.906 | 119.925 | 79.154 | 54.847 | 60.204 | 114,622.220 | 12,591.579 |
16 | 223.433 | 240.864 | 174.031 | 189.920 | 227.097 | 159.983 | 129.867 | 119.965 | 79.171 | 54.950 | 45.282 | 95,730.049 | 8464.578 |
17 | 188.357 | 229.602 | 151.075 | 171.912 | 239.342 | 158.088 | 129.982 | 119.990 | 77.798 | 54.576 | 40.723 | 89,962.573 | 7507.212 |
18 | 277.420 | 270.540 | 161.914 | 183.738 | 242.939 | 159.996 | 130.000 | 117.692 | 79.999 | 54.583 | 50.822 | 105,456.159 | 9689.460 |
19 | 284.213 | 276.631 | 242.805 | 257.079 | 232.163 | 159.480 | 129.906 | 119.925 | 79.154 | 54.847 | 60.204 | 114,622.220 | 12,591.579 |
20 | 349.961 | 338.292 | 287.234 | 299.742 | 242.953 | 157.864 | 129.890 | 119.878 | 68.079 | 54.236 | 76.132 | 134,994.987 | 18,062.886 |
21 | 329.264 | 351.175 | 263.618 | 277.043 | 237.413 | 153.536 | 129.956 | 119.969 | 79.838 | 54.610 | 72.424 | 131,422.312 | 16,492.225 |
22 | 277.420 | 270.540 | 161.914 | 183.738 | 242.939 | 159.996 | 130.000 | 117.692 | 79.999 | 54.583 | 50.822 | 105,456.159 | 9689.460 |
23 | 167.768 | 180.865 | 146.464 | 142.876 | 189.040 | 159.016 | 129.864 | 113.622 | 79.999 | 54.997 | 32.511 | 80,208.210 | 5752.844 |
24 | 166.459 | 153.534 | 105.409 | 106.892 | 152.447 | 159.990 | 110.254 | 119.831 | 79.968 | 54.989 | 25.774 | 71,963.076 | 4438.329 |
Time h | FC | E | TC | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 150.406 | 135.246 | 85.444 | 94.209 | 181.135 | 122.376 | 129.280 | 94.366 | 20.605 | 42.622 | 19.691 | 61,700.233 | 3934.478 | 32,955.958 |
2 | 150.059 | 135.192 | 148.162 | 120.431 | 172.562 | 122.461 | 93.065 | 119.995 | 22.348 | 48.148 | 22.423 | 65,198.802 | 4454.610 | 34,966.155 |
3 | 150.093 | 135.208 | 101.472 | 182.259 | 221.659 | 149.384 | 129.872 | 119.939 | 55.572 | 41.141 | 28.607 | 72,288.444 | 5650.903 | 39,113.119 |
4 | 150.060 | 135.019 | 190.752 | 204.190 | 224.454 | 159.847 | 124.653 | 119.999 | 79.982 | 52.633 | 35.589 | 80,461.980 | 7112.270 | 43,928.263 |
5 | 150.231 | 135.171 | 241.644 | 242.567 | 241.338 | 159.980 | 129.383 | 119.991 | 52.892 | 46.297 | 39.493 | 84,292.688 | 9023.037 | 46,796.853 |
6 | 152.020 | 164.386 | 320.567 | 277.526 | 222.190 | 159.921 | 129.914 | 119.986 | 80.000 | 49.903 | 48.411 | 94,530.118 | 12,104.35 | 53,457.173 |
7 | 161.851 | 223.048 | 310.663 | 299.756 | 235.796 | 141.568 | 129.795 | 119.940 | 78.244 | 55.000 | 53.662 | 100,886.75 | 13,127.88 | 57,150.064 |
8 | 150.069 | 269.756 | 339.843 | 299.405 | 242.988 | 158.986 | 124.745 | 119.937 | 75.404 | 53.775 | 58.903 | 107,645.16 | 14,941.13 | 61,436.135 |
9 | 289.083 | 313.982 | 339.999 | 280.201 | 234.134 | 156.640 | 129.595 | 120.000 | 78.241 | 53.458 | 71.328 | 125,468.68 | 16,952.94 | 71,353.584 |
10 | 364.296 | 316.930 | 339.330 | 299.170 | 242.913 | 159.675 | 129.700 | 119.025 | 76.855 | 54.122 | 80.023 | 137,757.86 | 19,776.86 | 78,914.408 |
11 | 391.758 | 400.840 | 336.936 | 293.570 | 242.999 | 159.970 | 129.998 | 119.999 | 63.537 | 54.997 | 88.603 | 151,135.50 | 24,136.97 | 87,778.694 |
12 | 442.035 | 396.653 | 337.897 | 299.108 | 242.982 | 157.061 | 127.818 | 119.996 | 79.999 | 39.772 | 93.323 | 158,774.96 | 28,337.51 | 93,695.444 |
13 | 359.815 | 391.269 | 339.912 | 299.467 | 242.964 | 151.758 | 126.070 | 118.443 | 79.987 | 47.449 | 85.138 | 145,326.69 | 22,318.79 | 83,964.399 |
14 | 289.083 | 313.982 | 339.999 | 280.201 | 234.134 | 156.640 | 129.595 | 120.000 | 78.241 | 53.458 | 71.328 | 125,468.68 | 16,952.94 | 71,353.584 |
15 | 150.069 | 269.756 | 339.843 | 299.405 | 242.988 | 158.986 | 124.745 | 119.937 | 75.404 | 53.775 | 58.903 | 107,645.16 | 14,941.13 | 61,436.135 |
16 | 150.156 | 135.036 | 276.528 | 283.184 | 240.900 | 159.073 | 129.657 | 120.000 | 51.168 | 52.036 | 43.739 | 88,890.958 | 10,861.13 | 50,016.892 |
17 | 150.231 | 135.171 | 241.644 | 242.567 | 241.338 | 159.980 | 129.383 | 119.991 | 52.892 | 46.297 | 39.493 | 84,292.688 | 9023.037 | 46,796.853 |
18 | 152.020 | 164.386 | 320.567 | 277.526 | 222.190 | 159.921 | 129.914 | 119.986 | 80.000 | 49.903 | 48.411 | 94,530.118 | 12,104.35 | 53,457.173 |
19 | 150.069 | 269.756 | 339.843 | 299.405 | 242.988 | 158.986 | 124.745 | 119.937 | 75.404 | 53.775 | 58.903 | 107,645.16 | 14,941.13 | 61,436.135 |
20 | 326.074 | 347.521 | 309.290 | 299.994 | 242.997 | 160.000 | 129.970 | 119.999 | 67.957 | 44.017 | 75.820 | 133,249.35 | 18,331.48 | 75,929.053 |
21 | 289.083 | 313.982 | 339.999 | 280.201 | 234.134 | 156.640 | 129.595 | 120.000 | 78.241 | 53.458 | 71.328 | 125,468.68 | 16,952.94 | 71,353.584 |
22 | 152.020 | 164.386 | 320.567 | 277.526 | 222.190 | 159.921 | 129.914 | 119.986 | 80.000 | 49.903 | 48.411 | 94,530.118 | 12,104.35 | 53,457.173 |
23 | 150.173 | 137.534 | 180.818 | 163.649 | 238.569 | 149.328 | 129.739 | 117.812 | 51.515 | 44.869 | 32.009 | 76,243.211 | 6439.102 | 41,480.912 |
24 | 150.015 | 135.021 | 126.085 | 104.167 | 220.872 | 159.474 | 129.251 | 119.979 | 21.132 | 43.459 | 25.457 | 68,625.467 | 5068.830 | 36,985.679 |
Methods | Total Loss MW | Total Fuel Cost | Total Emission | Total Cost |
---|---|---|---|---|
CSA | 1298.9956 | 2.492050 | 3.19592 | 2.843985 |
MONNDE [53] | 1307.8000 | 2.557900 | 2.95220 | 2.769100 |
NSGA-II [58] | NA | 2.521000 | 3.12460 | 2.823600 |
IBFA [59] | 1299.8760 | 2.517117 | 2.99037 | 2.753743 |
TLBO [61] | 1301.1900 | 2.472116 | 2.94153 | 2.776644 |
HCRO [62] | 1299.8723 | 2.517076 | 2.99065 | 2.753863 |
CRO [62] | 1298.4666 | 2.517821 | 3.01941 | 2.768615 |
NSPSO [63] | NA | 2.474472 | 2.93416 | 2.704316 |
PSO-CSC [64] | 1303.1000 | 2.524700 | 3.05240 | 2.788550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larouci, B.; Ayad, A.N.E.I.; Alharbi, H.; Alharbi, T.E.A.; Boudjella, H.; Tayeb, A.S.; Ghoneim, S.S.M.; Abdelwahab, S.A.M. Investigation on New Metaheuristic Algorithms for Solving Dynamic Combined Economic Environmental Dispatch Problems. Sustainability 2022, 14, 5554. https://doi.org/10.3390/su14095554
Larouci B, Ayad ANEI, Alharbi H, Alharbi TEA, Boudjella H, Tayeb AS, Ghoneim SSM, Abdelwahab SAM. Investigation on New Metaheuristic Algorithms for Solving Dynamic Combined Economic Environmental Dispatch Problems. Sustainability. 2022; 14(9):5554. https://doi.org/10.3390/su14095554
Chicago/Turabian StyleLarouci, Benyekhlef, Ahmed Nour El Islam Ayad, Hisham Alharbi, Turki E. A. Alharbi, Houari Boudjella, Abdelkader Si Tayeb, Sherif S. M. Ghoneim, and Saad A. Mohamed Abdelwahab. 2022. "Investigation on New Metaheuristic Algorithms for Solving Dynamic Combined Economic Environmental Dispatch Problems" Sustainability 14, no. 9: 5554. https://doi.org/10.3390/su14095554
APA StyleLarouci, B., Ayad, A. N. E. I., Alharbi, H., Alharbi, T. E. A., Boudjella, H., Tayeb, A. S., Ghoneim, S. S. M., & Abdelwahab, S. A. M. (2022). Investigation on New Metaheuristic Algorithms for Solving Dynamic Combined Economic Environmental Dispatch Problems. Sustainability, 14(9), 5554. https://doi.org/10.3390/su14095554