Energy-Saving Effect of Regional Development Strategy in Western China
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Framework and Research Hypothesis
3.1. The Direct Impact of the WDS on Energy Utilisation Efficiency
3.2. The Indirect Influence of the WDS on Energy Utilisation Efficiency
4. Research Design
4.1. Estimation Methods
4.1.1. SCM
4.1.2. DID Method
4.1.3. Mechanism Test
4.2. Variable Declaration
4.2.1. Energy Utilisation Efficiency (EUE)
4.2.2. Industrial Agglomeration ()
4.2.3. Control Variable
4.3. Data Source
5. Results and Discussion
5.1. Benchmark Estimation Results
5.2. Robustness Test
5.3. Analysis of the Results of the Mechanism Test
6. Extended Analysis
6.1. Heterogeneity of Regional Characteristics
6.2. Heterogeneity of Institutional Environment
7. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Zhou, K.; Yang, S. Regional heterogeneity of China’s energy efficiency in “new normal”: A meta-frontier Super-SBM analysis. Energy Policy 2019, 134, 110941. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, S. Can “energy saving and emission reduction” demonstration city selection actually contribute to pollution abatement in China? Sustain. Prod. Consum. 2021, 27, 1882–1902. [Google Scholar] [CrossRef]
- Jiang, L.; He, S.; Zhou, H.; Kong, H.; Wang, J.; Cui, Y.; Wang, L. Coordination between sulfur dioxide pollution control and rapid economic growth in China: Evidence from satellite observations and spatial econometric models. Struct. Change Econ. Dyn. 2021, 57, 279–291. [Google Scholar] [CrossRef]
- Hao, Y.; Gai, Z.; Wu, H. How do resource misallocation and government corruption affect green total factor energy efficiency? Evidence from China. Energy Policy 2020, 143, 111562. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S.; Yang, X.; Xie, G. Does internet development improve green total factor energy efficiency? Evidence from China. Energy Policy 2021, 153, 112247. [Google Scholar] [CrossRef]
- Shen, Y.; Yue, S.; Pu, Z.; Lai, X.; Guo, M. Sustainable total-factor ecology efficiency of regions in China. Sci. Total Environ. 2020, 734, 139241. [Google Scholar] [CrossRef]
- Filippini, M.; Hunt, L.C. Measuring persistent and transient energy efficiency in the US. Energy Effic. 2016, 9, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Zhang, Z. Assessing China’s carbon intensity pledge for 2020: Stringency and credibility issues and their implications. Environ. Econ. Policy Stud. 2011, 13, 219–235. [Google Scholar] [CrossRef]
- Shu, H.; Xiong, P. The Gini coefficient structure and its application for the evaluation of regional balance development in China. J. Clean. Prod. 2018, 199, 668–686. [Google Scholar] [CrossRef]
- Maskin, E.; Qian, Y.; Xu, C. Incentives, information, and organizational form. Rev. Econ. Stud. 2000, 67, 359–378. [Google Scholar] [CrossRef] [Green Version]
- Mischke, P.; Xiong, W. Mapping and benchmarking regional disparities in China’s energy supply, transformation, and end-use in 2010. Appl. Energy 2015, 143, 359–369. [Google Scholar] [CrossRef]
- Pu, Z.; Fu, J. Economic growth, environmental sustainability and China mayors’ promotion. J. Clean. Prod. 2018, 172, 454–465. [Google Scholar] [CrossRef]
- Zhuo, C.; Deng, F. How does China’s Western Development Strategy affect regional green economic efficiency? Sci. Total Environ. 2020, 707, 135939. [Google Scholar] [CrossRef]
- Zhao, X.; Burnett, J.W.; Lacombe, D.J. Province-level convergence of China’s carbon dioxide emissions. Appl. Energy 2015, 150, 286–295. [Google Scholar] [CrossRef]
- Yang, F.; Yang, M.; Xue, B.; Luo, Q. The effects of China’s western development strategy implementation on local ecological economic performance. J. Clean. Prod. 2018, 202, 925–933. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, B.; Wang, Q. Effect of China’s western development strategy on carbon intensity. J. Clean. Prod. 2019, 215, 1170–1179. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Wu, T.; Li, H. The drivers of air pollution in the development of western China: The case of Sichuan province. J. Clean. Prod. 2018, 197, 1169–1176. [Google Scholar] [CrossRef]
- Fleisher, B.; Li, H.; Zhao, M.Q. Human capital, economic growth, and regional inequality in China. J. Dev. Econ. 2010, 92, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Cheong, T.S.; Wu, Y. The differences in structural transformation and industrial upgrading on regional inequality in China. China Econ. Rev. 2014, 31, 339–350. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China′s carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysis. Technol. Forecast. Soc. Change 2021, 164, 120507. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, W.; Cheng, J. Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models. Energy Policy 2020, 147, 111858. [Google Scholar] [CrossRef]
- Qu, C.; Shao, J.; Shi, Z. Does financial agglomeration promote the increase of energy efficiency in China? Energy Policy 2020, 146, 111810. [Google Scholar] [CrossRef]
- Chang, C.P.; Wen, J.; Dong, M.; Hao, Y. Does government ideology affect environmental pollutions? New evidence from instrumental variable quantile regression estimations. Energy Policy 2018, 113, 386–400. [Google Scholar] [CrossRef]
- Cirone, A.E.; Urpelainen, J. Political market failure? The effect of government unity on energy technology policy in industrialized democracies. Technovation 2013, 33, 333–344. [Google Scholar] [CrossRef]
- Song, M.; Xie, Q.; Shen, Z. Impact of green credit on high-efficiency utilization of energy in China considering environmental constraints. Energy Policy 2021, 153, 112267. [Google Scholar] [CrossRef]
- Huang, G.; Pan, W.; Hu, C.; Pan, W.L.; Dai, W.Q. Energy utilization efficiency of China considering carbon emissions—based on provincial panel data. Sustainability 2021, 13, 877. [Google Scholar] [CrossRef]
- Mandal, S.K.; Madheswaran, S. Energy use efficiency of Indian cement companies: A data envelopment analysis. Energy Effic. 2011, 4, 57–73. [Google Scholar] [CrossRef]
- Xu, C.; Bin, Q.; Shaoqin, S. Polycentric spatial structure and energy efficiency: Evidence from China’s provincial panel data. Energy Policy 2021, 149, 112012. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, C. What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resour. Conserv. Recycl. 2019, 147, 201–213. [Google Scholar] [CrossRef]
- He, L.; Liu, R.; Zhong, Z.; Wang, D.; Xia, Y. Can green financial development promote renewable energy investment efficiency? A consideration of bank credit. Renew. Energy 2019, 143, 974–984. [Google Scholar] [CrossRef]
- Doytch, N.; Narayan, S. Does FDI influence renewable energy consumption? An analysis of sectoral FDI impact on renewable and non-renewable industrial energy consumption. Energy Econ. 2016, 54, 291–301. [Google Scholar] [CrossRef]
- Adom, P.K.; Amuakwa-Mensah, F. What drives the energy saving role of FDI and industrialization in East Africa? Renew. Sustain. Energy Rev. 2016, 65, 925–942. [Google Scholar] [CrossRef]
- Tanaka, K.; Managi, S. Analysis of energy use efficiency in Japanese factories: Industry agglomeration effect for energy efficiency. Work. Paper 2017, 1–25. Available online: http://www.souken.kochi-tech.ac.jp/seido/wp/SDES-2017-3.pdf (accessed on 6 April 2022).
- Li, S.; Liu, J.; Shi, D. The impact of emission trading system on energy efficiency of enterprises: Evidence from a quasi-natural experiment in China. Energy 2021, 233, 121129. [Google Scholar] [CrossRef]
- He, P.; Sun, Y.; Niu, H.; Long, C.; Li, S. The long and short-term effects of environmental tax on energy efficiency: Perspective of OECD energy tax and vehicle traffic tax. Econ. Model. 2021, 97, 307–325. [Google Scholar] [CrossRef]
- Orlov, A.; Grethe, H.; McDonald, S. Carbon taxation in Russia: Prospects for a double dividend and improved energy efficiency. Energy Econ. 2013, 37, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.; Pereira, R.M. Reducing carbon emissions in Portugal: The relative roles of fossil fuel prices, energy efficiency, and carbon taxation. J. Environ. Plan. Manag. 2017, 60, 1825–1852. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, L. Has China’s belt and road initiative promoted its green total factor productivity?—evidence from primary provinces along the route. Energy Policy 2019, 129, 360–369. [Google Scholar] [CrossRef]
- Naidoo, D.; Nhamo, L.; Lottering, S.; Mpandeli, S.; Liphadzi, S.; Modi, A.T.; Mabhaudhi, T. Transitional Pathways towards Achieving a Circular Economy in the Water, Energy, and Food Sectors. Sustainability 2021, 13, 9978. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Hoosain, M.S.; Paul, B.S.; Ramakrishna, S. The impact of 4IR digital technologies and circular thinking on the United Nations sustainable development goals. Sustainability 2020, 12, 10143. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, C. Does the western development promote the industrial structure transformation and upgrading? A test based on PSM-DID method. China Soft Sci. 2018, 6, 67–81. [Google Scholar]
- Zheng, Q.; Lin, B. Impact of industrial agglomeration on energy efficiency in China’s paper industry. J. Clean. Prod. 2018, 184, 1072–1080. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Wu, Z. Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model. Energy Policy 2010, 38, 7106–7120. [Google Scholar] [CrossRef]
- Kapp, S.; Choi, J.K.; Kissock, K. Toward energy-efficient industrial thermal systems for regional manufacturing facilities. Energy Rep. 2022, 8, 1377–1387. [Google Scholar] [CrossRef]
- Choi, J.K.; Eom, J.; McClory, E. Economic and environmental impacts of local utility-delivered industrial energy-efficiency rebate programs. Energy Policy 2018, 123, 289–298. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Y.; Ma, Y. The effect evaluation and future trend of China’s Western Great Development Strategy. Reform 2018, 6, 49–59. [Google Scholar]
- Li, X.; Lai, X.; Zhang, F. Research on green innovation effect of industrial agglomeration from perspective of environmental regulation: Evidence in China. J. Clean. Prod. 2021, 288, 125583. [Google Scholar] [CrossRef]
- Chen, M.; Sinha, A.; Hu, K.; Shah, M.I. Impact of technological innovation on energy efficiency in industry 4.0 era: Moderation of shadow economy in sustainable development. Technol. Forecast. Soc. Change 2021, 164, 120521. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, Y.; Lee, C.C.; Cen, Y. How does manufacturing agglomeration affect green economic efficiency? Energy Econ. 2020, 92, 104944. [Google Scholar] [CrossRef]
- McLaughlin, E.; Choi, J.K.; Kissock, K. Techno-economic impact assessments of energy efficiency improvements in the industrial combustion systems. J. Energy Resour. Technol. 2022, 144, 082109. [Google Scholar] [CrossRef]
- Yu, B. Urban spatial structure and total-factor energy efficiency in Chinese provinces. Ecol. Indic. 2021, 126, 107662. [Google Scholar] [CrossRef]
- Dong, B.; Gong, J.; Zhao, X. FDI and environmental regulation: Pollution haven or a race to the top? J. Regul. Econ. 2012, 41, 216–237. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Xie, R. Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
- Cheng, Z. The spatial correlation and interaction between MA and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Abadie, A.; Gardeazabal, J. The economic costs of conflict: A case study of the Basque Country. Am. Econ. Rev. 2003, 93, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Abadie, A.; Diamond, A.; Hainmueller, J. Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California ’ s Tobacco Control Program. J. Am. Stat. Assoc. 2010, 105, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J.J.; Ichimura, H.; Todd, P.E. Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. Rev. Econ. Stud. 1997, 64, 605–654. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Wu, H.; Xia, Y.; Yang, X.; Hao, Y.; Ren, S. Does environmental pollution promote China’s crime rate? A new perspective through government official corruption. Struct. Change Econ. Dyn. 2021, 57, 292–307. [Google Scholar] [CrossRef]
- Ouyang, X.; Wei, X.; Sun, C.; Du, G. Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China. Energy Policy 2018, 118, 573–583. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.; Zhang, J. The Estimation of China’s provincial capital stock: 1952—2000. J. Econ. Res. 2004, 10, 35–44. [Google Scholar]
- Guimarães, P.; Figueiredo, O.; Woodward, D. Dartboard tests for the location quotient. Reg. Sci. Urban Econ. 2009, 39, 360–364. [Google Scholar] [CrossRef]
- Chen, S.; Golley, J. ‘Green’ productivity growth in China’s industrial economy. Energy Econ. 2014, 44, 89–98. [Google Scholar] [CrossRef]
- Li, J.; Xu, B. Curse or blessing: How does natural resource abundance affect green economic growth in China? Econ. Res. J. 2018, 53, 151–167. [Google Scholar]
- Levinson, A. Environmental regulatory competition: A status report and some new evidence. Natl. Tax J. 2003, 56, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Shao, C.; Yun, F. The quality of institution and regional economic policy performance. Econ. Manag. 2019, 33, 17–22. [Google Scholar]
- Deng, H.; Yang, L. Haze Governance, Local Competition and Industrial Green Transformation. China Ind. Econ. 2019, 10, 118–136. [Google Scholar]
Variable | Obs | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
EUE | 690 | 0.6566 | 0.2185 | 0.2215 | 1 |
AGG | 690 | 0.9262 | 0.1817 | 0.4292 | 1.3849 |
eco | 690 | 8.6368 | 0.5186 | 7.5098 | 10.3350 |
innov | 690 | 0.0374 | 0.0704 | 0.0002 | 0.4926 |
struc | 690 | 1.1097 | 0.4063 | 0.4186 | 2.7811 |
hum | 690 | 8.1372 | 1.2294 | 0.7774 | 12.6651 |
gov | 690 | 0.8349 | 0.8441 | 0.0492 | 5.5271 |
fdi | 690 | 0.0980 | 0.1081 | 0 | 0.9829 |
ifra | 690 | 0.5916 | 0.4622 | 0.0190 | 2.1744 |
urban | 690 | 47.5377 | 16.0928 | 20.36 | 89.6 |
Variables | OLS Estimates | Replacement Indicator | Counterfactual Estimates | GMM Estimates |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
L.EUE | 0.654 *** (0.027) | |||
0.047 *** (0.016) | −0.071 *** (0.018) | 0.022 (0.021) | 0.039 *** (0.013) | |
eco | 0.417 *** (0.041) | 0.225 *** (0.045) | 0.431 *** (0.041) | 0.027 (0.034) |
innov | 0.449 *** (0.072) | 0.149 ** (0.074) | 0.439 *** (0.072) | 0.019 (0.151) |
struc | 0.002 * (0.001) | 0.002 (0.001) | 0.002 ** (0.001) | 0.002 *** (0.001) |
hum | 0.043 * (0.025) | 0.036 (0.026) | 0.0434 * (0.024) | 0.121 *** (0.019) |
gov | 0.022 ** (0.009) | 0.018 *** (0.007) | 0.028 *** (0.009) | −0.028 *** (0.007) |
fdi | −0.176 *** (0.059) | 0.133 *** (0.049) | −0.175 *** (0.059) | 0.100 *** (0.021) |
ifra | −0.019 (0.018) | −0.005 (0.019) | −0.024 (0.018) | −0.022 *** (0.008) |
urban | −0.007 *** (0.002) | −0.009 *** (0.001) | −0.007 *** (0.002) | −0.004 *** (0.001) |
cons | −2.673 *** (0.383) | −1.095 *** (0.462) | −2.846 *** (0.382) | 0.842 *** (0.272) |
fixed effect | yes | yes | yes | |
AR(1) | 0.004 | |||
AR(2) | 0.309 | |||
Sargan | 0.999 | |||
R-squared | 0.703 | 0.857 | 0.702 | |
Obs | 660 | 660 | 660 | 630 |
Variable | Phase I | ||||||
---|---|---|---|---|---|---|---|
Step1 | Step2 | Step3 | |||||
AGG | innov | struc | hum | innov | struc | hum | |
(5) | (6) | (7) | (8) | (9) | (10) | (11) | |
0.249 * (0.132) | 0.141 * (0.072) | 2.000 *** (0.630) | 0.358 *** (0.055) | 0.091 (0.071) | 1.463 *** (0.552) | 0.321 *** (0.058) | |
AGG | 0.201 *** (0.028) | 2.156 *** (0.188) | 0.149 *** (0.027) | ||||
cons | 22.916 *** (2.739) | −10.729 *** (2.165) | 117.552 *** (27.514) | −1.045 (2.174) | −15.343 *** (2.131) | 68.151 *** (26.313) | −4.479 ** (1.852) |
control | yes | yes | yes | yes | yes | yes | yes |
R-squared | 0.624 | 0.733 | 0.831 | 0.869 | 0.738 | 0.859 | 0.875 |
Obs | 690 | 690 | 690 | 690 | 690 | 690 | 690 |
Variables | Phase II | ||||||
---|---|---|---|---|---|---|---|
Step1 | Step2 | Step3 | |||||
innov | struc | hum | EUE | EUE | EUE | EUE | |
(12) | (13) | (14) | (15) | (16) | (17) | (18) | |
0.141 * (0.072) | 2.000 *** (0.630) | 0.358 *** (0.055) | 0.068 ** (0.033) | 0.057 * (0.034) | 0.041 (0.035) | 0.033 (0.034) | |
innov | 0.083 *** (0.013) | ||||||
struc | 0.013 *** (0.002) | ||||||
hum | 0.098 *** (0.035) | ||||||
cons | −10.729 *** (2.165) | 117.552 *** (27.514) | −1.045 (2.174) | −5.693 *** (1.135) | −4.801 *** (0.403) | −7.277 *** (1.051) | −5.591 *** (1.055) |
control | yes | yes | yes | yes | yes | yes | yes |
fixed effect | yes | yes | yes | yes | yes | yes | yes |
R-squared | 0.624 | 0.831 | 0.869 | 0.871 | 0.881 | 0.883 | 0.882 |
Obs | 690 | 690 | 690 | 690 | 690 | 690 | 690 |
Variables | Small Scale | Large Scale | Low Abundance | High Abundance |
---|---|---|---|---|
(19) | (20) | (21) | (22) | |
0.078 *** (0.026) | 0.068 *** (0.019) | 0.067 ** (0.0335) | 0.035 ** (0.018) | |
eco | 0.284 *** (0.092) | 0.459 *** (0.063) | 0.380 *** (0.105) | 0.326 *** (0.039) |
innov | 1.075 *** (0.175) | 0.129 (0.083) | 0.417 *** (0.121) | 0.679 *** (0.088) |
struc | −0.0002 (0.002) | 0.003 ** (0.001) | −0.0007 (0.002) | 0.002 * (0.001) |
hum | −0.079 (0.123) | −0.138 *** (0.112) | 0.199 (0.219) | 0.061 *** (0.023) |
gov | 0.009 (0.013) | −0.004 (0.022) | 0.045 *** (0.011) | 0.009 (0.012) |
fdi | −0.311 *** (0.104) | −0.258 *** (0.088) | −0.245 (0.169) | −0.256 *** (0.719) |
ifra | 0.032 (0.035) | −0.033 (0.023) | 0.079 ** (0.032) | −0.129 *** (0.021) |
urban | 0.001 (0.003) | −0.003 (0.002) | −0.014 *** (0.003) | 0.004 ** (0.002) |
cons | −1.591 * (0.888) | −2.860 *** (0.549) | −2.015 * (1.086) | −2.646 *** (0.418) |
fixed effect | yes | yes | yes | yes |
R-squared | 0.729 | 0.701 | 0.737 | 0.709 |
Obs | 230 | 460 | 230 | 460 |
Variables | Low Political Appraisal | High Political Appraisal | Low Institutional Quality | High Institutional Quality |
---|---|---|---|---|
(23) | (24) | (25) | (26) | |
0.039 (0.026) | 0.056 *** (0.021) | 0.033 (0.025) | 0.107 *** (0.024) | |
eco | 0.268 *** (0.079) | 0.473 *** (0.051) | 0.079 (0.063) | 0.455 *** (0.063) |
innov | 0.563 ** (0.224) | 0.461 *** (0.082) | −1.345 (0.859) | 0.376 *** (0.091) |
struc | −0.003 (0.002) | 0.003 *** (0.001) | −0.001 (0.001) | 0.009 *** (0.002) |
hum | 0.049 * (0.026) | −0.196 * (0.111) | −0.105 * (0.085) | −0.096 (0.167) |
gov | 0.012 (0.018) | 0.034 *** (0.013) | 0.003 *** (0.010) | 0.062 ** (0.028) |
fdi | −0.416 *** (0.106) | −0.115 * (0.067) | −0.795 *** (0.101) | −0.098 (0.067) |
ifra | −0.029 (0.041) | −0.020 (0.022) | 0.146 *** (0.045) | −0.023 (0.022) |
urban | −0.001 (0.002) | −0.008 *** (0.002) | 0.012 *** (0.002) | −0.007 *** (0.002) |
cons | −1.283 * (0.724) | −2.750 *** (0.499) | −2.846 *** (0.503) | −3.212 *** (0.740) |
fixed effect | yes | yes | yes | yes |
R-squared | 0.734 | 0.706 | 0.753 | 0.719 |
Obs | 230 | 460 | 210 | 420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Deng, F.; Li, C. Energy-Saving Effect of Regional Development Strategy in Western China. Sustainability 2022, 14, 5616. https://doi.org/10.3390/su14095616
Zheng C, Deng F, Li C. Energy-Saving Effect of Regional Development Strategy in Western China. Sustainability. 2022; 14(9):5616. https://doi.org/10.3390/su14095616
Chicago/Turabian StyleZheng, Chunji, Feng Deng, and Chengyou Li. 2022. "Energy-Saving Effect of Regional Development Strategy in Western China" Sustainability 14, no. 9: 5616. https://doi.org/10.3390/su14095616
APA StyleZheng, C., Deng, F., & Li, C. (2022). Energy-Saving Effect of Regional Development Strategy in Western China. Sustainability, 14(9), 5616. https://doi.org/10.3390/su14095616