Trends in the Environmental Conditions, Climate Change and Human Health in the Southern Region of Ukraine
Abstract
:1. Introduction
2. Materials and Method
3. Results
3.1. Features of Climate Change in the Southern Region of Ukraine for 1900–2020
3.2. Extreme Weather Events
3.3. Regional Trends in the Normalized Difference Vegetation Index Dynamic
3.4. The Tendency of Thermal Bioclimatic Conditions Changes
3.5. Dynamic of the Health and Well-being Indicators of the Region
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. 2013: The Physical Science Basis. Working Group, I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate, UNEP/WMO. 2013. Available online: http://www.ipcc.ch/report/ar5/wg1 (accessed on 12 April 2022).
- IPCC. 2021: Summary for Policymakers. In Climate Chang. 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; p. 3948. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 12 April 2022).
- Stanev, E.; Peneva, E. Regional Sea Level Response to Global Climatic Change: Black Sea examples. Glob. Planet. Chang. 2002, 32, 33–47. Available online: https://uol.de/f/5/inst/icbm/ag/physoz/download/from_emil/publicationlist/pdf/GPCh_sp_01.pdf (accessed on 12 April 2022). [CrossRef]
- Sezgin, M.; Bat, L.; Katagan, A.; Ates, A.S. Likely effects of global climate change on the Black Sea benthic ecosystem. J. Environ. Prot. Ecol. 2010, 11, 238–246. [Google Scholar]
- Barcikowska, M.J.; Kapnick, S.; Krishnamurty, L.; Russo, S.; Cherchi, A.; Folland, C. Changes in the future summer Mediterranean climate: Contribution of teleconnections and local factors. Earth Syst. Dyn. 2020, 11, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Efimov, V.; Volodin, E.; Anisimov, A.; Barabanov, V. Regional projections of climate change for the Black Sea-Caspian Sea area in late 21st century. Phys. Oceanogr. 2015, 5, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Hochman, A.; Marra, F.; Messori, G.; Pinto, J.; Raveh-Rubin, S.; Yosef, Y.; Zittis, G. Extreme weather and societal impacts in the eastern Mediterranean. Earth Syst. Dynam. 2022, 13, 749–777. [Google Scholar] [CrossRef]
- Goryachkin, Y.N.; Ivanov, V.A. Climate Changes and dynamics of coast of Ukraine. Ann. Natl. Acad. Sci. Kraine 2008, 10, 118–122. Available online: http://nbuv.gov.ua/UJRN/dnanu_2008_10_23 (accessed on 12 April 2022).
- Lipinskyy, V.; Dyachuk, V.; Babichenko, V. (Eds.) The Climate of Ukraine; Rayevskyy Publishing: Kyiv, Ukraine, 2003; p. 344. (In Ukrainian) [Google Scholar]
- Sedlmeier, K.; Feldmann, H.; Schädler, G. Compound summer temperature and precipitation extremes over central Europe. Theor. Appl. Climatol. 2018, 131, 1493–1501. [Google Scholar] [CrossRef]
- Bordi, I.; Fraedrich, K.; Sutera, A. Observed drought and wetness trends in Europe: An update. Hydrol. Earth Syst. Sci. 2009, 13, 1519–1530. [Google Scholar] [CrossRef] [Green Version]
- Baumbach, L.; Siegmund, J.; Mittermeier, M.; Donner, R. Impacts of temperature extremes on European vegetation during the growing season. Biogeosciences 2017, 14, 4891–4903. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Lionello, P.; Congedi, L.; Reale, M.; Scarascia, L.; Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Chang. 2014, 14, 2025–2038. [Google Scholar] [CrossRef]
- Orlandi, F.; Rojo, J.; Picornell, A.; Oteros, J.; Pérez-Badia, R.; Fornaciari, M. Impact of Climate Change on Olive Crop Production in Italy. Atmosphere 2020, 11, 595. [Google Scholar] [CrossRef]
- World Weather. 2021. Available online: https://en.tutiempo.ne/climate/ukraine.html (accessed on 12 April 2022).
- Koffi, B.; Koffi, E. Heat waves across Europe by the end of the 21st century: Multiregional climate simulations. Clim. Res. 2008, 36, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Poumadere, M.; Mays, C.; Mer, S.; Blong, R. The 2003 Heat Wave in France: Dangerous Climate Change Here and Now. Risk Anal. 2005, 25, 1483–1494. [Google Scholar] [CrossRef]
- Garc’ia-Herrera, R.; D´Iaz, J.; Trigo, R.M.; Luterbacher, J.; Fisher, E.M. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- The Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/01/SDG_Guidelines_AUG_2019_Final.pdf (accessed on 12 April 2022).
- Open Data-Server. 2020. Available online: https://opendata.dwd.de/climate_environment (accessed on 12 April 2022).
- Climate Explorer. Available online: http://climexp.knmi.nl/selectstation.cgi?id=someone@somewhere (accessed on 12 April 2022).
- The Climate Cadastre of Ukraine (Standard Norms for the Period 1961–1990); Central Geophysical Observatory: Kyiv, Ukraine, 2005; p. 48.
- NOAA CDR AVHRR NDVI: Normalized Difference Vegetation Index, Version 5. Available online: https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_AVHRR_NDVI_V5#description (accessed on 12 April 2022).
- Teodoreanu, E. Thermal Comfort Index. Present Environ. Sustain. Dev. 2016, 10, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Statistic Data “Health Care Institutions and Morbidity of the Population of Ukraine”. 2017. Available online: https://ukrstat.org/uk/druk/publicat/Arhiv_u/15/Arch_zozd_bl.htm (accessed on 12 April 2022).
- Demographic Yearbook “Population of Ukraine, 2017–2020”. Kyiv, SSS of Ukraine, 2018–2021. Available online: http://database.ukrcensus.gov.ua/PXWEB2007/eng/publ_new1/index.asp (accessed on 12 April 2022).
- Coronavirus Epidemic Monitoring System. 2021. Available online: https://phc.org.ua/kontrol-zakhvoryuvan/inshi-infekciyni-zakhvoryuvannya/koronavirusna-infekciya-covid-19 (accessed on 12 April 2022).
- Von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 1999; p. 495. [Google Scholar]
- Lipinsky, V.; Osadchyy, V.; Babichenko, V. (Eds.) Natural Meteorological Phenomena on the Territory of Ukraine for the Last Twenty Years (1986–2005); Nika-Center: Kyiv, Ukraine, 2006; p. 312. (In Ukrainian) [Google Scholar]
- Kulbida, M.; Barabash, M. (Eds.) Climate of Ukraine: At the Past and the Future? Steel: Kyiv, Ukraine, 2009; p. 234. (In Ukrainian) [Google Scholar]
- Voloshchuk, V.; Boychenko, S. Scenarios of possible changes of climate of Ukraine in 21th century (under influence of global anthropogenic warming). In The Climate of Ukraine; Lipinskyy, V., Dyachuk, V., Babichenko, V., Eds.; Raevsky Publishing: Kiev, Ukraine, 2003; pp. 308–331. (In Ukrainian) [Google Scholar]
- Krakovska, S.; Palamarchuk, L.; Gnatiuk, N.; Shpytal, T. Projections of Air Temperature and Relative Humidity in Ukraine Regions to the Middle of the 21st Century Based on Regional Climate Model Ensembles. Geoinformatika 2018, 3, 62–77. Available online: http://www.geology.com.ua/en/7514-2 (accessed on 12 April 2022).
- Krakovska, S.; Palamarchuk, L.; Gnatiuk, N.; Shpytal, T.; Shedemenko, I. Changes in Precipitation Distribution in Ukraine for the 21st Century Based on Data of Regional Climate Model Ensemble. Geoinformatika 2017, 4, 62–74. Available online: http://www.geology.com.ua/en/7195-2 (accessed on 12 April 2022).
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen Successes in Animal Ecology. Clim. Res. 2011, 46, 15–27. Available online: https://www.int-res.com/articles/cr2011/46/c046p015.pdf (accessed on 12 April 2022). [CrossRef]
- Tarariko, O.; Ilienko, T.; Kuchma, T.; Velychko, V. Long-term prediction of climate change impact on the productivity of grain crops in Ukraine using satellite data. Agric. Sci. Pract. 2017, 4, 3–13. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Dubovyk, O.; Kussul, N.; Menz, G. Towards an Improved Environmental Understanding of Land Surface Dynamics in Ukraine Based on Multi-Source Remote Sensing Time-Series Datasets from 1982 to 2013. Remote Sens. 2016, 8, 617. [Google Scholar] [CrossRef] [Green Version]
- Fasel, M.; Bréthaut, C.; Rouholahnejad, E.; Lacayo-Emery, M.A.; Lehmann, A. Blue water scarcity in the Black Sea catchment: Identifying key actors in the water-ecosystem-energy-food nexus. Environ. Sci. Policy 2016, 66, 140–150. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D. Thermal Comfort and the Heat Stress Indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jendritzky, G.; Tinz, B. The thermal environment of the human being on the global scale. Glob. Health Action 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Boychenko, S.; Zabarna, O.; Kuchma, T. Comfortable climatic conditions for human on the territory of Ukraine for the period 1991–2020. Geofiz. Zhurnal 2021, 43, 91–104. [Google Scholar] [CrossRef]
- Vitchenko, A.; Telesh, I. Current Trends of the Climatic Comfort Change in Minsk. J. Belarus. State Univ. Geogr. Geol. 2017, 2, 103–113. Available online: https://elib.bsu.by/bitstream/123456789/185579/1/103-113.pdf (accessed on 12 April 2022).
- Karamushka, V.; Kapitanyuk, K. Peculiarities of morbidity of the rural population of the coastal regions of Ukraine. In Proceedings of the Laudato Si: Ecological Contribution to the Sustainable Development of Society: Materials of the International Scientific-Practical Conference, Kyiv, Ukraine, 10–11 December 2019; Karamushka, V., Ed.; Ivano-Frankivsk: Kyiv, Ukraine; Drogobich: Kolo, Poland, 2020; pp. 35–45. [Google Scholar]
- WHO. 2021: Coronavirus Disease (COVID-19). Available online: https://www.who.int/ (accessed on 12 April 2022).
- Park, J.-E.; Son, W.-S.; Ryu, Y.; Choi, S.; Kwon, O.; Ahn, I. Effects of temperature, humidity, and diurnal temperature range on influenza incidence in a temperate region. Influenza Other Respir. Viruses 2020, 14, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Boychenko, S.; Holubka, O.; Karamushka, V. About the influence of environmental conditions on the distribution of the SARS-CoV-19 virus in Ukraine. Geofiz. Zhurnal 2020, 5, 205–232. [Google Scholar] [CrossRef]
- Boychenko, S.; Voloshchuk, V.; Movchan, Y.; Serdjuchenko, N.; Tkachenko, V.; Tyshchenko, O.; Savchenko, S. Features of climate change on Ukraine: Scenarios, consequences for nature and agroecosystems. Proc. Natl. Aviat. Univ. 2016, 4, 96–113. [Google Scholar] [CrossRef]
- Boychenko, S. Semi–Empirical Models and Scenarios of Global and Regional Changes of Climate; Voloshchuk, V., Ed.; Naukova Dumka: Kyiv, Ukraine, 2008; p. 310. Available online: https://www.researchgate.net/publication/321301027 (accessed on 12 April 2022). (In Ukrainian)
- Boychenko, S.; Voloshchuk, V.; Kuchma, T.; Serdyuchenko, N. Long-time changes of the thermal continentality index, the amplitudes and the phase of the seasonal temperature variation in Ukraine. Geofiz. Zhurnal 2018, 40, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Aleshina, M.; Toropova, P.; Semenov, V. Temperature and Humidity Regime Changes on the Black Sea Coast in 1982–2014. Russ. Meteorol. Hydrol. 2018, 43, 235. [Google Scholar] [CrossRef]
- Keggenhoff, I.; Elizbarashvili, M.; Amiri-Farahani, A.; King, L. Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather Clim. Extrem. 2014, 4, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, A.-E.; Chiotoroiu, B.-C.; Ivanova Todorova, V.; Torică, V. Changes in precipitation extremes on the Black Sea Western Coast. Glob. Planet. Chang. 2013, 102, 10–19. [Google Scholar] [CrossRef]
- Tkachenko, V. Phytocoenotic Monitoring of the Reserve Successions in the Ukrainian Steppe Nature Reserve; Phytosociocenter: Kyiv, Ukraine, 2004; p. 184. (In Ukrainian) [Google Scholar]
- Tkachenko, V.; Boychenko, S. Structural drift of Ukraine’s steppe phytosystems under the influence of climatic changes and prognostic scenarios for the first half of the XXI-st century. Dopov. Nac. Akad. Nauk Ukr. 2014, 4, 172–180. (In Ukrainian) [Google Scholar] [CrossRef]
- Ilyin, Y.; Fomin, V.; Dyakov, N.; Gorbach, S. Hydrometeorological Conditions of the Seas of Ukraine. V.1: Azov Sea; ECOCI Publication: Sevastopol, Ukraine, 2009; p. 421. (In Ukrainian) [Google Scholar]
- Ilyin, Y.; Repetin, L.; Belokopytov, V.; Goryachkin, Y.; Dyakov, N.; Kubryakov, A.; Stanichny, S. Hydrometeorological Conditions of the Seas of Ukraine. V.2: Black Sea; ECOCI Publication: Sevastopol, Ukraine, 2012; p. 402. (In Ukrainian) [Google Scholar]
- The EU Water Framework Directive-Integrated River Basin Management for Europe. Available online: https://ec.europa.eu/environment/water/water-framework/index_en.html (accessed on 12 April 2022).
- Khilchevsky, V. (Ed.) Water Resources and Quality of River Waters of the Southern Bug Basin; Nika-Center Publication: Kyiv, Ukraine, 2009; p. 184. (In Ukrainian) [Google Scholar]
- Gorbachova, L. A spacious connection between the elements of the water balance of the rivers’ water intakes in Ukraine. Ukr. Geogr. J. 2014, 2, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Zabulonov, Y.; Boychenko, S.; Zholudenko, O.; Buhera, M. The tendencies of climate change and the runoff in the middle-lower part in the basin of Southern Bug River (in the region of the location the South-Ukrainian Nuclear Power Plant). Geofiz. Zhurnal 2018, 40, 268–283. [Google Scholar] [CrossRef]
- European Commission. Integrating the Environment and Climate Change into EU International Cooperation and Development. In Towards Sustainable Development: Tools and Methods Series, Guidelines No 6; Directorate-General for International Cooperation and Development European Commission: Brussels, Belgium; Luxembourg, 2016; p. 142. Available online: https://op.europa.eu/en/publication-detail/-/publication/7887e701-3f4e-11e6-af30-01aa75ed71a1 (accessed on 12 April 2022).
- Kona, A.; Bertoldi, P.; Palermo, V.; Rivas, S.; Hernandez, Y.; Barbosa, P.; Pasoyan, A. Guidebook-How to Develop a Sustainable Energy and Climate Action Plan in the Eastern Partnership Countries, European Commission, Ispra, 2018, JRC113659. Available online: http://com-east.eu/media/k2/attachments/Com_east_guidebook_2018.pdf (accessed on 12 April 2022).
Station | Latitude, Grad | Longitude, Grad | Altitude, m | Temperature, °C | Precipitation, mm/year | ||
---|---|---|---|---|---|---|---|
1961–1990 | 1991–2020 | 1961–1990 | 1991–2020 | ||||
Kherson | 46.63 | 32.61 | 54 | 9.8 ± 0.9 | 10.9 ± 0.9 | 441 ± 86 | 430 ± 109 |
Mikolaiv | 47.03 | 31.96 | 50 | 10.0 ± 0.9 | 10.8 ± 0.9 | 410 ± 95 | 472 ± 89 |
Odesa | 46.43 | 30.76 | 42 | 10.1 ± 0.8 | 11.3 ± 0.9 | 464 ± 106 | 463 ± 105 |
Zaporizhzhia | 47.80 | 35.25 | 112 | 9.4 ± 1.0 | 10.4 ± 1.0 | 510 ± 103 | 449 ± 97 |
Sector of Impact | Expected Impact Driver | Probability | Expected Level of Risk | Timeframe | Impact Indicators |
---|---|---|---|---|---|
Environment and biodiversity | Warming | High | Moderate | Medium- and long-term | Expansion of the habitats of thermophilic species to the north. Increasing plant productivity. |
Dry weather | High | High | Short- and medium-term | Depletion of soils and water resources. Changes in biodiversity. Reduced plant productivity. Fires. Pests’ expansion. Costs of elimination of consequences. | |
Extremely hot weather | High | High | Short- and medium-term | Depletion of soils and water resources. Changes in biodiversity. Reduced plant productivity. Fires. Pests’ expansion. Costs of elimination of consequences. | |
Heavy rain | High | High | Short- and medium-term | Flooding, pollution of water bodies, damage to trees. Costs of elimination of consequences. | |
Thunderstorm, hailstorm, squall | Moderate | Moderate | Short- and medium-term | Damage. Fires. Costs of elimination of consequences. | |
Dry wind, sawtooth storm | Moderate | High | Medium- and long-term | Depletion of soils and water resources. Changes in biodiversity. Reduced plant productivity. Fires. Pests’ expansion. Costs of elimination of consequences. | |
Health | Warming | High | Moderate | Medium- and long-term | Improving the comfort of climatic conditions. |
Disturbed weather conditions | High | High | Short- and medium-term | Deteriorating health of the population. Increasing costs of medical care. | |
Anomalous high temperature | High | High | Short- and medium-term | Deteriorating health of the population with possible fatalities. Vulnerability to infections and viruses. Increasing costs of medical care. | |
Heavy rain | High | High | Short- and medium-term | Deteriorating health of the population with possible fatalities. Vulnerability to infections and viruses. Increasing costs of medical care. | |
Thunderstorm, hailstorm, squall | Moderate | Moderate | Short- and medium-term | Injuries and deteriorating health. Increasing costs of medical care. | |
Dry wind, sawtooth storm | Moderate | High | Short- and medium-term | Injuries and deteriorating health. Increasing costs of medical care. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamushka, V.; Boychenko, S.; Kuchma, T.; Zabarna, O. Trends in the Environmental Conditions, Climate Change and Human Health in the Southern Region of Ukraine. Sustainability 2022, 14, 5664. https://doi.org/10.3390/su14095664
Karamushka V, Boychenko S, Kuchma T, Zabarna O. Trends in the Environmental Conditions, Climate Change and Human Health in the Southern Region of Ukraine. Sustainability. 2022; 14(9):5664. https://doi.org/10.3390/su14095664
Chicago/Turabian StyleKaramushka, Viktor, Svitlana Boychenko, Tetyana Kuchma, and Olena Zabarna. 2022. "Trends in the Environmental Conditions, Climate Change and Human Health in the Southern Region of Ukraine" Sustainability 14, no. 9: 5664. https://doi.org/10.3390/su14095664
APA StyleKaramushka, V., Boychenko, S., Kuchma, T., & Zabarna, O. (2022). Trends in the Environmental Conditions, Climate Change and Human Health in the Southern Region of Ukraine. Sustainability, 14(9), 5664. https://doi.org/10.3390/su14095664