Sustainable Cements Containing Sugarcane Bagasse Ash and Limestone: Effects on Compressive Strength and Acid Attack of Mortar
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of Blended Cements
3.2. Mechanical Performance of Mortars
3.3. Durability to Sulfuric Acid Attack
4. Conclusions
- The incorporation of ultrafine SCBA and LF into Portland blended cements significantly increased the Blaine fineness of cements, especially those containing ash due to its higher specific surface area. In addition, the binary clinker–SCBA mix and both ternary mixes were classified as pozzolanic Portland cements, indicating that the reactivity of SCBA was more effective than the dilution effect of 28% clinker replacement. However, SCBA increased cement setting times, delaying hydration due to the presence of contaminants in the ash. On the other hand, LF accelerated hydration because of the nucleation effect, reducing the final setting time compared to the reference.
- SCBA had a positive effect on the compressive strength and water absorption of mortars due to its pozzolanic activity, especially at later ages. However, the dilution effect was more pronounced with the addition of LF, and the binary clinker–LF mortar displayed the worst performance among all the mortars after 28 days. In the ternary mixes, strength was compromised in the early days due to the dilution effect, but the action of SCBA contributed to the mechanical performance of these mortars after 28 days of curing.
- With respect to durability tests, blended cements showed good performance compared to the reference. Cements containing LF exhibited excellent mass loss and water absorption, while SCBA provided lower length variation and good mechanical behavior after the sulfuric acid attack. The combined effect of these materials was evident in ternary mixes, which displayed good durability, with little mass and length variation, and good mechanical performance after the attack.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stafford, F.N.; Raupp-Pereira, F.; Labrincha, J.A.; Hotza, D. Life cycle assessment of the production of cement: A Brazilian case study. J. Clean. Prod. 2016, 137, 1293–1299. [Google Scholar] [CrossRef]
- Anjos, M.A.S.; Araújo, T.R.; Ferreira, R.L.S.; Farias, E.C.; Martinelli, A.E. Properties of self-leveling mortars incorporating a high-volume of sugar cane bagasse ash as partial Portland cement replacement. J. Build. Eng. 2020, 32, 101694. [Google Scholar] [CrossRef]
- UN Environment; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 2001, 26, 303–329. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Saleh, H.M.; Salman, A.A.; Faheim, A.A.; El-Sayed, A.M. Sustainable composite of improved lightweight concrete from cement kiln dust with grated poly(styrene). J. Clean. Prod. 2020, 277, 123491. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, P.; Yu, Z.; Yue, G.; Wang, L.; Guo, Y.; Li, Q. Study on the Effect of Recycled Coarse Aggregate on the Shrinkage Performance of Green Recycled Concrete. Sustainability 2021, 13, 13200. [Google Scholar] [CrossRef]
- Woo, B.; Jeon, I.; Yoo, D.; Kim, S.; Lee, J.; Kim, H. Utilization of Municipal Solid Waste Incineration Bottom Ash as Fine Aggregate of Cement Mortars. Sustainability 2021, 13, 8832. [Google Scholar] [CrossRef]
- Ahmad, J.; Matínez-García, R.; de-Prado-Gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [Google Scholar] [CrossRef]
- Ferrotto, M.F.; Asteris, P.G.; Borg, R.P.; Cavaleri, L. Strategies for Waste Recycling: The Mechanical Performance of Concrete Based on Limestone and Plastic Waste. Sustainability 2022, 14, 1706. [Google Scholar] [CrossRef]
- Kelechi, S.E.; Adamu, M.; Mohammed, A.; Ibrahim, Y.E.; Obianyo, I.I. Durability Performance of Self-Compacting Concrete Containing Crumb Rubber, Fly Ash and Calcium Carbide Waste. Materials 2022, 15, 488. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, F.B.; Holanda, J.N.F. Reuse of grits waste for the production of soil-cement bricks. J. Environ. Manag. 2013, 131, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Vilela, A.P.; Eugênio, T.M.C.; de Oliveira, F.F.; Mendes, J.F.; Ribeiro, A.G.C.; Vaz, L.E.V.S.B.; Mendes, R.F. Technological properties of soil-cement bricks produced with iron ore mining waste. Constr. Build. Mater. 2020, 262, 120883. [Google Scholar] [CrossRef]
- Lam, M.N.; Nguyen, D.; Nguyen, D. Potential use of clay brick waste powder and ceramic waste aggregate in mortar. Constr. Build. Mater. 2021, 313, 125516. [Google Scholar] [CrossRef]
- Farinha, C.B.; Silvestre, J.D.; de Brito, J.; Veiga, M.R. Life Cycle Assessment of Mortars with Incorporation of Industrial Wastes. Fibers 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Raheem, A.A.; Ikotun, B.D. Incorporation of agricultural residues as partial substitution for cement in concrete and mortar—A review. J. Build. Eng. 2020, 31, 101428. [Google Scholar] [CrossRef]
- Skibsted, J.; Snellings, R. Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 2019, 124, 105799. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Malhotra, V.M.; Mehta, P.K. Pozzolanic and Cementitious Materials, 1st ed.; Gordon and Breach Publishers: Amsterdam, The Netherlands, 1996; p. 191. [Google Scholar]
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Compos. 2008, 30, 410–418. [Google Scholar] [CrossRef]
- Martirena, F.; Monzó, J. Vegetable ashes as supplementary cementitious materials. Cem. Concr. Res. 2018, 114, 57–64. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Kurtis, K.E. Effect of mechanical processing on sugar cane bagasse ash pozzolanicity. Cem. Concr. Res. 2017, 97, 41–49. [Google Scholar] [CrossRef]
- Barbosa, F.L.; Cordeiro, G.C. Partial cement replacement by different sugar cane bagasse ashes: Hydration-related properties, compressive strength and autogenous shrinkage. Constr. Build. Mater. 2021, 272, 121625. [Google Scholar] [CrossRef]
- Jiménez-Quero, V.G.; León-Martínez, F.M.; Montes-García, P.; Gaona-Tiburcio, C.; Chacón-Nava, J.G. Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Constr. Build. Mater. 2013, 40, 691–701. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Constr. Build. Mater. 2012, 29, 641–646. [Google Scholar] [CrossRef]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 2009, 23, 3352–3358. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Paiva, O.A.; Toledo Filho, R.D.; Fairbairn, E.M.R.; Tavares, L.M. Long-term compressive behavior of concretes with sugarcane bagasse ash as a supplementary cementitious material. J. Test. Eval. 2018, 46, 564–573. [Google Scholar] [CrossRef]
- Bahurudeen, A.; Kanraj, D.; Gokul Dev, V.; Santhanam, M. Performance evaluation of sugar cane bagasse ash blended cement in concrete. Cem. Concr. Compos. 2015, 59, 77–88. [Google Scholar] [CrossRef]
- Rajasekar, A.; Arunachalam, K.; Kottaisamy, M.; Saraswathy, V. Durability characteristics of ultra high strength concrete with treated sugarcane bagasse ash. Constr. Build. Mater. 2018, 171, 350–356. [Google Scholar] [CrossRef]
- Andreão, P.V.; Suleiman, A.R.; Cordeiro, G.C.; Nehdi, M.L. Sustainable use of sugarcane bagasse ash in cement-based materials. Green Mater. 2019, 7, 61–70. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; de Almeida, R.S. Influence of ultrafine wet grinding on pozzolanic activity of submicrometre sugar cane bagasse ash. Adv. Appl. Ceram. 2011, 110, 453–456. [Google Scholar] [CrossRef]
- Bahurudeen, A.; Santhanam, M. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem. Concr. Compos. 2015, 56, 32–45. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Tavares, L.M.; Toledo Filho, R.D. Improved pozzolanic activity of sugar cane bagasse ash by selective grinding and classification. Cem. Concr. Res. 2016, 89, 269–275. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Barroso, T.R.; Toledo Filho, R.D. Enhancement the properties of sugar cane bagasse ash with high carbon content by a controlled re-calcination process. KSCE J. Civ. Eng. 2018, 22, 1250–1257. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; Fairbairn, E.M.R. Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 2009, 23, 3301–3303. [Google Scholar] [CrossRef]
- Avet, F.; Scrivener, K. Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (LC3). Cem. Concr. Res. 2018, 107, 124–135. [Google Scholar] [CrossRef]
- Tironi, A.; Scian, A.N.; Irassar, E.F. Blended cements with limestone filler and kaolinitic calcined clay: Filler and pozzolanic effects. J. Mater. Civ. Eng. 2017, 29, 04017116. [Google Scholar] [CrossRef]
- De Sensale, G.R.; Viacava, I.R. A study on blended Portland cements containing residual rice husk ash and limestone filler. Constr. Build. Mater. 2018, 166, 873–888. [Google Scholar] [CrossRef]
- Dhandapani, Y.; Sakthivel, T.; Santhanam, M.; Gettu, R.; Pillai, R.G. Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 2018, 107, 136–151. [Google Scholar] [CrossRef]
- Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K. Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 2012, 42, 1579–1589. [Google Scholar] [CrossRef]
- Bentz, D.P.; Ferraris, C.F.; Jones, S.Z.; Lootens, D.; Zunino, F. Limestone and silica powder replacements for cement: Early-age performance. Cem. Concr. Compos. 2017, 78, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, S.; Emmanuel, A.C.; Bishnoi, S. Hydration and phase assemblage of ternary cements with calcined clay and limestone. Constr. Build. Mater. 2019, 222, 64–72. [Google Scholar] [CrossRef]
- Millán-Corrales, G.; González-López, J.R.; Palomo, A.; Fernandez-Jiménez, A. Replacing fly ash with limestone dust in hybrid cements. Constr. Build. Mater. 2020, 243, 118169. [Google Scholar] [CrossRef]
- Senhadji, Y.; Escadeillas, G.; Mouli, M.; Khelafi, H.; Benosman. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol. 2014, 254, 314–323. [Google Scholar] [CrossRef]
- De Siqueira, A.A.; Cordeiro, G.C. Properties of binary and ternary mixes of cement, sugarcane bagasse ash and limestone. Constr. Build. Mater. 2022, 317, 126150. [Google Scholar] [CrossRef]
- Payá, J.; Monzó, J.; Borrachero, M.V.; Díaz-Pinzón, L.; Ordónez, L.M. Sugar-cane bagasse ash (SCBA): Studies on its properties for reusing in concrete production. J. Chem. Technol. Biotechnol. 2002, 77, 321–325. [Google Scholar] [CrossRef]
- Joshaghani, A.; Moeini, M.A. Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Constr. Build. Mater. 2017, 152, 818–831. [Google Scholar] [CrossRef]
- ABNT NBR NM 18; Portland Cement—Chemical Analysis—Determination of Loss on Ignition. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2004. (In Portuguese)
- ABNT NBR 16607; Portland Cement—Determination of Setting Times. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2018. (In Portuguese)
- ASTM C188-17; Standard Test Method for Density of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C204-18E1; Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. ASTM International: West Conshohocken, PA, USA, 2017.
- ABNT NBR 5753; Portland Cement—Pozzolanicity Test for Pozzolanic Cements. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2016. (In Portuguese)
- ABNT NBR 7214; Standard Sand for Cement Tests—Specification. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 1982. (In Portuguese)
- ASTM C109M-16; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens. ASTM International: West Conshohocken, PA, USA, 2016.
- ABNT NBR 9778; Hardened Mortar and Concrete—Determination of Absorption, Voids and Specific Gravity. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2009. (In Portuguese)
- Khan, H.A.; Castel, A.; Khan, M.S.H.; Mahmood, A.H. Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid. Cem. Concr. Res. 2019, 124, 105852. [Google Scholar] [CrossRef]
- ASTM C267-01; Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International: West Conshohocken, PA, USA, 2001.
- ASTM C1012-18b; Standard Test Method for Length Change of Hydraulic–Cement Mortars Exposed to a Sulfate Solution. ASTM International: West Conshohocken, PA, USA, 2018.
- Multon, S.; Cyr, M.; Sellier, A.; Leklou, N.; Petit, L. Coupled effects of aggregate size and alkali content on ASR expansion. Cem. Concr. Res. 2008, 38, 350–359. [Google Scholar] [CrossRef] [Green Version]
- De Pádua, P.G.L.; Cordeiro, G.C. Hydration-related properties of pastes and compressive strength of mortars containing sugar cane bagasse ashes with different potassium oxide contents. Adv. Cem. Res. 2022, 34, 57–66. [Google Scholar] [CrossRef]
- Oey, T.; Kumar, A.; Bullard, J.W.; Neithalath, N.; Sant, G. The filler effect: The influence of filler content and surface area on cementitious reaction rates. J. Am. Ceram. Soc. 2013, 96, 1978–1990. [Google Scholar] [CrossRef]
- ABNT NBR 16697; Portland Cement—Requirements. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2018. (In Portuguese)
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr. Compos. 2007, 29, 515–524. [Google Scholar] [CrossRef]
- Massazza, F. Pozzolana and pozzolanic cements. In Lea’s Chemistry of Cement and Concrete, 4th ed.; Hewlett, P.C., Ed.; Butterworth-Heinemann: Oxford, UK, 2003; pp. 471–635. [Google Scholar] [CrossRef]
- Bassuoni, M.T.; Nehdi, M.L. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 2007, 37, 1070–1084. [Google Scholar] [CrossRef]
- Makhloufi, Z.; Kadri, E.H.; Bouhicha, M.; Benaissa, A. Resistance of limestone mortars with quaternary binders to sulfuric acid solution. Constr. Build. Mater. 2012, 26, 497–504. [Google Scholar] [CrossRef]
- Chang, Z.T.; Song, X.J.; Munn, R.; Marosszeky, M. Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack. Cem. Concr. Res. 2005, 35, 1486–1494. [Google Scholar] [CrossRef]
- Schmidt, T.; Lothenbach, B.; Romer, M.; Neuenschwander, J.; Scrivener, K. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem. Concr. Res. 2009, 39, 1111–1121. [Google Scholar] [CrossRef]
Clinker | Gypsum | SCBA | LF | |
---|---|---|---|---|
CaO | 71.5 | 52.3 | 3.4 | 52.8 |
SiO2 | 14.2 | 4.5 | 53.8 | 3.7 |
Al2O3 | 5.2 | - | 18.1 | - |
Fe2O3 | 5.7 | 0.1 | 10.8 | 1.8 |
K2O | 0.6 | - | 4.3 | 0.5 |
SO3 | 1.7 | 40.6 | 2.7 | 0.6 |
TiO2 | 0.3 | - | 1.0 | - |
P2O5 | - | - | 1.6 | - |
MnO | 0.1 | - | 0.2 | - |
LOI * | 0.8 | 2.6 | 3.9 | 40.5 |
Physical properties | ||||
D50 (μm) | - | - | 4.18 | 4.17 |
Density (g/cm³) | - | - | 2.61 | 2.77 |
BET specific surface area (m²/kg) | - | - | 17,000 | 5000 |
Pozzolanic activity index with cement (%) | - | - | 127 | - |
Cement | Clinker | SCBA | Limestone | Gypsum |
---|---|---|---|---|
PC-1 | 95 | - | - | 5 |
PC-2 | 81 | 14 | - | 5 |
PC-3 | 81 | - | 14 | 5 |
PC-4 | 74 | 7 | 14 | 5 |
PC-5 | 67 | 14 | 14 | 5 |
PC-1 | PC-2 | PC-3 | PC-4 | PC-5 | |
---|---|---|---|---|---|
CaO | 69.96 | 55.89 | 68.24 | 61.18 | 54.53 |
SiO2 | 15.72 | 23.74 | 12.96 | 17.46 | 21.34 |
Al2O3 | 4.10 | 7.59 | 3.26 | 5.18 | 5.94 |
SO3 | 3.62 | 3.77 | 3.48 | 3.55 | 3.63 |
Fe2O3 | 4.71 | 5.62 | 4.40 | 4.63 | 5.12 |
K2O | 0.60 | 1.32 | 0.62 | 0.84 | 1.21 |
TiO2 | 0.28 | 0.42 | 0.44 | 0.30 | 0.42 |
MnO | 0.08 | 0.11 | 0.08 | 0.09 | 0.11 |
Na2Oeq * | 0.39 | 0.87 | 0.41 | 0.56 | 0.80 |
LOI | 0.91 | 1.55 | 6.52 | 6.77 | 7.68 |
D50(μm) | 12.8 | 10.9 | 11.4 | 10.5 | 9.5 |
Density (g/cm³) | 3.07 | 2.90 | 3.01 | 2.90 | 2.87 |
Blaine fineness (m²/kg) | 325 | 418 | 405 | 527 | 633 |
Initial setting time (min) | 120 | 155 | 120 | 130 | 130 |
Final setting time (min) | 180 | 200 | 160 | 180 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Siqueira, A.A.; Cordeiro, G.C. Sustainable Cements Containing Sugarcane Bagasse Ash and Limestone: Effects on Compressive Strength and Acid Attack of Mortar. Sustainability 2022, 14, 5683. https://doi.org/10.3390/su14095683
de Siqueira AA, Cordeiro GC. Sustainable Cements Containing Sugarcane Bagasse Ash and Limestone: Effects on Compressive Strength and Acid Attack of Mortar. Sustainability. 2022; 14(9):5683. https://doi.org/10.3390/su14095683
Chicago/Turabian Stylede Siqueira, Andréia Arenari, and Guilherme Chagas Cordeiro. 2022. "Sustainable Cements Containing Sugarcane Bagasse Ash and Limestone: Effects on Compressive Strength and Acid Attack of Mortar" Sustainability 14, no. 9: 5683. https://doi.org/10.3390/su14095683
APA Stylede Siqueira, A. A., & Cordeiro, G. C. (2022). Sustainable Cements Containing Sugarcane Bagasse Ash and Limestone: Effects on Compressive Strength and Acid Attack of Mortar. Sustainability, 14(9), 5683. https://doi.org/10.3390/su14095683