Pedestrian Safety at Midblock Crossings on Dual Carriageway Roads in Polish Cities
Abstract
:1. Introduction
2. Study Method
2.1. Test Sites and Data Collection
- (a)
- so-called active pedestrian crossings (Figure 3a), consisting of flashing lights activated automatically when pedestrians are detected, zebra stripes against a red background and an extra coarse surface on approaches to the crossing;
- (b)
- crossings with markings that narrow the lanes and road cross-section—i.e., a horizontal marking between same direction lanes and tilting vertical posts placed along the edges of the lanes (Figure 3b).
2.2. Analysis of Empirical Studies
- traffic volumes: vehicles and vulnerable road users (hourly traffic volumes were used to analyse the conflict rate);
- average vehicle speeds on analysed test sites about 10 m before the pedestrian crossing to identify how drivers perceive crossings;
- pedestrian behaviour before the crossing forming platoons, i.e., share of platoons and individuals using the crossing;
- interaction between pedestrians and vehicles, assessment based on conflict rate.
- undisturbed passage means the movement of vehicles that are completely independent of one another;
- potential conflicts happen when users cross their paths of movements but do not change their behaviour (or only do it slightly);
- light conflicts happen when users cross their paths of movements and swerve to avoid a collision (but do not use brakes);
- serious conflicts happen when vehicles swerve and brake and the situation is very close to a collision.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Pedestrian Safety; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- WHO. Global Status Report on Road Safety 2018; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Symon, E. Road Accidents in Poland in 2019. Warsow, Poland. 2020. Available online: https://statystyka.policja.pl/download/20/344365/Wypadkidrogowe2019.pdf (accessed on 28 January 2022).
- Olszewski, P.; Szagała, P.; Wolański, M.; Zielińska, A. Pedestrian fatality risk in accidents at unsignalized zebra cross-walks in Poland. Accid. Anal. Prev. 2015, 84, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Bendak, S.; Alnaqbi, A.M.; Alzarooni, M.Y.; Aljanaahi, S.M.; Alsuwaidi, S.J. Factors affecting pedestrian behaviors at signalized crosswalks: An empirical study. J. Saf. Res. 2021, 76, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Mitra, S. A comparative study of safe and unsafe signalized intersections from the view point of pedes-trian behavior and perception. Accid. Anal. Prev. 2019, 132, 105218. [Google Scholar] [CrossRef] [PubMed]
- Jay, M.; Régnier, A.; Dasnon, A.; Brunet, K.; Pelé, M. The light is red: Uncertainty behaviours displayed by pedestrians during illegal road crossing. Accid. Anal. Prev. 2019, 135, 105369. [Google Scholar] [CrossRef] [Green Version]
- Afshari, A.; Ayati, E.; Barakchi, M. Evaluating the effects of external factors on pedestrian violations at signalized inter-sections (a case study of Mashhad, Iran). IATSS Res. 2020, 45, 234–240. [Google Scholar] [CrossRef]
- Forde, A.; Daniel, J. Pedestrian walking speed at un-signalized midblock crosswalk and its impact on urban street seg-ment performance. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 57–69. [Google Scholar]
- Kutela, B.; Teng, H. Prediction of drivers and pedestrians’ behaviors at signalized mid-block Danish offset crosswalks using Bayesian networks. J. Saf. Res. 2019, 69, 75–83. [Google Scholar] [CrossRef]
- Budzynski, M.; Gobis, A.; Guminska, L.; Jelinski, L.; Kiec, M.; Tomczuk, P. Assessment of the Influence of Road Infrastruc-ture Parameters on the Behaviour of Drivers and Pedestrians in Pedestrian Crossing Areas. Energies 2021, 14, 3559. [Google Scholar] [CrossRef]
- Niveditha, S.P.; Mallesha, K.M. Analysis of Pedestrian Crossing Behavior at Uncontrolled Intersections. In Recent Trends in Civil Engineering; Springer: Singapore, 2020; Volume 14, pp. 405–418. [Google Scholar] [CrossRef]
- Kadali, B.R.; Vedagiri, P. Evaluation of pedestrian crossing speed change patterns at unprotected mid-block crosswalks in India. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 832–842. [Google Scholar] [CrossRef]
- Kadali, B.; Vedagiri, P. Pedestrian quality of service at unprotected mid-block crosswalk locations under mixed traffic conditions: Towards quantitative approach. Transport 2016, 33, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Bella, F.; Ferrante, C. Drivers’ Yielding Behavior in Different Pedestrian Crossing Configurations: A Field Survey. J. Adv. Transp. 2021, 2021, 8874563. [Google Scholar] [CrossRef]
- Lu, L.; Ren, G.; Wang, W.; Chan, C.-Y.; Wang, J. A cellular automaton simulation model for pedestrian and vehicle inte-raction behaviors at unsignalized mid-block crosswalks. Accid. Anal. Prev. 2016, 95, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Sheykhfard, A.; Haghighi, F.; Papadimitriou, E.; Van Gelder, P. Analysis of the occurrence and severity of vehicle-pedestrian conflicts in marked and unmarked crosswalks through naturalistic driving study. Transp. Res. Part F Traffic Psychol. Behav. 2020, 76, 178–192. [Google Scholar] [CrossRef]
- Tang, L.; Liu, Y.; Li, J.; Qi, R.; Zheng, S.; Chen, B.; Yang, H. Pedestrian crossing design and analysis for symmetric intersections: Efficiency and safety. Transp. Res. Part A Policy Pract. 2020, 142, 187–206. [Google Scholar] [CrossRef]
- Wang, J.; Yang, C.; Zhao, J. Conditions for Setting Exclusive Pedestrian Phases at Two-Phase Signalized Intersections considering Pedestrian-Vehicle Interaction. J. Adv. Transp. 2021, 2021, 8546403. [Google Scholar] [CrossRef]
- Yuan, Q.; Xu, X.; Xu, M.; Zhao, J.; Li, Y. The role of striking and struck vehicles in side crashes between vehicles: Bayesian bivariate probit analysis in China. Accid. Anal. Prev. 2019, 134, 105324. [Google Scholar] [CrossRef]
- Chaudhari, A.; Gore, N.; Arkatkar, S.; Joshi, G.; Pulugurtha, S. Pedestrian Crossing Warrants for Ur-ban Midblock Crossings under Mixed-Traffic Environment. J. Transp. Eng. Part A Syst 2020, 146, 04020031. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Y.; Feng, Z.; Cui, J.; Huang, Z.; Yu, Z.; Sze, N. Research on intervention methods for children’s street-crossing behaviour: Application and expansion of the theory of “behaviour spectrums”. Accid. Anal. Prev. 2021, 152, 105979. [Google Scholar] [CrossRef]
- Koekemoer, K.; Van Gesselleen, M.; van Niekerk, A.; Govender, R.; Van As, A.B. Child pedestrian safety knowledge, behaviour and road injury in Cape Town, South Africa. Accid. Anal. Prev. 2017, 99, 202–209. [Google Scholar] [CrossRef]
- Choi, J.; Tay, R.; Kim, S.; Jeong, S. Behaviors of older pedestrians at crosswalks in South Korea. Accid. Anal. Prev. 2019, 127, 231–235. [Google Scholar] [CrossRef]
- Dommes, A. Street-crossing workload in young and older pedestrians. Accid. Anal. Prev. 2019, 128, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Ma, W.; Lo, H.K.; Yang, X. Optimization of mid-block pedestrian crossing network with discrete demands. Transp. Res. Part B Methodol. 2015, 73, 103–121. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Su, R. Pedestrian-Safety-Aware Traffic Light Control Strategy for Urban Traffic Congestion Alle-viation. IEEE Trans. Intell. Transp. Syst. 2021, 22, 178–193. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Gao, Z.; Bubb, H. Individual differences of pedestrian behaviour in midblock crosswalk and intersection. Int. J. Crashworthiness 2011, 16, 1–9. [Google Scholar] [CrossRef]
- Sisiopiku, V.; Akin, D. Pedestrian behaviors at and perceptions towards various pedestrian facilities: An examination based on observation and survey data. Transp. Res. Part F Traffic Psychol. Behav. 2003, 6, 249–274. [Google Scholar] [CrossRef]
- Danaf, M.; Sabri, A.; Abou-Zeid, M.; Kaysi, I. Pedestrian–vehicular interactions in a mixed street environment. Transp. Lett. 2018, 12, 87–99. [Google Scholar] [CrossRef]
- Quistberg, D.A.; Howard, E.J.; Ebel, B.E.; Moudon, A.V.; Saelens, B.; Hurvitz, P.M.; Curtin, J.E.; Rivara, F.P. Multilevel models for evaluating the risk of pedestrian–motor vehicle collisions at intersections and mid-blocks. Accid. Anal. Prev. 2015, 84, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Budzynski, M.; Guminska, L.; Jamroz, K.; Mackun, T.; Tomczuk, P. Effects of Road Infrastructure on Pedestrian Safety. IOP Conf. Series Mater. Sci. Eng. 2019, 603, 042052. [Google Scholar] [CrossRef] [Green Version]
- Kruszyna, M.; Matczuk-Pisarek, M.; Wu, Y.; Park, H. The Effectiveness of Selected Devices to Reduce the Speed of Vehicles on Pedestrian Crossings. Sustainability 2021, 13, 9678. [Google Scholar] [CrossRef]
- Bak, R.; Kiec, M. Influence of Midblock Pedestrian Crossings on Urban Street Capacity. Transp. Res. Rec. J. Transp. Res. Board 2012, 2316, 76–83. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, W.; Li, P. Optimal Design of Midblock Crosswalk to Achieve Trade-Off between Vehicles and Pedestrians. J. Transp. Eng. Part A Syst. 2017, 143, 04016003. [Google Scholar] [CrossRef]
- Tomczuk, P.; Chrzanowicz, M.; Mackun, T.; Budzyński, M. Analysis of the results of the audit of lighting parameters at pedestrian crossings in Warsaw. Arch. Transp. 2021, 59, 21–39. [Google Scholar] [CrossRef]
- Zhao, J.; Malenje, J.O.; Wu, J.; Ma, R. Modeling the interaction between vehicle yielding and pedestrian crossing beha-vior at unsignalized midblock crosswalks. Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 222–235. [Google Scholar] [CrossRef]
- Chen, P.; Wu, C.; Zhu, S. Interaction between vehicles and pedestrians at uncontrolled mid-block crosswalks. Saf. Sci. 2016, 82, 68–76. [Google Scholar] [CrossRef]
- Kadali, B.R.; Vedagiri, P. Proactive pedestrian safety evaluation at unprotected mid-block crosswalk locations under mixed traffic conditions. Saf. Sci. 2016, 89, 94–105. [Google Scholar] [CrossRef]
- Golakiya, H.D.; Chauhan, R.; Dhamaniya, A. Evaluating safe distance for pedestrians on urban midblock sections using trajectory plots. Eur. Transp.\Trasp. Eur. 2020, 75, 1–17. [Google Scholar]
- Zhao, J.; Malenje, J.; Tang, Y.; Han, Y. Gap acceptance probability model for pedestrians at unsignalized mid-block crosswalks based on logistic regression. Accid. Anal. Prev. 2019, 129, 76–83. [Google Scholar] [CrossRef]
- Ramesh, A.; Ashritha, K.; Kumar, M. Development of Model for Pedestrian Gap Based on Land Use Pattern at Midblock Location and Estimation of Delay at Intersections. J. Inst. Eng. (India) Ser. A 2018, 99, 413–422. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Q.; Qin, J.; Xue, X. Survey of pedestrians’ crossing time at non-signalized mid-block street crossing. J. Adv. Transp. 2016, 50, 2193–2208. [Google Scholar] [CrossRef]
- Shaaban, K.; Abdelwarith, K. Pedestrian Attribute Analysis Using Agent-Based Modeling. Appl. Sci. 2020, 10, 4882. [Google Scholar] [CrossRef]
- Pawar, D.S.; Kumar, V.; Singh, N.; Patil, G.R. Analysis of dilemma zone for pedestrians at high-speed uncontrolled midblock crossing. Transp. Res. Part C Emerg. Technol. 2016, 70, 42–52. [Google Scholar] [CrossRef]
- Smirnov, E.; Dunaenko, S.; Kudinov, S. Using multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks. Geo-Spatial Inf. Sci. 2020, 23, 362–374. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, B.; Wu, H.; Wang, C.; Su, Q.; Chen, W. Modeling illegal pedestrian crossing behaviors at unmarked mid-block roadway based on extended decision field theory. Phys. A Stat. Mech. Appl. 2020, 562, 125327. [Google Scholar] [CrossRef]
- Zegeer, C.V.; Stewart, J.R.; Huang, H.; Lagerwey, P. Safety effects of marked versus unmarked crosswalks at uncontrol-led locations: Analysis of pedestrian crashes in 30 cities. Transp. Res. Rec. 2001, 1773, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Radwan, E.; Abou-Senna, H. Assessment of pedestrian-vehicle conflicts with different potential risk factors at midblock crossings based on driving simulator experiment. Adv. Transp. Stud. 2018, 44, 33–46. [Google Scholar]
- Calvi, A.; D’Amico, F.; Ferrante, C.; Bianchini Ciampoli, L. Effectiveness of augmented reality warnings on driving beha-viour whilst approaching pedestrian crossings: A driving simulator study. Accid. Anal. Prev. 2020, 147, 105760. [Google Scholar] [CrossRef] [PubMed]
- Tezcan, H.O.; Elmorssy, M.; Aksoy, G. Pedestrian crossing behavior at midblock crosswalks. J. Saf. Res. 2019, 71, 49–57. [Google Scholar] [CrossRef]
- Avinash, C.; Jiten, S.; Arkatkar, S.; Gaurang, J.; Manoranjan, P. Evaluation of pedestrian safety margin at mid-block crosswalks in India. Saf. Sci. 2018, 119, 188–198. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, B.; Qiu, T.Z.; Liu, S. Pedestrian crossing behaviors at uncontrolled multi-lane mid-block crosswalks in developing world. J. Saf. Res. 2018, 64, 145–154. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, F.; Wei, Y. Evaluation of pedestrian crossing behavior and safety at uncontrolled mid-block crosswalks with different numbers of lanes in China. Accid. Anal. Prev. 2018, 123, 263–273. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, B.; Chen, G.; Chen, F. Quantitative analysis of pedestrian safety at uncontrolled multi-lane mid-block crosswalks in China. Accid. Anal. Prev. 2017, 108, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, P.; Xu, X.; Xu, C. Multiobjective Evaluation of Midblock Crosswalks on Urban Streets Based on TOPSIS and Entropy Methods. Transp. Res. Rec. 2016, 2586, 59–71. [Google Scholar] [CrossRef]
- Stapleton, S.; Kirsch, T.; Gates, T.J.; Savolainen, P.T. Factors Affecting Driver Yielding Compliance at Uncontrolled Midblock Crosswalks on Low-Speed Roadways. Transp. Res. Rec. 2017, 2661, 95–102. [Google Scholar] [CrossRef]
- Dougald, L.E. Effectiveness of a rectangular rapid-flashing beacon at a Midblock Crosswalk on a high-speed urban collec-tor. Transp. Res. Rec. 2016, 2562, 36–44. [Google Scholar] [CrossRef]
- Lantieri, C.; Costa, M.; Vignali, V.; Acerra, E.M.; Marchetti, P.; Simone, A. Flashing in-curb LEDs and beacons at unsigna-lized crosswalks and driver’s visual attention to pedestrians during nighttime. Ergonomics 2021, 64, 330–341. [Google Scholar] [CrossRef]
- Pichayapan, P.; Kaewmoracharoen, M.; Peansara, T.; Nanthavisit, P. Urban School Area Road Safety Improvement and Assessment with a 3D Piano-Keyboard-Styled Pedestrian Crossing Approach: A Case Study of Chiang Mai University De-monstration School. Sustainability 2020, 12, 6464. [Google Scholar] [CrossRef]
- Hyden, C. The Development of a Method for Traffic Safety Evaluation: The Swedish Traffic Conflicts Technique; Lund University: Lund, Sweden, 1987. [Google Scholar]
- Jiang, R.; Zhu, S.; Chang, H.; Wu, J.; Ding, N.; Liu, B.; Qiu, J. Determining an Improved Traffic Conflict Indicator for Highway Safety Estimation Based on Vehicle Trajectory Data. Sustainability 2021, 13, 9278. [Google Scholar] [CrossRef]
- Shinar, D. The Traffic Conflict Technique: A Subjective vs. Objective Approach. J. Safety Res. 1984, 15, 153–157. [Google Scholar] [CrossRef]
- Olszewski, P.; Czajewski, W.; Dąbkowski, P.; Kraskiewicz, C.; Szagała, P. Assessment of the Effectiveness of Active Si-gnage at Pedestrian Crossings. Arch. Civ. Eng. 2015, 61, 125–139. [Google Scholar] [CrossRef]
- Prevedouros, P.D. Evaluation of in-pavement Flashing Lights on a Six-lane Arterial Pedestrian Crossing. In Proceedings of the ITE 2001 Annual Meeting, Chicago, IL, USA, 19–22 August 2001. [Google Scholar]
- Turner, S.; Fitzpatrick, K.; Brewer, M.; Park, E. Motorist Yielding to Pedestrians at Unsignalized Intersections: Findings from a National Study on Improving Pedestrian Safety. Transp. Res. Rec. J. Transp. Res. Board 2006, 1982, 1–12. [Google Scholar] [CrossRef]
- Hakkert, A.; Gitelman, V.; Ben-Shabat, E. An evaluation of crosswalk warning systems: Effects on pedestrian and vehicle behaviour. Transp. Res. Part F Traffic Psychol. Behav. 2002, 5, 275–292. [Google Scholar] [CrossRef]
City | Street | “Before” | “After 1” | “After 2” | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Vm [km/h] | S [km/h] | S/Vm | Vm [km/h] | S [km/h] | S/Vm | Vm [km/h] | S [km/h] | S/Vm | ||
Warsaw | Popiełuszki | 50.3 | 14.5 | 0.29 | 43.5 p-value < 0.000 2 | 17.8 | 0.41 | 54.2 p-value < 0.000 2 p-value < 0.000 3 | 15.3 | 0.28 |
Warsaw | Grzybowska | 46.2 | 11.7 | 0.25 | 33.2 p-value < 0.000 2 | 15.4 | 0.46 | 29.3 p-value < 0.000 2 p-value < 0.000 3 | 15.2 | 0.52 |
Kraków | Armii Krajowej 1 | 49.4 | 8.9 | 0.18 | 41.3 p-value < 0.000 2 | 8.4 | 0.20 | 44.1 p-value < 0.000 2 p-value < 0.0035 3 | 7.5 | 0.17 |
Kraków | Armii Krajowej 2 | 50.6 | 9.5 | 0.19 | 41.6 p-value < 0.000 2 | 8.8 | 0.21 | 44.4 p-value < 0.000 2 p-value < 0.0069 3 | 8.4 | 0.19 |
Gdansk | Obrońców Wybrzeża | 33.2 | 17.6 | 0.53 | 27.8 p-value < 0.0054 2 | 15.7 | 0.56 | 29.5 p-value < 0.0493 2 p-value < 0.336 3 | 15.5 | 0.53 |
Gdansk 1 | Hallera | 49.4 | 28.1 | 0.57 | ||||||
Gdansk 1 | Jana Pawła II | 55.6 | 9.4 | 0.17 |
City | Street | “Before” | “After 1” | “After 2” | |||
---|---|---|---|---|---|---|---|
Separately [%] | Group [%] | Separately [%] | Group [%] | Separately [%] | Group [%] | ||
Warsaw | Popiełuszki | 80 | 20 | 80 | 20 | 80 | 20 |
Warsaw | Grzybowska | 77 | 23 | 75 | 25 | 77 | 23 |
Cracow | Armii Krajowej 1 | 85 | 15 | 96 | 4 | 95 | 5 |
Cracow | Armii Krajowej 2 | 84 | 16 | 93 | 7 | 95 | 5 |
Gdansk | Obrońców Wybrzeża | 75 | 25 | 92 | 8 | 90 | 10 |
Gdansk | Hallera | 88 | 12 | ||||
Gdansk | Ul. Jana Pawła II | 73 | 27 |
City | Time | Street | “Before” | “After 1” | “After 2” |
---|---|---|---|---|---|
Warsaw | 6.00–24.00 | Popiełuszki | 0.55 | 0.22 | 0.22 |
Warsaw | 6.00–24.00 | Grzybowska | 0.83 | 0.78 | 0.67 |
Cracow | 10.00–15.00 | Armii Krajowej 1 | 1 | 0.25 | 0 |
Cracow | 10.00–15.00 | Armii Krajowej 2 | 0.8 | 0 | 0 |
Gdansk | 11.00–16.00 | Obrońców Wybrzeża | 0.9 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szagala, P.; Brzezinski, A.; Kiec, M.; Budzynski, M.; Wachnicka, J.; Pazdan, S. Pedestrian Safety at Midblock Crossings on Dual Carriageway Roads in Polish Cities. Sustainability 2022, 14, 5703. https://doi.org/10.3390/su14095703
Szagala P, Brzezinski A, Kiec M, Budzynski M, Wachnicka J, Pazdan S. Pedestrian Safety at Midblock Crossings on Dual Carriageway Roads in Polish Cities. Sustainability. 2022; 14(9):5703. https://doi.org/10.3390/su14095703
Chicago/Turabian StyleSzagala, Piotr, Andrzej Brzezinski, Mariusz Kiec, Marcin Budzynski, Joanna Wachnicka, and Sylwia Pazdan. 2022. "Pedestrian Safety at Midblock Crossings on Dual Carriageway Roads in Polish Cities" Sustainability 14, no. 9: 5703. https://doi.org/10.3390/su14095703
APA StyleSzagala, P., Brzezinski, A., Kiec, M., Budzynski, M., Wachnicka, J., & Pazdan, S. (2022). Pedestrian Safety at Midblock Crossings on Dual Carriageway Roads in Polish Cities. Sustainability, 14(9), 5703. https://doi.org/10.3390/su14095703