Analysis of the Bidirectional Characteristic of Radiation of Flat and Rough Water–Air Interfaces Based on the Theory of Radiative Transfer
Abstract
:1. Introduction
2. Methodology
2.1. Method
2.2. Radiative Transfer Model and Parameter Setting
3. Results
3.1. Effects of the Zenith Angle of Incident Light on the Downward and Upward Irradiance just below the Water Surface
3.2. Spatial Distribution Characteristics of Water-Leaving Radiance
3.3. Transmission Characteristics of Radiance at Water–Air Interface
4. Discussion
5. Conclusions
- The downward and upward radiance values just below the water surface were affected by the zenith angle of the incident light, and this error could be corrected by using a related solar zenith angle function.
- The spatial distribution characteristics of the water-leaving radiance were anisotropic with the change in the zenith angle of the incident light. This error could be corrected by using a unary cubic equation of the viewing zenith angle.
- The zenith angle of the incident light, the viewing azimuth angle, and the roughness of the water surface had less effect on the transmission coefficient of the water–air interface. However, it was significantly reduced with changes in the viewing zenith angle.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Su, C.; Feng, C.; Zhang, X. Land use mapping based on composite regions in aerial images. Int. J. Remote Sens. 2018, 39, 8885–8904. [Google Scholar] [CrossRef]
- Huang, Z.; Qi, H.; Kang, C.; Su, Y.; Liu, Y. An Ensemble Learning Approach for Urban Land Use Mapping Based on Remote Sensing Imagery and Social Sensing Data. Remote Sens. 2020, 12, 3254. [Google Scholar] [CrossRef]
- Du, B.; Ru, L.; Wu, C.; Zhang, L. Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9976–9992. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Huang, X.; Bovolo, F.; Li, J.; Ke, X.; Zhang, A.; Benediktsson, J.A. Change Detection from Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions. IEEE Geosci. Remote Sens. Mag. 2021, 9, 68–101. [Google Scholar] [CrossRef]
- Lippitt, C.D.; Stow, D.A.; Riggan, P.J. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system. Int. J. Remote Sens. 2016, 37, 3272–3292. [Google Scholar] [CrossRef]
- Si, A.; Zhang, J.; Tong, S.; Lai, Q.; Wang, R.; Li, N.; Bao, Y. Regional Landslide Identification Based on Susceptibility Analysis and Change Detection. ISPRS Int. J. Geo Inform. 2018, 7, 394. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F.J.; Le Vine, D.M. The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases. Remote Sens. 2018, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- Reul, N.; Grodsky, S.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Yang, X.; Huang, H.; Liu, Y.; Yan, L. Direction Characteristic of Radiation Energy and Transmission Characteristic of Waters at Water-air Surface. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 1003–1008. [Google Scholar]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Smith, B.; Binding, C.; Gurlin, D.; Li, L.; Bresciani, M.; Giardino, C. Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters. Remote Sens. Environ. 2021, 253, 112200. [Google Scholar] [CrossRef]
- Lyapustin, A.; Knyazikhin, Y. Green’s function method in the radiative transfer problem II Spatially heterogeneous anisotropic surface. Appl. Opt. 2002, 41, 5600–5606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariotto, I.; Gutschick, V.P. Non-Lambertian Corrected Albedo and Vegetation Index for Estimating Land Evapotranspiration in a Heterogeneous Semi-Arid Landscape. Remote Sens. 2010, 2, 926–938. [Google Scholar] [CrossRef]
- Nicodemus, F.E. Reflectance Nomenclature and Directional Reflectance and Emissivity. Appl. Opt. 1970, 9, 1474–1475. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fan, W. Review on BRDF Model and the Inversion Strategy. Remote Sens. Technol. Appl. 2008, 23, 104–110. [Google Scholar]
- Xiaowen, L.; Strahler, A.H.; Woodcock, C. A hybrid geometric-optical radiative-transfer model for directional reflectance of discontinuous vegetation canopies. In Proceedings of the Proceedings of IGARSS ‘94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 1823, pp. 1829–1831. [Google Scholar]
- Li, X.; Strahler, A. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Chen, J.; Leblanc, S. A four-scale bidirectional reflectance model based on canopy architecture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1316–1337. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens. Environ. 1996, 58, 131–156. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.; Qi, J.; Wu, S.; Wang, Y.; Liu, S.; Xu, B.; Du, Y.; Cao, B.; Li, H.; Huang, H.; et al. A review on the development and application of three dimensional computer simulation mode of optical remote sensing. J. Remote Sens. 2021, 25, 559–576. [Google Scholar]
- Siegel, D.A.; Buesseler, K.O.; Behrenfeld, M.J.; Benitez-Nelson, C.R.; Boss, E.; Brzezinski, M.A.; Burd, A.; Carlson, C.A.; D’Asaro, E.A.; Doney, S.C.; et al. Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan. Front. Mar. Sci. 2016, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Mouw, C.B.; Greb, S.; Aurin, D.; DiGiacomo, P.M.; Lee, Z.; Twardowski, M.; Binding, C.; Hu, C.; Ma, R.; Moore, T.; et al. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions. Remote Sens. Environ. 2015, 160, 15–30. [Google Scholar] [CrossRef]
- Kuhn, C.; De Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef]
- Ma, L.X.; Wang, F.Q.; Wang, C.A.; Tan, J.Y. Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method. Appl. Opt. 2015, 54, 9863–9874. [Google Scholar] [CrossRef] [PubMed]
- Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Werdell, P.J.; McKinna, L.I.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, O.B. Influence of Bottom Depth and Albedo on the Diffuse Reflectance of a Flat Homogeneous Ocean. Appl. Opt. 1974, 13, 2153–2159. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. Diffuse reflectance of oceanic waters II Bidirectional aspects. Appl. Opt. 1993, 32, 6864–6879. [Google Scholar] [CrossRef]
- Morel, A.; Voss, K.J.; Gentili, B. Bidirectional reflectance of oceanic waters: A comparison of modeled and measured upward radiance fields. J. Geophys. Res. Earth Surf. 1995, 100, 13143–13150. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. Diffuse reflectance of oceanic waters: Its dependence on Sun angle as influenced by the molecular scat-tering contribution. Appl. Opt. 1991, 30, 4427–4438. [Google Scholar] [CrossRef]
- Maritorena, S.; Morel, A.; Gentili, B. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnol. Oceanogr. 1994, 39, 1689–1703. [Google Scholar] [CrossRef]
- Jin, Z.; Charlock, T.P.; Rutledge, K.; Stamnes, K.; Wang, Y. Analytical solution of radiative transfer in the coupled atmos-phere-ocean system with a rough surface. Appl. Opt. 2006, 45, 7443–7455. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Tian, G. Bidirectionality of water-leaving radiance: Simulation results and its correction. Acta Oceanol. Sin. 2000, 3502, 259–266. [Google Scholar] [CrossRef]
- Ling, Z.; Zhou, B.; Jiang, J.; Dou, W.; Zhou, F. Modeling the bidirectional reflectance distribution function (BRDF) of water based on Monte Carlo simulation. In Proceedings of the The 17th China Conference on Remote Sensing, Hangzhou, China, 27–31 August 2010. [Google Scholar] [CrossRef]
- Chen, L.; Ren, Z.; Ma, C.; Chen, G. Modeling and simulating the bidirectional reflectance distribution function (BRDF) of seawater polluted by oil emulsion. Optik 2017, 140, 878–886. [Google Scholar] [CrossRef]
- Wu, M.; Wang, J.; Wang, Q.; Zhou, K.; Zhang, Z.; Ma, X.; Chen, W. Retrieval of Particle Size of Natural Granite from Multi-angular Bidirectional Reflectance Spectra Using the Hapke Model (June 2020). IEEE Trans. Geosci. Remote Sens. 2020, 59, 6537–6548. [Google Scholar] [CrossRef]
- Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.; Cui, Y.; Peng, J. Application of an LAI Inversion Algorithm Based on the Unified Model of Canopy Bidirectional Reflectance Distribution Function to the Heihe River Basin. J. Geophys. Res. Atmos. 2018, 123, 10,671–10,687. [Google Scholar] [CrossRef]
- Mei, L.; Rozanov, V.; Jiao, Z.; Burrows, J.P. A new snow bidirectional reflectance distribution function model in spectral regions from UV to SWIR: Model development and application to ground-based, aircraft and satellite observations. ISPRS J. Photogramm. Remote Sens. 2022, 188, 269–285. [Google Scholar] [CrossRef]
- Dai, H.; Wang, S.; Jiang, T.; Yang, Y.; He, J.; Zhao, Q. The Research of Sun Glint Observation Geometry Model for Remote Sensing Satellite. Spacecr. Recovery Remote Sens. 2018, 39, 85–93. [Google Scholar]
- Lee, Z.; Pahlevan, N.; Ahn, Y.-H.; Greb, S.; O’Donnell, D. Robust approach to directly measuring water-leaving radiance in the field. Appl. Opt. 2013, 52, 1693–1701. [Google Scholar] [CrossRef]
- Lin, H.; Lee, Z.; Lin, G.; Yu, X. Experimental evaluation of the self-shadow and its correction for on-water measurements of water-leaving radiance. Appl. Opt. 2020, 59, 5325–5334. [Google Scholar] [CrossRef]
- Shang, Z.; Lee, Z.; Dong, Q.; Wei, J. Self-shading associated with a skylight-blocked approach system for the measurement of water-leaving radiance and its correction. Appl. Opt. 2017, 56, 7033–7040. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Tian, G.; Wang, X.; Wang, X.; Song, Q. The Methods of Water Spectra Measurement and Analysis: Above-Water Method. J. Remote Sens. 2004, 8, 37–44. [Google Scholar]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Laszlo, I. DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology, (version 1.1, Mar 2000). Available online: http://www.rtatmocn.com/disort/docs/DISORTReport1.1.pdf (accessed on 15 December 2022).
- Jin, Z.; Stamnes, K. Radiative transfer in nonuniformly refracting layered media: Atmosphere–ocean system. Appl. Opt. 1994, 33, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Robinson, I.S. The methods of satellite oceanography. In Discovering the Ocean from Space: The Unique Applications of Satellite Oceanography; Robinson, I.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 7–67. [Google Scholar]
- Robinson I, S. Measuring the oceans from space: The principles and methods of satellite oceanography; Robinson, I.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 178–229. [Google Scholar]
- Cox, C.; Munk, W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Jin, Z.; Charlock, T. Introduction to an Online Coupled Ocean-Atmosphere Radiative Transfer (COART) Model. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2002. [Google Scholar]
- Laszlo, I.; Stamnes, K.; Wiscombe, W.J.; Tsay, S.-C. The Discrete Ordinate Algorithm, DISORT for Radiative Transfer. In Light Scattering Reviews; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–65. [Google Scholar] [CrossRef]
- Karagali, I.; Høyer, J.L.; Donlon, C.J. Using a 1-D model to reproduce the diurnal variability of SST. J. Geophys. Res. Oceans 2017, 122, 2945–2959. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fichot, C.G.; Baracco, C.; Guo, R.; Neugebauer, S.; Bengtsson, Z.; Ganju, N.; Fagherazzi, S. Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing. Remote Sens. Environ. 2020, 240, 111682. [Google Scholar] [CrossRef]
- Aas, E. Estimates of radiance reflected towards the zenith at the surface of the sea. Ocean Sci. 2010, 6, 861–876. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, J.; Zhai, P.-W.; Boss, E.; Dierssen, H.; Frouin, R.; Ibrahim, A.; Lee, Z.; Remer, L.A.; Twardowski, M.; Xu, F.; et al. Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective. Front. Earth Sci. 2019, 7, 100. [Google Scholar] [CrossRef]
- Jerlov, N.G.; Fukuda, M. Radiance Distribution in the Upper Layers of the Sea. Tellus 1960, 12, 348–355. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; You, D.; Hao, D.; Wu, S.; Lin, X. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sens. 2018, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-Z.; Du, P.-P.; He, Y.; Fang, H. Review of Research and Application for Vegetation BRDF. Spectrosc. Spectr. Anal. 2017, 37, 829–835. [Google Scholar]
- Russkova, T.; Zhuravleva, T. Top-of-atmosphere reflectance over homogeneous Lambertian and non-Lambertian surfaces. Appl. Opt. 2018, 57, 6345–6357. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, Q.; Qu, Y.; Liang, S. Estimation of the Ocean Water Albedo from Remote Sensing and Meteorological Reanalysis Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 850–868. [Google Scholar] [CrossRef]
- Han, Z.; Gu, X.; Zuo, X.; Bi, K.; Shi, S. Semi-Empirical Models for the Bidirectional Water-Leaving Radiance: An Analysis of a Turbid Inland Lake. Front. Environ. Sci. 2022, 9, 767. [Google Scholar] [CrossRef]
- Zhai, P.-W.; Hu, Y.; Trepte, C.R.; Winker, D.M.; Lucker, P.L.; Lee, Z.; Josset, D.B. Uncertainty in the bidirectional reflectance model for oceanic waters. Appl. Opt. 2015, 54, 4061–4069. [Google Scholar] [CrossRef]
- He, S.; Zhang, X.; Xiong, Y.; Gray, D. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes. J. Geophys. Res. Oceans 2017, 122, 8614–8626. [Google Scholar] [CrossRef]
- Wang, M. Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance. Appl. Opt. 2006, 45, 4122–4128. [Google Scholar] [CrossRef]
- Zhai, P.-W.; Hu, Y.; Chowdhary, J.; Trepte, C.R.; Lucker, P.L.; Josset, D.B. A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1025–1040. [Google Scholar] [CrossRef]
- Smith, R.C. Structure of solar radiation in the upper layers of the sea. In Optical Aspects of Oceanography; Academic Press: Cambridge, MA, USA, 1974; pp. 95–119. [Google Scholar]
- Mikelsons, K.; Wang, M.; Jiang, L. Statistical evaluation of satellite ocean color data retrievals. Remote Sens. Environ. 2020, 237, 111601. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, K.; Lou, X.; Li, Y.; Zheng, G.; Wang, J.; Wang, X.; Ren, L.; Li, D.; Shi, A. Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor. Remote Sens. Environ. 2018, 208, 97–108. [Google Scholar] [CrossRef]
- Shi, C.; Wang, P.; Nakajima, T.; Ota, Y.; Tan, S.; Shi, G. Effects of ocean particles on the upwelling radiance and polarized radiance in the atmosphere-ocean system. Adv. Atmospheric Sci. 2015, 32, 1186–1196. [Google Scholar] [CrossRef]
Parameter | Range | Increment |
---|---|---|
Wind velocity (m/s) | [0, 12] | 2 |
Water depth (m) | 100 | - |
Bottom albedo | 0.1 | - |
Chlorophyll concentration (mg/m3) | 0.5 | - |
Bottom albedo characteristics | Defaulted | - |
Particle scattering function | Defaulted | - |
DOM absorption | Defaulted | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Chen, J.; Yu, Y. Analysis of the Bidirectional Characteristic of Radiation of Flat and Rough Water–Air Interfaces Based on the Theory of Radiative Transfer. Sustainability 2023, 15, 140. https://doi.org/10.3390/su15010140
Yang X, Chen J, Yu Y. Analysis of the Bidirectional Characteristic of Radiation of Flat and Rough Water–Air Interfaces Based on the Theory of Radiative Transfer. Sustainability. 2023; 15(1):140. https://doi.org/10.3390/su15010140
Chicago/Turabian StyleYang, Xiguang, Jie Chen, and Ying Yu. 2023. "Analysis of the Bidirectional Characteristic of Radiation of Flat and Rough Water–Air Interfaces Based on the Theory of Radiative Transfer" Sustainability 15, no. 1: 140. https://doi.org/10.3390/su15010140
APA StyleYang, X., Chen, J., & Yu, Y. (2023). Analysis of the Bidirectional Characteristic of Radiation of Flat and Rough Water–Air Interfaces Based on the Theory of Radiative Transfer. Sustainability, 15(1), 140. https://doi.org/10.3390/su15010140