Impact of Curing Temperature on the Life Cycle Assessment of Sugarcane Bagasse Ash as a Partial Replacement of Cement in Mortars
Abstract
:1. Introduction
1.1. Cement Industry and the Need of Waste Valorization
1.2. Sugarcane Bagasse Ash as an Alternative SCM
2. Materials and Methods
2.1. Materials
2.2. Mix Design, Sample Manufacturing, and Curing Conditions
2.3. Methods
2.3.1. Compressive Strength Test
2.3.2. Life Cycle Assessment (LCA) of Mortars
- Goal and scope
- Life cycle inventory (LCI)
- Life cycle impact assessment (LCIA)
- Interpretation of the results
- Single categories analysis: Single impact categories were analyzed, and the results were discussed to appreciate the potential implications of replacing cement with SCBA as a function of curing temperature.
- Normalized unified index: Environmental impacts of single categories were normalized using the normalization factors (NFs) recommended by Ryberg et al. [58] to relate the environmental impact results of each category to a common reference. The goal of this normalization is to put each environmental impact in relation to the impact of society’s production and consumption activities. As a result, normalized values will better reflect the product system’s contribution to each category’s environmental impact compared to those of the reference system. The reference system used was the environmental impacts of each category per year in the US [58]. The normalized values were calculated by dividing the environmental impact of each category by its corresponding normalization factor. Note that this section did not consider WG and ADP since there are no NFs available for these two categories.
3. Results and Discussion
3.1. Compressive Strength and Binder Content Variation Based on Designated FU
3.2. Life Cycle Assessment (LCA)
3.2.1. Environmental Impact of Single Categories
3.2.2. Environmental Impact Assessed with Normalized Unified Index
4. Conclusions
- -
- Among the impact categories, waste generation is the only impact category that was not affected by curing temperature. For all of the others analyzed categories, when mortars were cured at 45 °C, the use of SCBA reduced the environmental impact of mortars two times with respect to the reduction at 21 °C.
- -
- At 45 °C, a replacement of 97 kg of cement with SCBA (per m3 of mortar) produced a reduction of the environmental impact (presented with the normalized unified index) of 31%, while the reduction produced by the same amount of SCBA with a curing temperature of 21 °C was 14%.
- -
- The reduction of environmental impact when using SCBA as a partial replacement for cement highly depends on the curing temperature. The results clearly indicate that the sustainability of SCBA utilization as a partial replacement of cement will be better when mortar is poured in hot regions or during days with higher ambient temperatures.
- -
- The advantages of using SCBA in terms of sustainability will decrease if the external temperature is low. Therefore, external curing temperature is an important factor that should be considered when the sustainability of cementitious composites containing SCBA is assessed.
5. Future Directions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Statista. Cement Production Global 2021. 2021. Available online: https://www.statista.com/statistics/1087115/global-cement-production-volume/ (accessed on 31 May 2022).
- Andrew, R.M.; Peters, G.P. The Global Carbon Project’s Fossil CO2 Emissions Dataset; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef] [Green Version]
- Adesina, A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ. Chall. 2020, 1, 100004. [Google Scholar] [CrossRef]
- Paris, J.M.; Roessler, J.G.; Ferraro, C.C.; Deford, H.D.; Townsend, T.G. A review of waste products utilized as supplements to Portland cement in concrete. J. Clean. Prod. 2016, 121, 1–18. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Li, G.; Zhou, C.; Ahmad, W.; Usanova, K.I.; Karelina, M.; Mohamed, A.M.; Khallaf, R. Fly Ash Application as Supplementary Cementitious Material: A Review. Materials 2022, 15, 2664. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration—Independent Statistics and Analysis. Nearly a Quarter of the Operating U.S. Coal-Fired Fleet Scheduled to Retire by 2029. Available online: https://www.eia.gov/todayinenergy/detail.php?id=54559# (accessed on 10 November 2022).
- Thomas, B.S.; Yang, J.; Mo, K.H.; Abdalla, J.A.; Hawileh, R.A.; Ariyachandra, E. Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. J. Build. Eng. 2021, 40, 102332. [Google Scholar] [CrossRef]
- Kolawole, J.T.; Babafemi, A.J.; Fanijo, E.; Chandra Paul, S.; Combrinck, R. State-of-the-art review on the use of sugarcane bagasse ash in cementitious materials. Cem. Concr. Compos. 2021, 118, 103975. [Google Scholar] [CrossRef]
- Asocaña. Más Que Azúcar, una Fuente de Energía Renovable Para el País; Sect. Agroindustral la Caña: Cali, Colombia, 2017; Volume 10. [Google Scholar]
- Pratap, S.; Jawaid, M.; Chandrasekar, M.; Senthilkumar, K.; Yadav, B.; Saba, N.; Siengchin, S. Sugarcane wastes into commercial products: Processing methods, production optimization and challenges. J. Clean. Prod. 2021, 328, 129453. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Franchi, M.R.A.; de Lima, R.P.; de Moraes, M.T.; da Luz, F.B. Sugarcane straw effects on soil compaction susceptibility. Soil Tillage Res. 2021, 212, 105066. [Google Scholar] [CrossRef]
- FAO. FAOSTAT—Production Quantities of Sugar Cane by Country. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 31 May 2022).
- Statista. Global Sugar Cane Production 2020. 2020. Available online: https://www.statista.com/statistics/249604/sugar-cane-production-worldwide/ (accessed on 31 May 2022).
- de Almeida, G.M.; Pereira, G.T.; Bahia, A.S.R.d.S.; Fernandes, K.; Marques Júnior, J. Machine learning in the prediction of sugarcane production environments. Comput. Electron. Agric. 2021, 190, 106452. [Google Scholar] [CrossRef]
- Staples, M.; Malina, R.; Barrett, S. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat. Energy 2017, 2, 16202. [Google Scholar] [CrossRef]
- de Souza, N.R.D.; Duft, D.G.; Bruno, K.M.B.; Henzler, D.d.S.; Junqueira, T.L.; Cavalett, O.; Hernandes, T.A.D. Unraveling the potential of sugarcane electricity for climate change mitigation in Brazil. Resour. Conserv. Recycl. 2021, 175, 105878. [Google Scholar] [CrossRef]
- Jittin, V.; Minnu, S.N.; Bahurudeen, A. Potential of sugarcane bagasse ash as supplementary cementitious material and comparison with currently used rice husk ash. Constr. Build. Mater. 2021, 273, 121679. [Google Scholar] [CrossRef]
- Montakarntiwong, K.; Chusilp, N.; Tangchirapat, W.; Jaturapitakkul, C. Strength and heat evolution of concretes containing bagasse ash from thermal power plants in sugar industry. Mater. Des. 2013, 49, 414–420. [Google Scholar] [CrossRef]
- Medina, J.M.; Sáez del Bosque, I.F.; Frías, M.; Sánchez de Rojas, M.I.; Medina, C. Design and properties of eco-friendly binary mortars containing ash from biomass-fuelled power plants. Cem. Concr. Compos. 2019, 104, 103372. [Google Scholar] [CrossRef]
- Yogitha, B.; Karthikeyan, M.; Muni Reddy, M.G. Progress of sugarcane bagasse ash applications in production of Eco-Friendly concrete—Review. Mater. Today Proc. 2020, 33, 695–699. [Google Scholar] [CrossRef]
- Katare, V.D.; Madurwar, M.V. Process standardization of sugarcane bagasse ash to develop durable high-volume ash concrete. J. Build. Eng. 2021, 39, 102151. [Google Scholar] [CrossRef]
- González-Kunz, R.N.; Pineda, P.; Bras, A.; Morillas, L. Plant biomass ashes in cement-based building materials. Feasibility as eco-efficient structural mortars and grouts. Sustain. Cities Soc. 2017, 31, 151–172. [Google Scholar] [CrossRef]
- Athira, G.; Bahurudeen, A.; Sahu, P.K.; Santhanam, M.; Nanthagopalan, P.; Lalu, S. Effective utilization of sugar industry waste in Indian construction sector: A geospatial approach. J. Mater. Cycles Waste Manag. 2020, 22, 724–736. [Google Scholar] [CrossRef]
- Quedou, P.G.; Wirquin, E.; Bokhoree, C. Sustainable concrete: Potency of sugarcane bagasse ash as a cementitious material in the construction industry. Case Stud. Constr. Mater. 2021, 14, e00545. [Google Scholar] [CrossRef]
- Jha, P.; Sachan, A.K.; Singh, R.P. Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Mater. Today Proc. 2021, 44, 419–427. [Google Scholar] [CrossRef]
- Barbosa, F.L.; Cordeiro, G.C. Partial cement replacement by different sugar cane bagasse ashes: Hydration-related properties, compressive strength and autogenous shrinkage. Constr. Build. Mater. 2021, 272, 8–11. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 31 May 2022).
- Science Inventory. US EPA. LIFE-CYCLE ASSESSMENT. 2008. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&count=10000&dirEntryId=156704&searchall=&showcriteria=2&simplesearch=0&timstype= (accessed on 31 May 2022).
- Fairbairn, E.M.R.; De Paula, T.P.; Cordeiro, G.C.; Americano, B.B.; Toledo Filho, R.D. Evaluation of partial clinker replacement by sugar cane bagasse ash: CO2 emission reductions and potential for carbon credits. Rev. IBRACON Estrut. Mater. 2012, 5, 229–251. [Google Scholar] [CrossRef] [Green Version]
- Jamora, J.B.; Gudia, S.E.L.; Go, A.W.; Giduquio, M.B.; Orilla, J.W.A.; Loretero, M.E. Potential reduction of greenhouse gas emission through the use of sugarcane ash in cement-based industries: A case in the Philippines. J. Clean. Prod. 2019, 239, 118072. [Google Scholar] [CrossRef]
- Sinoh, S.S.; Ibrahim, Z.; Othman, F.; Kuang, L.M.; Zaki, A. Life Cycle Assessment of Sugarcane Bagasse Ash as Partial Cement Replacement in Concrete. In Proceedings of the 4th International Conference on Sustainable Innovation 2020–Technology, Engineering and Agriculture (ICoSITEA 2020), Yogyakarta, Indonesia, 13–14 October 2020; Volume 199, pp. 144–150. [Google Scholar] [CrossRef]
- Martínez-Lage, I.; Vázquez-Burgo, P.; Velay-Lizancos, M. Sustainability evaluation of concretes with mixed recycled aggregate based on holistic approach: Technical, economic and environmental analysis. Waste Manag. 2020, 104, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.; Francioso, V.; Schager, M.; Velay-Lizancos, M.; Schrager, M. TiO2 nanoparticles influence on the environmental performance of natural and recycled mortars: A life cycle assessment. Environ. Impact Assess. Rev. 2020, 84, 106430. [Google Scholar] [CrossRef]
- Velay-Lizancos, M.; Martinez-Lage, I.; Azenha, M.; Vázquez-Burgo, P. Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials. Constr. Build. Mater. 2016, 124, 276–286. [Google Scholar] [CrossRef]
- Chajec, A.; Chowaniec, A.; Królicka, A.; Sadowski, Ł.; Żak, A.; Piechowka-Mielnik, M.; Šavija, B. Engineering of green cementitious composites modified with siliceous fly ash: Understanding the importance of curing conditions. Constr. Build. Mater. 2021, 313, 125209. [Google Scholar] [CrossRef]
- Francioso, V.; Moro, C.; Martinez-Lage, I.; Velay-Lizancos, M. Curing temperature: A key factor that changes the effect of TiO2 nanoparticles on mechanical properties, calcium hydroxide formation and pore structure of cement mortars. Cem. Concr. Compos. 2019, 104, 103374. [Google Scholar] [CrossRef]
- Yang, J.; Fan, J.; Kong, B.; Cai, C.S.; Chen, K. Theory and application of new automated concrete curing system. J. Build. Eng. 2018, 17, 125–134. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Chen, H. Properties of high-volume limestone powder concrete under standard curing and steam-curing conditions. Powder Technol. 2016, 301, 16–25. [Google Scholar] [CrossRef]
- Hamzah, S.; Aprianti, E. The Effect of Supplementary Cementitious Material Using Thermal Method. In Sustainable Future for Human Security; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Kim, T.; Rens, K.L. Concrete Maturity Method Using Variable Temperature Curing for Normal and High-Strength Concrete. I: Experimental Study. J. Mater. Civ. Eng. 2008, 20, 727–734. [Google Scholar] [CrossRef]
- Yousuf, S.; Shafigh, P.; Ibrahim, Z.; Hashim, H.; Panjehpour, M. Crossover effect in cement-based materials: A review. Appl. Sci. 2019, 9, 2776. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Jiang, L.; Zha, J.; Song, Z. Influence of temperature history on chloride diffusion in high volume fly ash concrete. Constr. Build. Mater. 2017, 144, 677–685. [Google Scholar] [CrossRef]
- Wang, M.; Xie, Y.; Long, G.; Ma, C.; Zeng, X. Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes. Constr. Build. Mater. 2019, 221, 151–162. [Google Scholar] [CrossRef]
- Murugesan, T.; Vidjeapriya, R.; Bahurudeen, A. Reuse of Silica Rich Sugarcane Bagasse Ash in Concrete and Influence of Different Curing on the Performance of Concrete. Silicon 2021, 14, 3069–3080. [Google Scholar] [CrossRef]
- Rajasekar, A.; Arunachalam, K.; Kottaisamy, M.; Saraswathy, V. Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Constr. Build. Mater. 2018, 171, 350–356. [Google Scholar] [CrossRef]
- ASTM International C33/C33M-18; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- ASTM International C618-22; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- ASTM International C349-18; Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- ISO 14044:2006; Environmental management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization (ISO): Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 31 May 2022).
- European Platform on Life Cycle Assessment. 2018. Available online: https://eplca.jrc.ec.europa.eu/ (accessed on 31 May 2022).
- Marinković, S.; Dragaš, J.; Ignjatović, I.; Tošić, N. Environmental assessment of green concretes for structural use. J. Clean. Prod. 2017, 154, 633–649. [Google Scholar] [CrossRef] [Green Version]
- Marceau, M.L.; Nisbet, M.A.; Vangeem, M.G. Lyfe Cycle Inventory of Portland Cement Concrete; Portland Cement Association: Skokie, IL, USA, 2007. [Google Scholar]
- U.S. Energy Information Administration (EIA). Biomass and the Environment. 2021. Available online: https://www.eia.gov/energyexplained/biomass/biomass-and-the-environment.php (accessed on 31 May 2022).
- Kurda, R.; Silvestre, J.D.; de Brito, J. Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resour. Conserv. Recycl. 2018, 139, 407–417. [Google Scholar] [CrossRef]
- Rodrigues, P.; Silvestre, J.D.; Flores-Colen, I.; Viegas, C.A.; de Brito, J.; Kurad, R.; Demertzi, M. Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials. Materials 2017, 10, 649. [Google Scholar] [CrossRef] [Green Version]
- Ryberg, M.; Vieira, M.D.M.; Zgola, M.; Bare, J.; Rosenbaum, R.K. Updated US and Canadian normalization factors for TRACI 2.1. Clean Technol. Environ. Policy 2014, 16, 329–339. [Google Scholar] [CrossRef]
- US EPA. Overview of Greenhouse Gases Nitrous Oxide Emissions. pp. 2–3. 2016. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 31 May 2022).
- Kim, T.; Tae, S.; Chae, C.U.; Tam, V.W.Y.; Le, K.N.; Shen, L. Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing. Sustainability 2016, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Haagen-Smit, A.J.; Bradley, C.E.; Fox, M.M. Ozone Formation in Photochemical Oxidation of Organic Substances. Ind. Eng. Chem. 2002, 45, 2086–2089. [Google Scholar] [CrossRef]
- Dincer, I.; Abu-Rayash, A. Sustainability modeling. In Energy Sustainability; Academic Press: Cambridge, MA, USA, 2020; pp. 119–164. [Google Scholar] [CrossRef]
- Wetzel, R. Limnology—Lake and River Ecosystems; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Alexander, K.M.; Taplin, J.H. Concrete strength, paste strength, cement hydration, and the maturity rule. Aust. J. Appl. Sci. 1962, 13, 277–284. [Google Scholar]
Type | D10 (μm) | D50 (μm) | D90 (μm) | Mean Size (μm) |
---|---|---|---|---|
As received | 8.0 | 31.9 | 71.6 | 37.6 |
Ground | 3.7 | 18.7 | 47.5 | 23.6 |
Compound | Percentage (%) | Standard Deviation—σ |
---|---|---|
SiO2 | 54.97 | 0.026 |
Al2O3 | 13.85 | 0.019 |
CaO | 9.98 | 0.013 |
Fe2O3 | 8.568 | 0.0054 |
MgO | 2.074 | 0.0123 |
TiO2 | 1.595 | 0.0064 |
K2O | 1.385 | 0.0017 |
Mn2O3 | 1.245 | 0.0067 |
SO3 | 0.926 | 0.0015 |
Na2O | 0.509 | 0.0052 |
P2O5 | 0.213 | 0.006 |
SrO | 0.158 | 0.0005 |
CrrO3 | 0.089 | 0.0006 |
ZnO | 0.087 | 0.0003 |
LOI | 16.5 | - |
Component | Reference | 10% SCBA | 20% SCBA |
---|---|---|---|
Cement (kg) | 486.39 | 437.75 | 389.12 |
SCBA (kg) | 0.00 | 48.64 | 97.28 |
Sand (SSD) (kg) | 1459.18 | 1459.18 | 1459.18 |
w/b | 0.50 | 0.50 | 0.50 |
Cement (kg) | Sand (kg) | SCBA (kg) | Mortar (m3) | Transport (t·km) | |
---|---|---|---|---|---|
INPUTS Fossil fuels (kg) | |||||
Diesel | 3.56 × 10−2 | 3.29 × 10−4 | 0.00 | 2.00 × 10−2 | 2.06 × 10−2 |
Gas | 8.53 × 10−3 | 1.24 × 10−4 | 0.00 | 5.30 × 10−2 | 1.13 × 10−3 |
Soft coal | 2.67 × 10−2 | 3.13 × 10−4 | 0.00 | 5.25 × 100 | 7.31 × 10−5 |
Hard coal | 4.83 × 10−2 | 2.18 × 10−4 | 0.00 | 4.01 × 10−2 | 9.01 × 10−5 |
OUTPUTS Emissions in the air (kg) | |||||
CO2 | 8.85 × 10−1 | 2.34 × 10−3 | 0.00 | 4.59 × 100 | 6.40 × 10−2 |
CO | 2.14 × 10−3 | 4.19 × 10−6 | 0.00 | 8.81 × 10−4 | 1.10 × 10−4 |
CH4 | 5.80 × 10−4 | 3.72 × 10−6 | 0.00 | 2.19 × 10−3 | 6.25 × 10−5 |
C2H4 | 3.95 × 10−10 | 9.24 × 10−12 | 0.00 | 7.36 × 10−8 | 3.70 × 10−10 |
CFC-11 | 5.22 × 10−9 | 1.75 × 10−10 | 0.00 | 2.09 × 10−15 | 6.08 × 10−11 |
CFC-114 | 5.35 × 10−9 | 1.79 × 10−10 | 0.00 | 3.67 × 10−9 | 6.23 × 10−11 |
SOx | 1.05 × 10−3 | 9.49 × 10−6 | 0.00 | 5.34 × 10−2 | 3.41 × 10−5 |
NOx | 1.79 × 10−3 | 1.52 × 10−5 | 0.00 | 8.01 × 10−2 | 5.39 × 10−4 |
N2O | 2.22 × 10−6 | 3.81 × 10−8 | 0.00 | 2.20 × 10−5 | 7.32 × 10−7 |
NH3 | 3.91 × 10−2 | 7.24 × 10−9 | 0.00 | 3.27 × 10−7 | 4.00 × 10−7 |
NMVOC | 2.26 × 10−1 | 1.37 × 10−6 | 0.00 | 9.20 × 10−5 | 3.20 × 10−5 |
HCl | 1.99 × 10−2 | 1.80 × 10−7 | 0.00 | 4.00 × 10−4 | 8.20 × 10−8 |
N (water) | 1.16 × 10−4 | 4.23 × 10−9 | 0.00 | 4.81 × 10−6 | 2.35 × 10−7 |
PO4−3 (groundwater) | 5.14 × 10−7 | 1.23 × 10−8 | 0.00 | 3.85 × 10−3 | 5.88 × 10−7 |
Category | Units |
---|---|
(i) Global warming potential (GWP) | kg CO2 eq |
(ii) Ozone depletion potential (ODP) | kg CFC-11 eq |
(iii) Eutrophication potential (EP) | kg N eq |
(iv) Acidification potential (AP) | kg SO2 eq |
(v) Smog formation (S) | kg O3 eq |
(vi) Respiratory effects (RE) | kg PM2.5 eq |
(vii) Energy consumption (EC) | MJ surplus |
(viii) Waste generation (WG) | kg |
(ix) Abiotic depletion potential (ADP) | kg Sb eq |
Mixture | Curing Temperature (°C) | Compressive Strength, fc (MPa) | Initial Cement Content (kg/m3) | Estimated Binder [Cement, SCBA] Content to Achieve Reference fc (kg/m3) |
---|---|---|---|---|
Reference | 21 °C | 45.20 | 486.4 | 486.4 [486.4, 0] |
BA10 | 42.37 | 437.8 | 497.1 [448.5, 48.64] | |
BA20 | 41.88 | 389.1 | 499.0 [401.7, 97.28] | |
Reference | 45 °C | 33.44 | 486.4 | 486.4 [486.4, 0] |
BA10 | 41.62 | 437.8 | 414.1 [365.5, 48.64] | |
BA20 | 40.88 | 389.1 | 420.6 [323.4. 97.28] |
Mortar | Cement | Natural Aggregate | SCBA | Production | Transportation of Components | Total |
---|---|---|---|---|---|---|
GWP—Global warming potential (kg CO2 eq) | ||||||
Reference | 437.84 | 3.57 | 0.00 | 4.65 | 21.04 | 467.10 |
BA10 * | 403.73 | 3.57 | 0.00 | 4.65 | 21.24 | 433.19 |
BA20 * | 361.62 | 3.57 | 0.00 | 4.65 | 21.28 | 391.12 |
ODP—Ozone depletion potential (kg CFC-11 eq) | ||||||
Reference | 5.14 × 10−6 | 5.17 × 10−7 | 0.00 | 3.67 × 10−9 | 3.94 × 10−8 | 5.70 × 10−6 |
BA10 | 4.74 × 10−6 | 5.17 × 10−7 | 0.00 | 3.67 × 10−9 | 3.98 × 10−8 | 5.30 × 10−6 |
BA20 | 4.24 × 10−6 | 5.17 × 10−7 | 0.00 | 3.67 × 10−9 | 3.98 × 10−8 | 4.81 × 10−6 |
EP—Eutrophication potential (kg N eq) | ||||||
Reference | 4.13 × 10−2 | 1.03 × 10−3 | 0.00 | 1.27 × 10−2 | 8.16 × 10−3 | 6.32 × 10−2 |
BA10 | 3.81 × 10−2 | 1.03 × 10−3 | 0.00 | 1.27 × 10−2 | 8.24 × 10−3 | 6.01 × 10−2 |
BA20 | 3.41 × 10−2 | 1.03 × 10−3 | 0.00 | 1.27 × 10−2 | 8.25 × 10−3 | 5.61 × 10−2 |
AP—Acidification potential (kg SO2 eq) | ||||||
Reference | 1.16 | 2.96 × 10−2 | 0.00 | 1.10 × 10−1 | 1.32 × 10−1 | 1.43 |
BA10 | 1.07 | 2.96 × 10−2 | 0.00 | 1.10 × 10−1 | 1.33 × 10−1 | 1.35 |
BA20 | 0.96 | 2.96 × 10−2 | 0.00 | 1.10 × 10−1 | 1.34 × 10−1 | 1.23 |
S—Smog formation (kg O3 eq) | ||||||
Reference | 22.02 | 0.56 | 0.00 | 1.99 | 4.31 | 28.88 |
BA10 | 20.31 | 0.56 | 0.00 | 1.99 | 4.36 | 27.21 |
BA20 | 18.19 | 0.56 | 0.00 | 1.99 | 4.36 | 25.09 |
RE—Respiratory effects (kg PM2.5 eq) | ||||||
Reference | 3.91 × 10−2 | 1.01 × 10−3 | 0.00 | 3.84 × 10−3 | 1.93 × 10−3 | 4.58 × 10−2 |
BA10 | 3.60 × 10−2 | 1.01 × 10−3 | 0.00 | 3.84 × 10−3 | 1.95 × 10−3 | 4.28 × 10−2 |
BA20 | 3.23 × 10−2 | 1.01 × 10−3 | 0.00 | 3.84 × 10−3 | 1.95 × 10−3 | 3.91 × 10−2 |
EC—Energy consumption (MJ surplus) | ||||||
Reference | 136.48 | 4.09 | 0.00 | 0.96 | 42.44 | 183.98 |
BA10 | 125.84 | 4.09 | 0.00 | 0.96 | 42.86 | 173.76 |
BA20 | 112.72 | 4.09 | 0.00 | 0.96 | 42.93 | 160.71 |
ADP—Abiotic depletion potential (kg Sb eq) | ||||||
Reference | 9.00 × 10−6 | 1.69 × 10−9 | 0.00 | 0.00 | 0.00 | 9.00 × 10−6 |
BA10 | 8.30 × 10−6 | 1.69 × 10−9 | 0.00 | 0.00 | 0.00 | 8.30 × 10−6 |
BA20 | 7.43 × 10−6 | 1.69 × 10−9 | 0.00 | 0.00 | 0.00 | 7.43 × 10−6 |
Mortar | Cement | Natural Aggregate | SCBA | Production | Transportation | Total |
---|---|---|---|---|---|---|
GWP—Global warming potential (kg CO2 eq) | ||||||
Reference | 437.84 | 3.57 | 0.00 | 4.65 | 21.04 | 467.10 |
BA10 * | 328.98 | 3.57 | 0.00 | 4.65 | 19.65 | 356.85 |
BA20 * | 291.08 | 3.57 | 0.00 | 4.65 | 19.77 | 319.08 |
ODP—Ozone depletion potential (kg CFC-11 eq) | ||||||
Reference | 5.14 × 10−6 | 5.17 × 10−7 | 0.00 | 3.67 × 10−9 | 3.94 × 10−8 | 5.70 × 10−6 |
BA10 | 3.86 × 10−6 | 5.17 × 10−7 | 0.00 | 3.67 × 10−9 | 3.68 × 10−8 | 4.42 × 10−6 |
BA20 | 3.42 × 10−6 | 5.17 × 10−7 | 0.00 | 3.67 × 10−9 | 3.70 × 10−8 | 3.97 × 10−6 |
EP—Eutrophication potential (kg N eq) | ||||||
Reference | 4.13 × 10−2 | 1.03 × 10−3 | 0.00 | 1.27 × 10−2 | 8.16 × 10−3 | 6.32 × 10−2 |
BA10 | 3.11 × 10−2 | 1.03 × 10−3 | 0.00 | 1.27 × 10−2 | 7.62 × 10−3 | 5.24 × 10−2 |
BA20 | 2.75 × 10−2 | 1.03 × 10−3 | 0.00 | 1.27 × 10−2 | 7.67 × 10−3 | 4.89 × 10−2 |
AP—Acidification potential (kg SO2 eq) | ||||||
Reference | 1.16 | 2.96 × 10−2 | 0.00 | 1.10 × 10−1 | 1.32 × 10−1 | 1.43 |
BA10 | 0.87 | 2.96 × 10−2 | 0.00 | 1.10 × 10−1 | 1.23 × 10−1 | 1.14 |
BA20 | 0.77 | 2.96 × 10−2 | 0.00 | 1.10 × 10−1 | 1.24 × 10−1 | 1.04 |
S—Smog formation (kg O3 eq) | ||||||
Reference | 22.02 | 0.56 | 0.00 | 1.99 | 4.31 | 28.88 |
BA10 | 16.55 | 0.56 | 0.00 | 1.99 | 4.03 | 23.12 |
BA20 | 14.64 | 0.56 | 0.00 | 1.99 | 4.05 | 21.24 |
RE—Respiratory effects (kg PM2.5 eq) | ||||||
Reference | 3.91 × 10−2 | 1.01 × 10−3 | 0.00 | 3.84 × 10−3 | 1.93 × 10−3 | 4.58 × 10−2 |
BA10 | 2.93 × 10−2 | 1.01 × 10−3 | 0.00 | 3.84 × 10−3 | 1.81 × 10−3 | 3.60 × 10−2 |
BA20 | 2.60 × 10−2 | 1.01 × 10−3 | 0.00 | 3.84 × 10−3 | 1.82 × 10−3 | 3.26 × 10−2 |
EC—Energy consumption (MJ surplus) | ||||||
Reference | 136.48 | 4.09 | 0.00 | 0.96 | 42.44 | 183.98 |
BA10 | 102.55 | 4.09 | 0.00 | 0.96 | 39.64 | 147.25 |
BA20 | 90.73 | 4.09 | 0.00 | 0.96 | 39.90 | 135.69 |
ADP—Abiotic depletion potential (kg Sb eq) | ||||||
Reference | 9.00 × 10−6 | 1.69 × 10−9 | 0.00 | 0.00 | 0.00 | 9.00 × 10−6 |
BA10 | 6.76 × 10−6 | 1.69 × 10−9 | 0.00 | 0.00 | 0.00 | 6.76 × 10−6 |
BA20 | 5.98 × 10−6 | 1.69 × 10−9 | 0.00 | 0.00 | 0.00 | 5.98 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francioso, V.; Lopez-Arias, M.; Moro, C.; Jung, N.; Velay-Lizancos, M. Impact of Curing Temperature on the Life Cycle Assessment of Sugarcane Bagasse Ash as a Partial Replacement of Cement in Mortars. Sustainability 2023, 15, 142. https://doi.org/10.3390/su15010142
Francioso V, Lopez-Arias M, Moro C, Jung N, Velay-Lizancos M. Impact of Curing Temperature on the Life Cycle Assessment of Sugarcane Bagasse Ash as a Partial Replacement of Cement in Mortars. Sustainability. 2023; 15(1):142. https://doi.org/10.3390/su15010142
Chicago/Turabian StyleFrancioso, Vito, Marina Lopez-Arias, Carlos Moro, Nusrat Jung, and Mirian Velay-Lizancos. 2023. "Impact of Curing Temperature on the Life Cycle Assessment of Sugarcane Bagasse Ash as a Partial Replacement of Cement in Mortars" Sustainability 15, no. 1: 142. https://doi.org/10.3390/su15010142
APA StyleFrancioso, V., Lopez-Arias, M., Moro, C., Jung, N., & Velay-Lizancos, M. (2023). Impact of Curing Temperature on the Life Cycle Assessment of Sugarcane Bagasse Ash as a Partial Replacement of Cement in Mortars. Sustainability, 15(1), 142. https://doi.org/10.3390/su15010142