Measurement, Distribution Characteristics, and Convergent Analysis of China’s Green Development Level
Abstract
:1. Introduction
2. Index System and Research Method
2.1. Construction of Index System
2.2. Measurement Model
2.2.1. Standardized Score
2.2.2. Entropy Weight Method
2.2.3. Comprehensive Evaluation Model
2.3. Nuclear Density Estimation
2.4. Dagum Gini Coefficient
2.5. Convergence Model
2.5.1. σ Convergence
2.5.2. Absolute β-Convergence
2.5.3. Conditional β Convergence
3. Empirical Analysis
3.1. Data Selection
3.2. Comprehensive Evaluation Results and Analysis
3.3. Measurement of Each Subsystem
3.3.1. Measurement of Green Ecological Level
3.3.2. Measurement of Green Production Level
3.3.3. Measurement of Green Living Standards
3.3.4. Measurement of Green Culture Level
3.3.5. Measurement of Green Economy Level
3.3.6. Measurement of Green Policy Level
4. Difference Analysis
4.1. Nuclear Density Estimation
4.2. Gini Coefficient
5. Convergence Analysis
5.1. Sigma Convergence
5.2. Absolute β-Convergence
5.3. Conditional β Convergence
6. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierce, D. A Blueprint for Green Economy; Beijing Normal University Publishing House: Beijing, China, 1996. [Google Scholar]
- Pearce, D.; Markandya, A.; Barbier, E. Blueprint 1: For a Green Economy; Routledge Publishing House: Abingdon, UK, 2013. [Google Scholar]
- Han, M.; Li, J.; Tai, P. Evaluation of green development level and analysis of regional differences in Shan-dong Province. J. Qufu Norm. Univ. 2014, 2, 95–100. [Google Scholar]
- Liu, M. Measurement and spatial evolution of provincial green development levels in China. J. South China Norm. Univ. Soc. Sci. Ed. 2017, 3, 37–44. [Google Scholar]
- Wilson, A.; Uncapher, J.L.; McManigal, L.; Lovins, L.H.; Cureton, M.; Browning, W.D. Green Development: Integrating Ecology and Real Estate; John Wiley & Sons, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Adams, W.M.; Mark, W. Green Development: Environment and Sustainability in a Developing World; Routledge Publishing House: Abingdon, UK, 2020. [Google Scholar]
- Choi, C. Removing market barriers to green development: Principles and action projects to promote widespread adoption of green development practices. J. Sustain. Real Estate 2009, 1, 107–138. [Google Scholar] [CrossRef]
- Ahmad, M.; Wu, Y. Combined role of green productivity growth, economic globalization, and eco-innovation in achieving ecological sustainability for OECD economies. J. Environ. Manag. 2022, 302, 113980. [Google Scholar] [CrossRef] [PubMed]
- Alfsen, K.H.; Bye, T.; Lorentsen, L. Natural Resource Accounting and Analysis: The Norwegian Experience 1978–1986; Statistic Sentralbyra: Oslo, Norway, 1987. [Google Scholar]
- Reilly, J.M. Green growth and the efficient use of natural resource. Energy Econ. 2012, 34, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Ehresman, T.G.; Okereke, C. Environmental justice and conceptions of the green economy. Int. Environ. Agreem. Politics Law Econ. 2015, 15, 13–27. [Google Scholar] [CrossRef]
- OECD. Towards Green Growth: Monitoring Progress: OECD Indicator; OECD: Paris, France, 2011. [Google Scholar]
- Yale Center for Environmental Law and Policy. EPI 2012: Environmental Performance Index and Pilot Trend Environmental Performance Index; NASA Socioeconomic Data and Applications Center (SEDAC): New York, NY, USA, 2012. [Google Scholar]
- Dai, P. Study on the evaluation system of green development level in Qinghai Province. Qinghai Soc. Sci. 2015, 3, 170–177. [Google Scholar]
- Zhou, G.; Zhu, J.; Luo, S. The impact of fintech innovation on green growth in China: Mediating effect of green finance. Ecol. Econ. 2022, 193, 107308. [Google Scholar] [CrossRef]
- Yumei, H.; Iqbal, W.; Irfan, M.; Fatima, A. The dynamics of public spending on sustainable green economy: Role of techno-logical innovation and industrial structure effects. Environ. Sci. Pollut. Res. 2022, 29, 22970–22988. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.; Song, M. The measurement and comprehensive evaluation of urban green development level in southern Shaanxi. J. Shaanxi Univ. Technol. Nat. Sci. 2016, 2, 87–92. [Google Scholar]
- Xiong, X.; Zhang, T.; Duan, Y.; Fang, X.; Zhou, J. Measurement and difference of green development level of urban agglom-erations in the middle reaches of the Yangtze River. Econ. Geogr. 2019, 12, 96–102. [Google Scholar]
- Xie, L.; Wang, J. Spatial differences in rural green development performance in China. Chin. J. Popul. Resour. Environ. 2016, 26, 20–26. [Google Scholar]
- Huang, Y.; Li, L. Comprehensive measurement and spatio-temporal evolution of green development level of urban agglomerations in China. Geogr. Res. 2017, 36, 1309–1322. [Google Scholar]
- Su, C.; Zhu, P.; Xu, B. Green development level measurement and spatial differentiation analysis in Jiangxi Province. Econ. Geogr. 2021, 6, 180–186. [Google Scholar]
- Zhao, J.; Yang, W.; Zhao, B.; Zhao, B.; Zhang, Y. The impact of geospatial factors on the convergence of China’s green development index. Stat. Obs. 2021, 12, 78–81. [Google Scholar]
- Luo, S.; Liu, J. An innovative index system and HFFS-MULTIMOORA method based group decision-making framework for regional green development level evaluation. Expert Syst. Appl. 2022, 189, 116090. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhao, J. Green development evaluation of Chinese cities. Chin. J. Popul. Resour. Environ. 2009, 19, 11–15. [Google Scholar]
- Chen, F.; Zhang, S. Unbalanced green development in the Yangtze River Economic Belt: Conceptual framework and assessment. Manag. Decis. 2021, 12, 161–165. [Google Scholar]
- Dhar, B.K.; Sarkar, S.M.; Ayittey, F.K. Impact of social responsibility disclosure between implementation of green accounting and sustainable development: A study on heavily polluting companies in Bangladesh. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 71–78. [Google Scholar] [CrossRef]
- Ahmed, Z.; Cary, M.; Ali, S.; Murshed, M.; Ullah, H.; Mahmood, H. Moving toward a green revolution in Japan: Symmetric and asymmetric relationships among clean energy technology development investments, economic growth, and CO2 emissions. Energy Environ. 2022, 33, 1417–1440. [Google Scholar] [CrossRef]
- Dagum, C. A new decomposition of the Gini income inequality ratio. Empir. Econ. 1997, 22, 515–531. [Google Scholar] [CrossRef]
- Rezitis, A.N. Agricultural Productivity and Convergence: Europe and the United States. Appl. Econ. 2010, 42, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
- Peng, G. Regional income gap, total factor productivity and convergence analysis in China. Econ. Res. J. 2005, 9, 19–29. [Google Scholar]
- Barro, R.J.; Martin, X.S.I. Convergence. J. Political Econ. 1992, 100, 223–251. [Google Scholar] [CrossRef]
- Hu, S.; Huang, T.; Wang, K. Coordinated development of digital economy and green economy: Spatial-temporal differentiation, dynamic evolution and convergence characteristics. Mod. Financ. Econ. J. Tianjin Univ. Financ. Econ. 2022, 42, 3–19. [Google Scholar]
- Zhang, H.; Geng, Z.; Yin, R.; Zhang, W. Regional differences and convergence tendency of green development competitiveness in China. J. Clean. Prod. 2020, 254, 119922. [Google Scholar] [CrossRef]
- Li, C.; Song, L. Regional Differences and Spatial Convergence of Green Development in China. Sustainability 2022, 14, 8511. [Google Scholar] [CrossRef]
- Deng, R.; He, R.; Chen, Z.; Zhu, F. Research on ecological civilization, regional differences and convergence of development in China’s eight comprehensive economic zones. Quant. Tech. Econ. Res. 2020, 37, 3–25. [Google Scholar]
First Level Index | Second Level Index | Third Level Index |
---|---|---|
green ecology | resource utilization (+) | green area (ha.); water resource of per capita (m³/person) |
ecological protection (+) | forest cover (%); | |
environmental pollution (−) | sulfur dioxide emissions of per capita (ton/person); chemical oxygen demand emissions of per capita (ton/person) | |
green production | economic development level (+) | GDP growth rate of per capita (%); proportion of added value of tertiary industry (%) |
resource consumption (−) | total energy consumption (ten thousand tons of standard coal); electricity consumption per unit of GDP (KWH/ten thousand yuan) | |
cyclic utilization (+) | municipal sewage treatment rate (%) | |
living green | green living (+) | harmless disposal rate of municipal solid waste (%); green coverage rate of built-up area (%) |
green transport (+) | public transport vehicles per 10,000 people (units) | |
green consumption (−) | daily domestic water consumption of per capita (liters); residential electricity consumption of per capita (KWH/person) | |
green culture | Career Support (+) | R&D investment intensity (%); the proportion of culture, sports and media expenditure in fiscal expenditure (%) |
cultural transmission (+) | number of public library books of per capita (volumes); number of Internet broadband access ports (ten thousand) | |
implementation effect (+) | average number of higher education students per 100,000 population (persons) | |
green economy | economic efficiency (+) | local fiscal revenue of per capita (Yuan/person); disposable income of urban residents of Per capita (Yuan) |
economic structure (+) | contribution rate of tertiary industry (%) | |
innovation ability (+) | operating income of high-tech industry (100 million yuan); number of domestic patent applications (pieces) | |
green policy | policy support (+) | afforestation area of per capita (ha./ten thousand people); completed amount of forestry investment per unit of forest area (Yuan/ha.) |
environmental governance (+) | reduction rate of ammonia nitrogen emissions (%); reduction rate of sulfur dioxide emissions (%) |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.5318 | 0.5488 | 0.5411 | 0.5644 | 0.5559 | 0.6061 | 0.5472 | 0.5856 | 0.5686 | 0.5651 | 0.5615 | 1 |
Shanghai | 0.5150 | 0.4811 | 0.4744 | 0.4459 | 0.4556 | 0.5397 | 0.4987 | 0.5176 | 0.4618 | 0.4854 | 0.4875 | 2 |
Guangdong | 0.4792 | 0.4529 | 0.4388 | 0.4240 | 0.4047 | 0.4591 | 0.4485 | 0.4617 | 0.4823 | 0.4615 | 0.4513 | 3 |
Jiangsu | 0.4983 | 0.4729 | 0.4763 | 0.4578 | 0.4370 | 0.4747 | 0.4128 | 0.4119 | 0.3988 | 0.3799 | 0.4420 | 4 |
Zhejiang | 0.3563 | 0.3325 | 0.3574 | 0.3466 | 0.3355 | 0.3962 | 0.3541 | 0.3621 | 0.3680 | 0.3594 | 0.3568 | 5 |
Tianjin | 0.3191 | 0.3468 | 0.3196 | 0.3257 | 0.3313 | 0.3738 | 0.3325 | 0.3907 | 0.2851 | 0.3413 | 0.3366 | 6 |
Shandong | 0.2784 | 0.2896 | 0.3150 | 0.3187 | 0.3136 | 0.3328 | 0.3072 | 0.3105 | 0.3089 | 0.2813 | 0.3056 | 7 |
Fujian | 0.2507 | 0.2513 | 0.2637 | 0.2522 | 0.2431 | 0.2880 | 0.2685 | 0.2642 | 0.2638 | 0.2613 | 0.2607 | 8 |
Liaoning | 0.2418 | 0.2489 | 0.2649 | 0.2570 | 0.2510 | 0.2316 | 0.2860 | 0.2254 | 0.2152 | 0.2198 | 0.2441 | 9 |
Sichuan | 0.2250 | 0.2342 | 0.2326 | 0.2358 | 0.2226 | 0.2582 | 0.2277 | 0.2535 | 0.2581 | 0.2426 | 0.2390 | 10 |
Chongqing | 0.2446 | 0.2470 | 0.2374 | 0.2291 | 0.2290 | 0.2466 | 0.2142 | 0.2323 | 0.2342 | 0.2166 | 0.2331 | 11 |
Shaanxi | 0.2413 | 0.2344 | 0.2344 | 0.2355 | 0.2278 | 0.2465 | 0.2307 | 0.2285 | 0.2282 | 0.2212 | 0.2328 | 12 |
Qinghai | 0.2339 | 0.2552 | 0.2251 | 0.2159 | 0.2223 | 0.1963 | 0.1972 | 0.2379 | 0.2453 | 0.2590 | 0.2288 | 13 |
Inner Mongolia | 0.2286 | 0.2352 | 0.2309 | 0.2368 | 0.2220 | 0.2247 | 0.2160 | 0.2291 | 0.2197 | 0.2200 | 0.2263 | 14 |
Hunan | 0.1976 | 0.2000 | 0.2115 | 0.2021 | 0.2130 | 0.2366 | 0.2309 | 0.2510 | 0.2522 | 0.2429 | 0.2238 | 15 |
Hubei | 0.2107 | 0.1991 | 0.2012 | 0.2093 | 0.2079 | 0.2273 | 0.2116 | 0.2264 | 0.2321 | 0.2379 | 0.2163 | 16 |
Hainan | 0.2002 | 0.2120 | 0.2126 | 0.2142 | 0.1754 | 0.1822 | 0.1831 | 0.1917 | 0.2234 | 0.3218 | 0.2117 | 17 |
Jiangxi | 0.2020 | 0.1960 | 0.2105 | 0.1993 | 0.1999 | 0.2130 | 0.2088 | 0.2217 | 0.2273 | 0.2219 | 0.2100 | 18 |
Guangxi | 0.2068 | 0.2031 | 0.2134 | 0.2109 | 0.2016 | 0.2424 | 0.1994 | 0.2016 | 0.2071 | 0.1790 | 0.2065 | 19 |
Yunnan | 0.2154 | 0.2116 | 0.2167 | 0.2082 | 0.1959 | 0.2178 | 0.1870 | 0.2089 | 0.2105 | 0.1882 | 0.2060 | 20 |
Shanxi | 0.1916 | 0.1996 | 0.2201 | 0.2209 | 0.2561 | 0.2008 | 0.1972 | 0.1779 | 0.1971 | 0.1888 | 0.2050 | 21 |
Anhui | 0.1910 | 0.1876 | 0.1957 | 0.1981 | 0.1965 | 0.2129 | 0.2012 | 0.2043 | 0.2186 | 0.2043 | 0.2010 | 22 |
Henan | 0.1801 | 0.1905 | 0.1965 | 0.1917 | 0.1979 | 0.2099 | 0.1999 | 0.2013 | 0.2148 | 0.2136 | 0.1996 | 23 |
Hebei | 0.1732 | 0.1748 | 0.1886 | 0.1849 | 0.1850 | 0.1970 | 0.1785 | 0.2035 | 0.2196 | 0.2163 | 0.1921 | 24 |
Jilin | 0.1935 | 0.1867 | 0.1839 | 0.1875 | 0.1692 | 0.1884 | 0.1966 | 0.1975 | 0.1835 | 0.1755 | 0.1862 | 25 |
Heilongjiang | 0.1909 | 0.1688 | 0.1742 | 0.1894 | 0.1933 | 0.1810 | 0.1942 | 0.1907 | 0.1828 | 0.1703 | 0.1836 | 26 |
Guizhou | 0.1724 | 0.1891 | 0.1830 | 0.1771 | 0.1809 | 0.2017 | 0.1597 | 0.1867 | 0.1893 | 0.1836 | 0.1824 | 27 |
Ningxia | 0.2231 | 0.1885 | 0.1851 | 0.1831 | 0.1722 | 0.1695 | 0.1685 | 0.1662 | 0.1809 | 0.1805 | 0.1818 | 28 |
Xinjiang | 0.1813 | 0.1825 | 0.1756 | 0.1809 | 0.1598 | 0.2090 | 0.1781 | 0.1708 | 0.1582 | 0.1803 | 0.1777 | 29 |
Gansu | 0.1576 | 0.1585 | 0.1683 | 0.1637 | 0.1471 | 0.1664 | 0.1619 | 0.1782 | 0.1868 | 0.1913 | 0.1680 | 30 |
Levine Statistics | df1 | df2 | p-Value |
---|---|---|---|
3.148 | 29 | 270 | 0.0000 |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Guangdong | 0.0856 | 0.0865 | 0.0877 | 0.0948 | 0.0860 | 0.0937 | 0.0831 | 0.0800 | 0.082 | 0.0818 | 0.0861 | 1 |
Qinghai | 0.0650 | 0.0789 | 0.0818 | 0.0736 | 0.0760 | 0.0731 | 0.0606 | 0.0732 | 0.0848 | 0.0786 | 0.0745 | 2 |
Guangxi | 0.0519 | 0.0580 | 0.0641 | 0.0695 | 0.0639 | 0.0786 | 0.0631 | 0.0653 | 0.0591 | 0.0580 | 0.0631 | 3 |
Fujian | 0.0652 | 0.0558 | 0.0646 | 0.0647 | 0.0604 | 0.0694 | 0.0683 | 0.0549 | 0.0518 | 0.0571 | 0.0612 | 4 |
Zhejiang | 0.0617 | 0.0563 | 0.0642 | 0.0638 | 0.0608 | 0.0697 | 0.0581 | 0.0563 | 0.0564 | 0.0590 | 0.0606 | 5 |
Jiangxi | 0.0627 | 0.0540 | 0.0647 | 0.0616 | 0.0588 | 0.0710 | 0.0607 | 0.0553 | 0.0512 | 0.0574 | 0.0597 | 6 |
Hainan | 0.0601 | 0.0682 | 0.0591 | 0.0680 | 0.0557 | 0.0516 | 0.0606 | 0.0550 | 0.0561 | 0.0462 | 0.0580 | 7 |
Yunnan | 0.0562 | 0.0545 | 0.0558 | 0.0601 | 0.0569 | 0.0662 | 0.0554 | 0.0583 | 0.0579 | 0.0500 | 0.0571 | 8 |
Szechwan | 0.0507 | 0.0504 | 0.0535 | 0.0560 | 0.0517 | 0.0557 | 0.0468 | 0.0488 | 0.0517 | 0.0499 | 0.0515 | 9 |
Hunan | 0.0535 | 0.0458 | 0.0516 | 0.0522 | 0.0503 | 0.0571 | 0.0497 | 0.0494 | 0.0457 | 0.0490 | 0.0504 | 10 |
Jiangsu | 0.0415 | 0.0491 | 0.0497 | 0.0526 | 0.0498 | 0.0540 | 0.0440 | 0.0424 | 0.0422 | 0.0402 | 0.0465 | 11 |
Guizhou | 0.0399 | 0.0405 | 0.0452 | 0.0454 | 0.0501 | 0.0557 | 0.0422 | 0.0422 | 0.0412 | 0.0431 | 0.0446 | 12 |
Heilongjiang | 0.0428 | 0.0382 | 0.0400 | 0.0513 | 0.0410 | 0.0438 | 0.0431 | 0.0430 | 0.0453 | 0.0497 | 0.0438 | 13 |
Hubei | 0.0516 | 0.0415 | 0.0426 | 0.0450 | 0.0432 | 0.0488 | 0.0441 | 0.0431 | 0.0405 | 0.0377 | 0.0438 | 14 |
Chongqing | 0.0387 | 0.0424 | 0.0421 | 0.0445 | 0.0456 | 0.0468 | 0.0397 | 0.0416 | 0.0410 | 0.0404 | 0.0423 | 15 |
Beijing | 0.0397 | 0.0389 | 0.0407 | 0.0420 | 0.0434 | 0.0460 | 0.0360 | 0.0390 | 0.0377 | 0.0368 | 0.0400 | 16 |
Shandong | 0.0343 | 0.0378 | 0.0389 | 0.0428 | 0.0403 | 0.0425 | 0.0367 | 0.0397 | 0.0391 | 0.0384 | 0.0391 | 17 |
Anhui | 0.0386 | 0.0385 | 0.0398 | 0.0414 | 0.0406 | 0.0455 | 0.0390 | 0.0364 | 0.0362 | 0.0332 | 0.0389 | 18 |
Shaanxi | 0.0383 | 0.0403 | 0.0383 | 0.0398 | 0.0376 | 0.0424 | 0.0346 | 0.0399 | 0.0379 | 0.0374 | 0.0386 | 19 |
Jilin | 0.0401 | 0.0346 | 0.0368 | 0.0420 | 0.0344 | 0.0383 | 0.0381 | 0.0381 | 0.0410 | 0.0417 | 0.0385 | 20 |
Liaoning | 0.0378 | 0.0360 | 0.0409 | 0.0425 | 0.0362 | 0.0389 | 0.0376 | 0.0386 | 0.0381 | 0.0370 | 0.0384 | 21 |
Shanghai | 0.0309 | 0.0339 | 0.0352 | 0.0365 | 0.0358 | 0.0381 | 0.0279 | 0.0301 | 0.0296 | 0.0304 | 0.0328 | 22 |
Henan | 0.0323 | 0.0315 | 0.0327 | 0.0340 | 0.0334 | 0.0355 | 0.0295 | 0.0329 | 0.0313 | 0.0303 | 0.0324 | 23 |
Xinjiang | 0.0336 | 0.0324 | 0.0295 | 0.0350 | 0.0264 | 0.0367 | 0.0360 | 0.0345 | 0.0287 | 0.0273 | 0.0320 | 24 |
Hebei | 0.0294 | 0.0298 | 0.0312 | 0.0322 | 0.0313 | 0.0334 | 0.0276 | 0.0289 | 0.0288 | 0.0281 | 0.0301 | 25 |
Inner Mongolia | 0.0206 | 0.0218 | 0.0227 | 0.0346 | 0.0240 | 0.0280 | 0.0279 | 0.0270 | 0.0289 | 0.0284 | 0.0264 | 26 |
Shanxi | 0.0204 | 0.0234 | 0.0243 | 0.0255 | 0.0248 | 0.0264 | 0.0197 | 0.0238 | 0.0209 | 0.0206 | 0.0230 | 27 |
Gansu | 0.0224 | 0.0232 | 0.0240 | 0.0258 | 0.0224 | 0.0232 | 0.0177 | 0.0211 | 0.0214 | 0.0214 | 0.0222 | 28 |
Tianjin | 0.0169 | 0.0193 | 0.0208 | 0.0214 | 0.0212 | 0.0228 | 0.0169 | 0.0198 | 0.0196 | 0.0187 | 0.0197 | 29 |
Ningxia | 0.0060 | 0.0069 | 0.0069 | 0.0075 | 0.0071 | 0.0079 | 0.0052 | 0.0057 | 0.0057 | 0.0058 | 0.0065 | 30 |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Guangdong | 0.0566 | 0.0713 | 0.0681 | 0.0646 | 0.0634 | 0.0803 | 0.0644 | 0.0787 | 0.0773 | 0.0750 | 0.0700 | 1 |
Jiangsu | 0.0423 | 0.0509 | 0.0524 | 0.0501 | 0.0512 | 0.0648 | 0.0549 | 0.0625 | 0.0599 | 0.0560 | 0.0545 | 2 |
Shanghai | 0.0454 | 0.0513 | 0.0473 | 0.0445 | 0.0451 | 0.0440 | 0.0373 | 0.0421 | 0.0384 | 0.0384 | 0.0434 | 3 |
Beijing | 0.0405 | 0.0500 | 0.0479 | 0.0431 | 0.0417 | 0.0383 | 0.0309 | 0.0369 | 0.0432 | 0.0405 | 0.0413 | 4 |
Zhejiang | 0.0410 | 0.0440 | 0.0421 | 0.0435 | 0.0421 | 0.0454 | 0.0346 | 0.0447 | 0.0380 | 0.0376 | 0.0413 | 5 |
Tianjin | 0.0394 | 0.0437 | 0.0424 | 0.0394 | 0.0377 | 0.0440 | 0.0419 | 0.0415 | 0.0386 | 0.0433 | 0.0412 | 6 |
Shandong | 0.0350 | 0.0415 | 0.0407 | 0.0372 | 0.0335 | 0.0355 | 0.0316 | 0.0393 | 0.0423 | 0.0404 | 0.0377 | 7 |
Fujian | 0.0310 | 0.0330 | 0.0340 | 0.0323 | 0.0351 | 0.0354 | 0.0329 | 0.0390 | 0.0437 | 0.0420 | 0.0358 | 8 |
Liaoning | 0.0285 | 0.0315 | 0.0348 | 0.0361 | 0.0368 | 0.0410 | 0.0364 | 0.0336 | 0.0408 | 0.0379 | 0.0357 | 9 |
Szechwan | 0.0314 | 0.0359 | 0.0369 | 0.0345 | 0.0352 | 0.0392 | 0.0336 | 0.0390 | 0.0369 | 0.0327 | 0.0355 | 10 |
Chongqing | 0.0315 | 0.0336 | 0.0314 | 0.0319 | 0.0350 | 0.0333 | 0.0296 | 0.0345 | 0.0396 | 0.0437 | 0.0344 | 11 |
Anhui | 0.0311 | 0.0336 | 0.0339 | 0.0290 | 0.0312 | 0.0311 | 0.0293 | 0.0367 | 0.0403 | 0.0365 | 0.0333 | 12 |
Hubei | 0.0350 | 0.0359 | 0.0348 | 0.0328 | 0.0335 | 0.0310 | 0.0279 | 0.0326 | 0.0361 | 0.0307 | 0.0330 | 13 |
Henan | 0.0291 | 0.0333 | 0.0353 | 0.0326 | 0.0324 | 0.0367 | 0.0321 | 0.0354 | 0.0325 | 0.0292 | 0.0329 | 14 |
Inner Mongolia | 0.0285 | 0.0277 | 0.0280 | 0.0297 | 0.0297 | 0.0399 | 0.0378 | 0.0436 | 0.0377 | 0.0247 | 0.0327 | 15 |
Hunan | 0.0280 | 0.0348 | 0.0348 | 0.0312 | 0.0336 | 0.0355 | 0.0308 | 0.0334 | 0.0343 | 0.0291 | 0.0326 | 16 |
Shanxi | 0.0354 | 0.0312 | 0.0320 | 0.0284 | 0.0290 | 0.0284 | 0.0285 | 0.0318 | 0.0376 | 0.0377 | 0.0320 | 17 |
Shaanxi | 0.0312 | 0.0309 | 0.0305 | 0.0284 | 0.0316 | 0.0292 | 0.0276 | 0.0333 | 0.0405 | 0.0363 | 0.0320 | 18 |
Jiangxi | 0.0322 | 0.0327 | 0.0336 | 0.0304 | 0.0324 | 0.0297 | 0.0268 | 0.0291 | 0.0335 | 0.0267 | 0.0307 | 19 |
Hainan | 0.0268 | 0.0274 | 0.0299 | 0.0279 | 0.0234 | 0.0352 | 0.0337 | 0.0346 | 0.0363 | 0.0295 | 0.0305 | 20 |
Hebei | 0.0312 | 0.0323 | 0.0314 | 0.0268 | 0.0254 | 0.0269 | 0.0287 | 0.0320 | 0.0342 | 0.0294 | 0.0298 | 21 |
Jilin | 0.0324 | 0.0317 | 0.0357 | 0.0313 | 0.0289 | 0.0270 | 0.0248 | 0.0277 | 0.0290 | 0.0257 | 0.0294 | 22 |
Guangxi | 0.0261 | 0.0292 | 0.0282 | 0.0261 | 0.0246 | 0.0284 | 0.0302 | 0.0325 | 0.0360 | 0.0323 | 0.0293 | 23 |
Xinjiang | 0.0325 | 0.0246 | 0.0312 | 0.0294 | 0.0286 | 0.0263 | 0.0243 | 0.0299 | 0.0320 | 0.0333 | 0.0292 | 24 |
Heilongjiang | 0.0238 | 0.0268 | 0.0263 | 0.0234 | 0.0271 | 0.0266 | 0.0259 | 0.0292 | 0.0355 | 0.0337 | 0.0278 | 25 |
Ningxia | 0.0225 | 0.0280 | 0.0286 | 0.0257 | 0.0278 | 0.0271 | 0.0252 | 0.0275 | 0.0296 | 0.0281 | 0.0270 | 26 |
Yunnan | 0.0252 | 0.0266 | 0.0299 | 0.0305 | 0.0298 | 0.0275 | 0.0213 | 0.0223 | 0.0208 | 0.0264 | 0.0260 | 27 |
Guizhou | 0.0262 | 0.0273 | 0.0262 | 0.0233 | 0.0253 | 0.0234 | 0.0228 | 0.0254 | 0.0286 | 0.0235 | 0.0252 | 28 |
Qinghai | 0.0221 | 0.0260 | 0.0255 | 0.0191 | 0.0183 | 0.0213 | 0.0216 | 0.0232 | 0.0289 | 0.0321 | 0.0238 | 29 |
Gansu | 0.0224 | 0.0173 | 0.0173 | 0.0200 | 0.0205 | 0.0194 | 0.0173 | 0.0233 | 0.0248 | 0.0274 | 0.0210 | 30 |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.0541 | 0.0564 | 0.0564 | 0.0667 | 0.0626 | 0.0563 | 0.0583 | 0.0559 | 0.0536 | 0.0554 | 0.0576 | 1 |
Shandong | 0.0499 | 0.0502 | 0.0543 | 0.0549 | 0.0482 | 0.0476 | 0.0491 | 0.0484 | 0.0538 | 0.0562 | 0.0513 | 2 |
Shaanxi | 0.0510 | 0.0512 | 0.0507 | 0.0521 | 0.0487 | 0.0468 | 0.0445 | 0.0410 | 0.0433 | 0.0479 | 0.0477 | 3 |
Tianjin | 0.0472 | 0.0504 | 0.0522 | 0.0552 | 0.0519 | 0.0467 | 0.0495 | 0.0456 | 0.0392 | 0.0359 | 0.0474 | 4 |
Hebei | 0.0446 | 0.0425 | 0.0479 | 0.0506 | 0.0435 | 0.0453 | 0.0441 | 0.0474 | 0.0528 | 0.0485 | 0.0467 | 5 |
Ningxia | 0.0487 | 0.0414 | 0.0477 | 0.0515 | 0.0438 | 0.0418 | 0.0397 | 0.0443 | 0.0497 | 0.0502 | 0.0459 | 6 |
Yunnan | 0.0457 | 0.0446 | 0.0507 | 0.0478 | 0.0432 | 0.0405 | 0.0419 | 0.0428 | 0.0470 | 0.0474 | 0.0451 | 7 |
Xinjiang | 0.0483 | 0.0473 | 0.0473 | 0.0466 | 0.0421 | 0.0443 | 0.0408 | 0.0411 | 0.0424 | 0.0480 | 0.0448 | 8 |
Henan | 0.0415 | 0.0431 | 0.0459 | 0.0448 | 0.0416 | 0.0398 | 0.0415 | 0.0416 | 0.0454 | 0.0450 | 0.0430 | 9 |
Liaoning | 0.0418 | 0.0441 | 0.0479 | 0.0462 | 0.0422 | 0.0412 | 0.0363 | 0.0411 | 0.0417 | 0.0428 | 0.0425 | 10 |
Shanxi | 0.0386 | 0.0417 | 0.0464 | 0.0481 | 0.0400 | 0.0383 | 0.0386 | 0.0374 | 0.0430 | 0.0461 | 0.0418 | 11 |
Jiangxi | 0.0435 | 0.0462 | 0.0495 | 0.0451 | 0.0361 | 0.0356 | 0.0335 | 0.0424 | 0.0423 | 0.0414 | 0.0415 | 12 |
Inner Mongolia | 0.0386 | 0.0398 | 0.0460 | 0.0424 | 0.0415 | 0.0379 | 0.0405 | 0.0382 | 0.0441 | 0.0457 | 0.0415 | 13 |
Anhui | 0.0343 | 0.0414 | 0.0443 | 0.0435 | 0.0420 | 0.0401 | 0.0374 | 0.0399 | 0.0448 | 0.0468 | 0.04150 | 14 |
Szechwan | 0.0413 | 0.0427 | 0.0449 | 0.0461 | 0.0369 | 0.0384 | 0.0337 | 0.0379 | 0.0443 | 0.0459 | 0.0412 | 15 |
Qinghai | 0.0574 | 0.0474 | 0.0462 | 0.0386 | 0.0356 | 0.0342 | 0.0356 | 0.0337 | 0.0396 | 0.0426 | 0.0411 | 16 |
Jiangsu | 0.0424 | 0.0397 | 0.0391 | 0.0399 | 0.0402 | 0.0403 | 0.0377 | 0.0368 | 0.0445 | 0.0456 | 0.0406 | 17 |
Chongqing | 0.0430 | 0.0433 | 0.0481 | 0.0471 | 0.0421 | 0.0392 | 0.0369 | 0.0379 | 0.0350 | 0.0300 | 0.0402 | 18 |
Hunan | 0.0376 | 0.0363 | 0.0375 | 0.0336 | 0.0364 | 0.0381 | 0.0367 | 0.0394 | 0.0468 | 0.0546 | 0.0397 | 19 |
Heilongjiang | 0.0357 | 0.0353 | 0.0391 | 0.0432 | 0.0356 | 0.0401 | 0.0386 | 0.0389 | 0.0382 | 0.0473 | 0.0392 | 20 |
Zhejiang | 0.0444 | 0.0371 | 0.0373 | 0.0383 | 0.0393 | 0.0375 | 0.0365 | 0.0327 | 0.0427 | 0.0424 | 0.0388 | 21 |
Fujian | 0.0390 | 0.0341 | 0.0363 | 0.0377 | 0.0360 | 0.0359 | 0.0345 | 0.0316 | 0.0423 | 0.0407 | 0.0368 | 22 |
Jilin | 0.0353 | 0.0335 | 0.0382 | 0.0355 | 0.0318 | 0.0373 | 0.0337 | 0.0336 | 0.0332 | 0.0347 | 0.0347 | 23 |
Hainan | 0.0325 | 0.0366 | 0.0405 | 0.0397 | 0.0319 | 0.0253 | 0.0251 | 0.0277 | 0.0413 | 0.0380 | 0.0339 | 24 |
Gansu | 0.0253 | 0.0299 | 0.0342 | 0.0332 | 0.0255 | 0.0272 | 0.0272 | 0.0366 | 0.0408 | 0.0465 | 0.0326 | 25 |
Hubei | 0.0332 | 0.0312 | 0.0342 | 0.0331 | 0.0313 | 0.0319 | 0.0312 | 0.0323 | 0.0337 | 0.0326 | 0.0325 | 26 |
Guizhou | 0.0378 | 0.0365 | 0.0368 | 0.0337 | 0.0314 | 0.0325 | 0.0302 | 0.0265 | 0.0303 | 0.0283 | 0.0324 | 27 |
Guangdong | 0.0302 | 0.0287 | 0.0295 | 0.0311 | 0.0263 | 0.0270 | 0.0386 | 0.0294 | 0.0359 | 0.0340 | 0.0311 | 28 |
Guangxi | 0.0311 | 0.0314 | 0.0324 | 0.0268 | 0.0248 | 0.0221 | 0.0203 | 0.0241 | 0.0292 | 0.0281 | 0.0270 | 29 |
Shanghai | 0.0298 | 0.0248 | 0.0291 | 0.0286 | 0.0331 | 0.0306 | 0.0272 | 0.0271 | 0.0212 | 0.0184 | 0.0270 | 30 |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.1321 | 0.1150 | 0.1120 | 0.1099 | 0.1011 | 0.1150 | 0.1074 | 0.1141 | 0.1147 | 0.1121 | 0.1134 | 1 |
Shanghai | 0.1239 | 0.1099 | 0.1056 | 0.1121 | 0.1023 | 0.1083 | 0.0992 | 0.1185 | 0.1135 | 0.1035 | 0.1097 | 2 |
Jiangsu | 0.0736 | 0.0692 | 0.0740 | 0.0738 | 0.0729 | 0.0814 | 0.0735 | 0.0835 | 0.0805 | 0.0786 | 0.0761 | 3 |
Zhejiang | 0.0748 | 0.0635 | 0.0657 | 0.0673 | 0.0651 | 0.0893 | 0.0740 | 0.0829 | 0.0808 | 0.0764 | 0.0740 | 4 |
Guangdong | 0.0962 | 0.0759 | 0.0656 | 0.0644 | 0.0633 | 0.0681 | 0.0670 | 0.0758 | 0.0811 | 0.0758 | 0.0733 | 5 |
Tianjin | 0.0677 | 0.0629 | 0.0696 | 0.0703 | 0.0665 | 0.0723 | 0.0707 | 0.0655 | 0.0659 | 0.0514 | 0.0663 | 6 |
Shandong | 0.0558 | 0.0527 | 0.0545 | 0.0575 | 0.0566 | 0.0626 | 0.0550 | 0.0632 | 0.0602 | 0.0568 | 0.0575 | 7 |
Liaoning | 0.0531 | 0.0492 | 0.0510 | 0.0557 | 0.0547 | 0.0593 | 0.0524 | 0.0554 | 0.0478 | 0.0452 | 0.0524 | 8 |
Shaanxi | 0.0545 | 0.0478 | 0.0486 | 0.0494 | 0.0441 | 0.0531 | 0.0575 | 0.0580 | 0.0531 | 0.0470 | 0.0513 | 9 |
Fujian | 0.0373 | 0.0372 | 0.0429 | 0.0419 | 0.0414 | 0.0515 | 0.0429 | 0.0489 | 0.0482 | 0.0496 | 0.0442 | 10 |
Sichuan | 0.0309 | 0.0377 | 0.0384 | 0.0424 | 0.0411 | 0.0484 | 0.0421 | 0.0487 | 0.0476 | 0.0489 | 0.0426 | 11 |
Hubei | 0.0392 | 0.0373 | 0.0387 | 0.0396 | 0.0372 | 0.0410 | 0.0389 | 0.0412 | 0.0447 | 0.0447 | 0.0403 | 12 |
Jilin | 0.0381 | 0.0376 | 0.0350 | 0.0360 | 0.0352 | 0.0439 | 0.0390 | 0.0412 | 0.0368 | 0.0358 | 0.0378 | 13 |
Hebei | 0.0250 | 0.0260 | 0.0313 | 0.0346 | 0.0344 | 0.0377 | 0.0325 | 0.0405 | 0.0375 | 0.0396 | 0.0339 | 14 |
Hunan | 0.0254 | 0.0249 | 0.0275 | 0.0283 | 0.0299 | 0.0377 | 0.0390 | 0.0452 | 0.0404 | 0.0382 | 0.0336 | 15 |
Anhui | 0.0365 | 0.0319 | 0.0327 | 0.0322 | 0.0298 | 0.0386 | 0.0320 | 0.0342 | 0.0341 | 0.0301 | 0.0332 | 16 |
Inner Mongolia | 0.0359 | 0.0311 | 0.0296 | 0.0311 | 0.0292 | 0.0341 | 0.0295 | 0.0419 | 0.0340 | 0.0333 | 0.0330 | 17 |
Ningxia | 0.0525 | 0.0311 | 0.0236 | 0.0283 | 0.0276 | 0.0330 | 0.0331 | 0.0330 | 0.0338 | 0.0333 | 0.0329 | 18 |
Shanxi | 0.0292 | 0.0337 | 0.0302 | 0.0327 | 0.0297 | 0.0350 | 0.0320 | 0.0330 | 0.0352 | 0.0361 | 0.0327 | 19 |
Henan | 0.0299 | 0.0249 | 0.0266 | 0.0292 | 0.0300 | 0.0383 | 0.0323 | 0.0349 | 0.0342 | 0.0321 | 0.0312 | 20 |
Gansu | 0.0320 | 0.0265 | 0.0288 | 0.0301 | 0.0241 | 0.0325 | 0.0289 | 0.0321 | 0.0301 | 0.0320 | 0.0297 | 21 |
Chongqing | 0.0274 | 0.0241 | 0.0271 | 0.0254 | 0.0260 | 0.0299 | 0.0282 | 0.0320 | 0.0334 | 0.0298 | 0.0283 | 22 |
Heilongjiang | 0.0376 | 0.0306 | 0.0288 | 0.0303 | 0.0266 | 0.0275 | 0.0250 | 0.0246 | 0.0220 | 0.0203 | 0.0273 | 23 |
Jiangxi | 0.0235 | 0.0244 | 0.0223 | 0.0248 | 0.0249 | 0.0313 | 0.0281 | 0.0310 | 0.0301 | 0.0287 | 0.0269 | 24 |
Hainan | 0.0245 | 0.0276 | 0.0288 | 0.0181 | 0.0172 | 0.0213 | 0.0195 | 0.0250 | 0.0346 | 0.0372 | 0.0254 | 25 |
Guangxi | 0.0248 | 0.0208 | 0.0223 | 0.0237 | 0.0268 | 0.0316 | 0.0255 | 0.0253 | 0.0255 | 0.0256 | 0.0252 | 26 |
Xinjiang | 0.0287 | 0.0263 | 0.0251 | 0.0251 | 0.0223 | 0.0263 | 0.0224 | 0.0236 | 0.0194 | 0.0214 | 0.0241 | 27 |
Qinghai | 0.0186 | 0.0160 | 0.0152 | 0.0194 | 0.0208 | 0.0227 | 0.0223 | 0.0318 | 0.0250 | 0.0254 | 0.0217 | 28 |
Yunnan | 0.0174 | 0.0173 | 0.0176 | 0.0159 | 0.0131 | 0.0163 | 0.0196 | 0.0176 | 0.0190 | 0.0169 | 0.0171 | 29 |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Guangdong | 0.2247 | 0.2048 | 0.2033 | 0.1833 | 0.1764 | 0.2050 | 0.2088 | 0.2239 | 0.2313 | 0.2227 | 0.2084 | 1 |
Jiangsu | 0.2332 | 0.2261 | 0.2364 | 0.2223 | 0.2003 | 0.2134 | 0.1991 | 0.1783 | 0.1696 | 0.1600 | 0.2039 | 2 |
Shanghai | 0.1968 | 0.1774 | 0.1842 | 0.1601 | 0.1546 | 0.1762 | 0.1785 | 0.1769 | 0.1756 | 0.1763 | 0.1757 | 3 |
Beijing | 0.1702 | 0.1617 | 0.1565 | 0.1555 | 0.1570 | 0.1722 | 0.1699 | 0.1762 | 0.1746 | 0.1657 | 0.1659 | 4 |
Zhejiang | 0.1321 | 0.1234 | 0.1347 | 0.1227 | 0.1150 | 0.1354 | 0.1346 | 0.1312 | 0.1311 | 0.1284 | 0.1289 | 5 |
Tianjin | 0.1099 | 0.1057 | 0.1040 | 0.0980 | 0.0953 | 0.1033 | 0.1039 | 0.0897 | 0.0753 | 0.0794 | 0.0964 | 6 |
Shandong | 0.0919 | 0.0873 | 0.0911 | 0.0872 | 0.0870 | 0.0968 | 0.0899 | 0.0813 | 0.0764 | 0.0723 | 0.0861 | 7 |
Fujian | 0.0618 | 0.0593 | 0.0591 | 0.0521 | 0.0516 | 0.0637 | 0.0630 | 0.0665 | 0.0609 | 0.0641 | 0.0602 | 8 |
Liaoning | 0.0568 | 0.0549 | 0.0630 | 0.0576 | 0.0633 | 0.0435 | 0.1062 | 0.0372 | 0.0343 | 0.0339 | 0.0551 | 9 |
Szechwan | 0.0412 | 0.0427 | 0.0446 | 0.0449 | 0.0456 | 0.0475 | 0.0486 | 0.0541 | 0.0490 | 0.0441 | 0.0462 | 10 |
Chongqing | 0.0408 | 0.0450 | 0.0417 | 0.0404 | 0.0414 | 0.0522 | 0.0440 | 0.0492 | 0.0485 | 0.0442 | 0.0447 | 11 |
Anhui | 0.0339 | 0.0299 | 0.0346 | 0.0368 | 0.0378 | 0.0458 | 0.0467 | 0.0487 | 0.0496 | 0.0426 | 0.0406 | 12 |
Hubei | 0.0323 | 0.0319 | 0.0321 | 0.0383 | 0.0351 | 0.0424 | 0.0395 | 0.0472 | 0.0426 | 0.0428 | 0.0384 | 13 |
Henan | 0.0276 | 0.0315 | 0.0370 | 0.0361 | 0.0365 | 0.0411 | 0.0380 | 0.0401 | 0.0461 | 0.0407 | 0.0375 | 14 |
Inner Mongolia | 0.0411 | 0.0361 | 0.0333 | 0.0372 | 0.0374 | 0.0392 | 0.0349 | 0.0400 | 0.0320 | 0.0302 | 0.0361 | 15 |
Hunan | 0.0286 | 0.0280 | 0.0319 | 0.0342 | 0.0329 | 0.0370 | 0.0380 | 0.0461 | 0.0440 | 0.0320 | 0.0353 | 16 |
Shanxi | 0.0207 | 0.0183 | 0.0429 | 0.0499 | 0.0931 | 0.0152 | 0.0385 | 0.0140 | 0.0259 | 0.0201 | 0.0339 | 17 |
Shaanxi | 0.0302 | 0.0301 | 0.0289 | 0.0313 | 0.0308 | 0.0380 | 0.0304 | 0.0328 | 0.0301 | 0.0352 | 0.0318 | 18 |
Jiangxi | 0.0192 | 0.0209 | 0.0245 | 0.0222 | 0.0256 | 0.0327 | 0.0333 | 0.0369 | 0.0420 | 0.0355 | 0.0293 | 19 |
Hainan | 0.0297 | 0.0246 | 0.0327 | 0.0341 | 0.0228 | 0.0248 | 0.0226 | 0.0299 | 0.0350 | 0.0319 | 0.0288 | 20 |
Hebei | 0.0264 | 0.0246 | 0.0265 | 0.0244 | 0.0235 | 0.0246 | 0.0221 | 0.0338 | 0.0357 | 0.0340 | 0.0276 | 21 |
Jilin | 0.0265 | 0.0292 | 0.0268 | 0.0259 | 0.0194 | 0.0197 | 0.0268 | 0.0289 | 0.0167 | 0.0130 | 0.0233 | 22 |
Guangxi | 0.0207 | 0.0176 | 0.0295 | 0.0264 | 0.0199 | 0.0236 | 0.0220 | 0.0256 | 0.0196 | 0.0175 | 0.0222 | 23 |
Xinjiang | 0.0077 | 0.0160 | 0.0207 | 0.0251 | 0.0178 | 0.0307 | 0.0210 | 0.0211 | 0.0206 | 0.0249 | 0.0206 | 24 |
Heilongjiang | 0.0178 | 0.0134 | 0.0165 | 0.0114 | 0.0400 | 0.0118 | 0.0321 | 0.0235 | 0.0221 | 0.0107 | 0.0199 | 25 |
Ningxia | 0.0195 | 0.0195 | 0.0239 | 0.0190 | 0.0173 | 0.0179 | 0.0162 | 0.0155 | 0.0219 | 0.0186 | 0.0189 | 26 |
Yunnan | 0.0200 | 0.0240 | 0.0183 | 0.0201 | 0.0167 | 0.0173 | 0.0169 | 0.0237 | 0.0177 | 0.0146 | 0.0189 | 27 |
Guizhou | 0.0158 | 0.0186 | 0.0144 | 0.0152 | 0.0123 | 0.0159 | 0.0123 | 0.0222 | 0.0219 | 0.0208 | 0.0169 | 28 |
Qinghai | 0.0157 | 0.0138 | 0.0114 | 0.0120 | 0.0141 | 0.0125 | 0.0069 | 0.0067 | 0.0092 | 0.0113 | 0.0114 | 29 |
Gansu | 0.0054 | 0.0125 | 0.0118 | 0.0100 | 0.0085 | 0.0147 | 0.0102 | 0.0183 | 0.0103 | 0.0119 | 0.0113 | 30 |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.0792 | 0.1056 | 0.1075 | 0.1257 | 0.1283 | 0.1363 | 0.1111 | 0.1218 | 0.1108 | 0.1200 | 0.1146 | 1 |
Shanghai | 0.0911 | 0.0841 | 0.0680 | 0.0585 | 0.0786 | 0.1218 | 0.1110 | 0.1026 | 0.0621 | 0.1008 | 0.0879 | 2 |
Tianjin | 0.0380 | 0.0648 | 0.0308 | 0.0416 | 0.0587 | 0.0848 | 0.0495 | 0.1288 | 0.0466 | 0.1126 | 0.0656 | 3 |
Inner Mongolia | 0.0662 | 0.0791 | 0.0730 | 0.0683 | 0.0645 | 0.0622 | 0.0604 | 0.0566 | 0.0522 | 0.0589 | 0.0641 | 4 |
Qinghai | 0.0548 | 0.0818 | 0.0531 | 0.0523 | 0.0552 | 0.0344 | 0.0544 | 0.0692 | 0.0620 | 0.0739 | 0.0591 | 5 |
Ningxia | 0.0640 | 0.0578 | 0.0473 | 0.0455 | 0.0474 | 0.0420 | 0.0495 | 0.0399 | 0.0407 | 0.0468 | 0.0481 | 6 |
Shandong | 0.0239 | 0.0336 | 0.0475 | 0.0507 | 0.0537 | 0.0562 | 0.0512 | 0.0506 | 0.0496 | 0.0295 | 0.0447 | 7 |
Shanxi | 0.0559 | 0.0550 | 0.0463 | 0.0368 | 0.0450 | 0.0507 | 0.0347 | 0.0351 | 0.0358 | 0.0365 | 0.0432 | 8 |
Jiangsu | 0.0797 | 0.0539 | 0.0422 | 0.0380 | 0.0401 | 0.0500 | 0.0277 | 0.0377 | 0.0277 | 0.0264 | 0.0423 | 9 |
Guangxi | 0.0458 | 0.0507 | 0.0338 | 0.0352 | 0.0375 | 0.0603 | 0.0441 | 0.0313 | 0.0418 | 0.0165 | 0.0397 | 10 |
Gansu | 0.0439 | 0.0348 | 0.0347 | 0.0286 | 0.0298 | 0.0279 | 0.0414 | 0.0366 | 0.0435 | 0.0417 | 0.0363 | 11 |
chongqing | 0.0492 | 0.0410 | 0.0311 | 0.0272 | 0.0288 | 0.0345 | 0.0279 | 0.0295 | 0.0379 | 0.0340 | 0.0341 | 12 |
Guizhou | 0.0286 | 0.0280 | 0.0234 | 0.0275 | 0.0329 | 0.0442 | 0.0294 | 0.0422 | 0.0365 | 0.0362 | 0.0329 | 13 |
Shaanxi | 0.0351 | 0.0323 | 0.0343 | 0.0324 | 0.0343 | 0.0365 | 0.0368 | 0.0277 | 0.0302 | 0.0269 | 0.0326 | 14 |
Xinjiang | 0.0377 | 0.0338 | 0.0231 | 0.0187 | 0.0215 | 0.0436 | 0.0366 | 0.0283 | 0.0263 | 0.0323 | 0.0302 | 15 |
Hebei | 0.0257 | 0.0260 | 0.0263 | 0.0240 | 0.0339 | 0.0348 | 0.0304 | 0.0298 | 0.0357 | 0.0340 | 0.0301 | 16 |
Yunan | 0.0411 | 0.0296 | 0.0335 | 0.0270 | 0.0324 | 0.0419 | 0.0216 | 0.0273 | 0.0266 | 0.0190 | 0.0300 | 17 |
Hunan | 0.0215 | 0.0320 | 0.0289 | 0.0214 | 0.0284 | 0.0313 | 0.0345 | 0.0321 | 0.0317 | 0.0271 | 0.0289 | 18 |
Henan | 0.0250 | 0.0326 | 0.0278 | 0.0241 | 0.0291 | 0.0286 | 0.0324 | 0.0226 | 0.0224 | 0.0318 | 0.0277 | 19 |
Hubei | 0.0229 | 0.0236 | 0.0223 | 0.0214 | 0.0259 | 0.0300 | 0.0281 | 0.0281 | 0.0310 | 0.0364 | 0.0270 | 20 |
Liaoning | 0.0263 | 0.0355 | 0.0338 | 0.0289 | 0.0299 | 0.0204 | 0.0232 | 0.0207 | 0.0173 | 0.0286 | 0.0265 | 21 |
Fujian | 0.0125 | 0.0290 | 0.0260 | 0.0230 | 0.0202 | 0.0366 | 0.0317 | 0.0298 | 0.0246 | 0.0192 | 0.0253 | 22 |
Hainan | 0.0123 | 0.0111 | 0.0093 | 0.0108 | 0.0057 | 0.0139 | 0.0207 | 0.0095 | 0.0184 | 0.1310 | 0.0243 | 23 |
Sichuan | 0.0298 | 0.0272 | 0.0172 | 0.0175 | 0.0161 | 0.0370 | 0.0270 | 0.0273 | 0.0252 | 0.0176 | 0.0242 | 24 |
Jilin | 0.0225 | 0.0194 | 0.0158 | 0.0214 | 0.0228 | 0.0223 | 0.0303 | 0.0238 | 0.0217 | 0.0209 | 0.0221 | 25 |
Jiangxi | 0.0220 | 0.0196 | 0.0188 | 0.0171 | 0.0227 | 0.0132 | 0.0255 | 0.0229 | 0.0211 | 0.0227 | 0.0206 | 26 |
Heilongjiang | 0.0287 | 0.0237 | 0.0217 | 0.0236 | 0.0203 | 0.0178 | 0.0174 | 0.0172 | 0.0174 | 0.0177 | 0.0206 | 27 |
Guangdong | 0.0134 | 0.0236 | 0.0174 | 0.0178 | 0.0202 | 0.0286 | 0.0187 | 0.0171 | 0.0196 | 0.0179 | 0.0194 | 28 |
Zhejiang | 0.0119 | 0.0163 | 0.0186 | 0.0200 | 0.0200 | 0.0250 | 0.0172 | 0.0200 | 0.0201 | 0.0206 | 0.0190 | 29 |
Anhui | 0.0125 | 0.0146 | 0.0122 | 0.0159 | 0.0171 | 0.0146 | 0.0175 | 0.0134 | 0.0163 | 0.0137 | 0.0148 | 30 |
Region | Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eastern Region | Beijing | 0.5318 | 0.5488 | 0.5411 | 0.5644 | 0.5559 | 0.6061 | 0.5472 | 0.5856 | 0.5686 | 0.5651 | 0.5615 | 1 |
Tianjin | 0.3191 | 0.3468 | 0.3196 | 0.3257 | 0.3313 | 0.3738 | 0.3325 | 0.3907 | 0.2851 | 0.3413 | 0.3366 | 6 | |
Hebei | 0.1732 | 0.1748 | 0.1886 | 0.1849 | 0.1850 | 0.1970 | 0.1785 | 0.2035 | 0.2196 | 0.2163 | 0.1921 | 24 | |
Liaoning | 0.2418 | 0.2489 | 0.2649 | 0.2570 | 0.2510 | 0.2316 | 0.2860 | 0.2254 | 0.2152 | 0.2198 | 0.2441 | 9 | |
Shanghai | 0.5150 | 0.4811 | 0.4744 | 0.4459 | 0.4556 | 0.5397 | 0.4987 | 0.5176 | 0.4618 | 0.4854 | 0.4875 | 2 | |
Jiangsu | 0.4983 | 0.4729 | 0.4763 | 0.4578 | 0.4370 | 0.4747 | 0.4128 | 0.4119 | 0.3988 | 0.3799 | 0.4420 | 4 | |
Zhejiang | 0.3563 | 0.3325 | 0.3574 | 0.3466 | 0.3355 | 0.3962 | 0.3541 | 0.3621 | 0.3680 | 0.3594 | 0.3568 | 5 | |
Fujian | 0.2507 | 0.2513 | 0.2637 | 0.2522 | 0.2431 | 0.2880 | 0.2685 | 0.2642 | 0.2638 | 0.2613 | 0.2607 | 8 | |
Shandong | 0.2784 | 0.2896 | 0.3150 | 0.3187 | 0.3136 | 0.3328 | 0.3072 | 0.3105 | 0.3089 | 0.2813 | 0.3056 | 7 | |
Guangdong | 0.4792 | 0.4529 | 0.4388 | 0.4240 | 0.4047 | 0.4591 | 0.4485 | 0.4617 | 0.4823 | 0.4615 | 0.4513 | 3 | |
Hainan | 0.2002 | 0.2120 | 0.2126 | 0.2142 | 0.1754 | 0.1822 | 0.1831 | 0.1917 | 0.2234 | 0.3218 | 0.2117 | 17 | |
mean value | 0.3494 | 0.3465 | 0.3502 | 0.3447 | 0.3353 | 0.3710 | 0.3470 | 0.3568 | 0.3450 | 0.3539 | 0.3500 | — | |
Middle Region | Shanxi | 0.1916 | 0.1996 | 0.2201 | 0.2209 | 0.2561 | 0.2008 | 0.1972 | 0.1779 | 0.1971 | 0.1888 | 0.2050 | 21 |
Jilin | 0.1935 | 0.1867 | 0.1839 | 0.1875 | 0.1692 | 0.1884 | 0.1966 | 0.1975 | 0.1835 | 0.1755 | 0.1862 | 25 | |
Heilongjiang | 0.1909 | 0.1688 | 0.1742 | 0.1894 | 0.1933 | 0.1810 | 0.1942 | 0.1907 | 0.1828 | 0.1703 | 0.1836 | 26 | |
Anhui | 0.1910 | 0.1876 | 0.1957 | 0.1981 | 0.1965 | 0.2129 | 0.2012 | 0.2043 | 0.2186 | 0.2043 | 0.2010 | 22 | |
Jiangxi | 0.2020 | 0.1960 | 0.2105 | 0.1993 | 0.1999 | 0.2130 | 0.2088 | 0.2217 | 0.2273 | 0.2219 | 0.2100 | 18 | |
Henan | 0.1801 | 0.1905 | 0.1965 | 0.1917 | 0.1979 | 0.2099 | 0.1999 | 0.2013 | 0.2148 | 0.2136 | 0.1996 | 23 | |
Hubei | 0.2107 | 0.1991 | 0.2012 | 0.2093 | 0.2079 | 0.2273 | 0.2116 | 0.2264 | 0.2321 | 0.2379 | 0.2163 | 16 | |
Hunan | 0.1976 | 0.2000 | 0.2115 | 0.2021 | 0.2130 | 0.2366 | 0.2309 | 0.2510 | 0.2522 | 0.2429 | 0.2238 | 15 | |
mean value | 0.1947 | 0.1910 | 0.1992 | 0.1998 | 0.2042 | 0.2087 | 0.2050 | 0.2089 | 0.2136 | 0.2069 | 0.2032 | — | |
Western Region | Chongqing | 0.2446 | 0.2470 | 0.2374 | 0.2291 | 0.2290 | 0.2466 | 0.2142 | 0.2323 | 0.2342 | 0.2166 | 0.2331 | 11 |
Szechwan | 0.2250 | 0.2342 | 0.2326 | 0.2358 | 0.2226 | 0.2582 | 0.2277 | 0.2535 | 0.2581 | 0.2426 | 0.2390 | 10 | |
Inner Mongolia | 0.2286 | 0.2352 | 0.2309 | 0.2368 | 0.2220 | 0.2247 | 0.2160 | 0.2291 | 0.2197 | 0.2200 | 0.2263 | 14 | |
Guangxi | 0.2068 | 0.2031 | 0.2134 | 0.2109 | 0.2016 | 0.2424 | 0.1994 | 0.2016 | 0.2071 | 0.1790 | 0.2065 | 19 | |
Guizhou | 0.1724 | 0.1891 | 0.1830 | 0.1771 | 0.1809 | 0.2017 | 0.1597 | 0.1867 | 0.1893 | 0.1836 | 0.1824 | 27 | |
Yunnan | 0.2154 | 0.2116 | 0.2167 | 0.2082 | 0.1959 | 0.2178 | 0.1870 | 0.2089 | 0.2105 | 0.1882 | 0.2060 | 20 | |
Shaanxi | 0.2413 | 0.2344 | 0.2344 | 0.2355 | 0.2278 | 0.2465 | 0.2307 | 0.2285 | 0.2282 | 0.2212 | 0.2328 | 12 | |
Gansu | 0.1576 | 0.1585 | 0.1683 | 0.1637 | 0.1471 | 0.1664 | 0.1619 | 0.1782 | 0.1868 | 0.1913 | 0.1680 | 30 | |
Qinghai | 0.2339 | 0.2552 | 0.2251 | 0.2159 | 0.2223 | 0.1963 | 0.1972 | 0.2379 | 0.2453 | 0.2590 | 0.2288 | 13 | |
Ningxia | 0.2231 | 0.1885 | 0.1851 | 0.1831 | 0.1722 | 0.1695 | 0.1685 | 0.1662 | 0.1809 | 0.1805 | 0.1818 | 28 | |
Xinjiang | 0.1813 | 0.1825 | 0.1756 | 0.1809 | 0.1598 | 0.2090 | 0.1781 | 0.1708 | 0.1582 | 0.1803 | 0.1777 | 29 | |
mean value | 0.2118 | 0.2127 | 0.2093 | 0.2070 | 0.1983 | 0.2163 | 0.1946 | 0.2085 | 0.2108 | 0.2057 | 0.2075 | — | |
Nationwide | mean value | 0.2577 | 0.2560 | 0.2583 | 0.2555 | 0.2501 | 0.2710 | 0.2533 | 0.2630 | 0.2607 | 0.2603 | 0.2586 | — |
Year | Overall Gini Coefficient GT | Intra-Regional Gap Contribution Gw | Intra-Regional Gini Coefficient | Inter-Regional Disparities Contribute Gnb | Inter-Regional Gini Coefficient | SuperVariable Density Contribution Gt | Contribution Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
East | Middle | West | East-Middle | East-West | Middle-West | Contribution Rate of Intra-Regional Differences | Contribution Rate of Inter-Regional Differences | SuperVariable Density Contribution Rate | |||||
2010 | 0.1962 | 0.0468 | 0.2061 | 0.0234 | 0.0719 | 0.1370 | 0.2921 | 0.2647 | 0.0750 | 0.0123 | 23.8438 | 69.8606 | 6.2956 |
2011 | 0.1935 | 0.0455 | 0.1946 | 0.0264 | 0.0780 | 0.1380 | 0.2950 | 0.2568 | 0.0775 | 0.0100 | 23.5315 | 71.3094 | 5.1591 |
2012 | 0.1870 | 0.0424 | 0.1812 | 0.0399 | 0.0658 | 0.1343 | 0.2795 | 0.2628 | 0.0643 | 0.0103 | 22.6658 | 71.8373 | 5.4969 |
2013 | 0.1839 | 0.0423 | 0.1830 | 0.0286 | 0.0690 | 0.1306 | 0.2714 | 0.2603 | 0.0615 | 0.0110 | 22.9834 | 71.0154 | 6.0012 |
2014 | 0.1915 | 0.0463 | 0.1921 | 0.0568 | 0.0785 | 0.1272 | 0.2608 | 0.2730 | 0.0753 | 0.0180 | 24.1753 | 66.4395 | 9.3852 |
2015 | 0.2036 | 0.0488 | 0.2061 | 0.0467 | 0.0776 | 0.1380 | 0.2931 | 0.2843 | 0.0693 | 0.0167 | 23.9723 | 67.8008 | 8.2269 |
2016 | 0.1957 | 0.0437 | 0.1880 | 0.0280 | 0.0718 | 0.1398 | 0.2731 | 0.2941 | 0.0601 | 0.0123 | 22.3110 | 71.4240 | 6.2650 |
2017 | 0.1961 | 0.0479 | 0.1997 | 0.0573 | 0.0776 | 0.1310 | 0.2723 | 0.2762 | 0.0712 | 0.0172 | 24.4455 | 66.7848 | 8.7698 |
2018 | 0.1785 | 0.0451 | 0.1862 | 0.0602 | 0.0776 | 0.1196 | 0.2421 | 0.2496 | 0.0705 | 0.0139 | 25.2417 | 66.9970 | 7.7613 |
2019 | 0.1876 | 0.0425 | 0.1701 | 0.0701 | 0.0701 | 0.1322 | 0.2661 | 0.2691 | 0.0728 | 0.0129 | 22.6535 | 70.4927 | 6.8538 |
Parameter | Nationwide | East | Middle | West |
---|---|---|---|---|
(10.35) | (5.41) | (4.47) | (8.43) | |
(10.32) | (5.37) | (4.43) | (8.45) | |
0.02 | 0.05 | 0.06 | 0.10 | |
107.22 | 29.22 | 20.00 | 71.14 | |
0.54 | 0.51 | 0.29 | 1.07 |
Parameter | Nationwide | East | Middle | West |
---|---|---|---|---|
(10.10) | (5.85) | (5.70) | (−8.64) | |
(1.74) | (0.69) | (1.51) | (3.31) | |
gov | (0.21) | (2.17) | (1.15) | (2.49) |
indu | (2.50) | (1.24) | (2.51) | (0.61) |
huca | (0.02) | (0.78) | (0.82) | (0.36) |
infr | ) (1.14) | (1.77) | (0.06) | (0.58) |
envi | (1.62) | (1.64) | (1.38) | (0.08) |
0.0203 | 0.0495 | 0.1312 | 0.0806 | |
19.12 | 6.70 | 6.53 | 13.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ji, S.; Zhu, Z.; Hu, J. Measurement, Distribution Characteristics, and Convergent Analysis of China’s Green Development Level. Sustainability 2023, 15, 157. https://doi.org/10.3390/su15010157
Zhang X, Ji S, Zhu Z, Hu J. Measurement, Distribution Characteristics, and Convergent Analysis of China’s Green Development Level. Sustainability. 2023; 15(1):157. https://doi.org/10.3390/su15010157
Chicago/Turabian StyleZhang, Xinyu, Siyu Ji, Zhichuan Zhu, and Jingwan Hu. 2023. "Measurement, Distribution Characteristics, and Convergent Analysis of China’s Green Development Level" Sustainability 15, no. 1: 157. https://doi.org/10.3390/su15010157
APA StyleZhang, X., Ji, S., Zhu, Z., & Hu, J. (2023). Measurement, Distribution Characteristics, and Convergent Analysis of China’s Green Development Level. Sustainability, 15(1), 157. https://doi.org/10.3390/su15010157