Latent Class Cluster Analysis and Mixed Logit Model to Investigate Pedestrian Crash Injury Severity
Abstract
:1. Introduction
Objectives and Scope of the Study
2. Data
3. Methodology
3.1. Latent Class Clustering Analysis
3.2. Mixed Logit Model
3.3. Marginal Effects
4. Results and Discussions
4.1. Latent Class Clustering Results
4.2. Mixed Logit Models Results
4.2.1. Pedestrian Characteristics
4.2.2. Involved Party Characteristics
4.2.3. Temporal Characteristics
4.2.4. Environmental Characteristics
4.2.5. Roadway and Built-Environment Characteristics
4.3. Model Evaluation
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Sev. | O.S. (%) | C1 (%) | C2 (%) | C3 (%) | C4 (%) | |
---|---|---|---|---|---|---|---|
Gender (ref. women) | Men | Min. | −4.85 | −1.19 | −6.02 | ||
Maj. | 3.61 | −2.06 | 5.40 | ||||
Fat. | 1.24 | 3.24 | 0.62 | ||||
Age (ref. 15–30) | <15 | Min. | −0.51 | −1.53 | |||
Maj. | −1.09 | −0.36 | |||||
Fat. | 1.61 | 1.89 | |||||
30–45 | Min. | −0.08 | −2.30 | ||||
Maj. | −1.20 | 0.96 | |||||
Fat. | 1.28 | 1.32 | |||||
45–65 | Min. | −4.29 | −5.72 | −4.44 | −3.69 | −1.74 | |
Maj. | 1.87 | 2.27 | 2.12 | 1.17 | −0.26 | ||
Fat. | 2.43 | 3.47 | 2.33 | 2.52 | 2.00 | ||
>65 | Min. | −5.38 | −5.36 | −6.45 | −3.18 | −3.50 | |
Maj. | 1.08 | 2.03 | 0.93 | 1.07 | −2.52 | ||
Fat. | 4.29 | 3.33 | 5.52 | 2.12 | 6.02 | ||
Vehicle (ref. passenger car) | Motorcycle | Min. | 2.66 | 1.52 | 1.61 | 2.39 | 1.76 |
Maj. | −2.17 | −0.03 | −0.99 | −2.12 | −2.15 | ||
Fat. | −0.48 | −1.49 | −0.62 | −0.27 | 0.39 | ||
Heavy vehicle, bus | Min. | −1.87 | −1.14 | −1.31 | −1.59 | ||
Maj. | 0.23 | 0.08 | −0.59 | 0.03 | |||
Fat. | 1.64 | 1.07 | 1.89 | 1.55 | |||
Minibus, van | Min. | −0.88 | −0.35 | −0.31 | −0.50 | ||
Maj. | 0.22 | 0.03 | −0.11 | 0.47 | |||
Fat. | 0.66 | 0.30 | 0.42 | 0.03 | |||
Pickup | Min. | −0.76 | −0.90 | −1.04 | −0.24 | ||
Maj. | 0.22 | 0.50 | −0.08 | −0.23 | |||
Fat. | 0.54 | 0.41 | 1.11 | 0.45 | |||
Bicycle | Min. | 0.09 | 0.44 | ||||
Maj. | −0.33 | −0.42 | |||||
Fat. | 0.24 | −0.02 | |||||
Crash time (ref. 22–6) | 6–10 | Min. | 1.93 | −0.95 | 1.70 | 2.07 | |
Maj. | −1.11 | 4.17 | −0.03 | −1.37 | |||
Fat. | −0.82 | −3.23 | −1.67 | −0.71 | |||
10–14 | Min. | 3.60 | −7.85 | 3.18 | 3.63 | 1.83 | |
Maj. | −2.53 | 9.93 | −1.01 | −2.06 | −0.45 | ||
Fat. | −1.08 | −2.09 | −2.18 | −1.58 | −1.38 | ||
14–18 | Min. | 2.93 | −5.58 | 2.69 | 1.61 | 0.36 | |
Maj. | −1.59 | 8.33 | −0.23 | −0.44 | 1.83 | ||
Fat. | −1.34 | −2.75 | −2.46 | −1.17 | −2.19 | ||
18–22 | Min. | 1.37 | −7.88 | 0.48 | 2.94 | ||
Maj. | −0.19 | 10.70 | 1.67 | −1.34 | |||
Fat. | −1.18 | −2.82 | −2.15 | −1.61 | |||
Day type (ref. weekday) | Weekend | Min. | 2.47 | 3.83 | |||
Maj. | −1.75 | −1.82 | |||||
Fat. | −0.72 | −2.01 | |||||
Weather (ref. clear) | Adverse | Min. | −1.36 | −1.40 | −0.80 | ||
Maj. | 0.97 | 1.16 | 0.23 | ||||
Fat. | 0.40 | 0.24 | 0.57 | ||||
Season (ref. winter) | Spring | Min. | 3.95 | ||||
Maj. | −3.08 | ||||||
Fat. | −0.86 | ||||||
Summer | Min. | 1.14 | |||||
Maj. | −0.18 | ||||||
Fat. | −0.96 | ||||||
Junction (ref. no) | Yes | Min. | 5.11 | 16.14 | 19.88 | ||
Maj. | −1.67 | −7.94 | −6.65 | ||||
Fat. | −3.44 | −8.21 | −13.23 | ||||
Hit and run (ref. no) | Yes | Min. | −4.79 | −1.58 | −2.37 | −3.99 | −2.84 |
Maj. | 4.31 | 1.36 | 2.04 | 3.81 | 2.63 | ||
Fat. | 0.48 | 0.21 | 0.32 | 0.20 | 0.21 | ||
Posted speed (ref. 60 km/h) | 40–60 km/h | Min. | 2.53 | 7.67 | 1.94 | 1.14 | |
Maj. | −2.87 | −9.18 | −0.77 | −1.76 | |||
Fat. | 0.36 | 1.52 | −1.16 | 0.62 | |||
<40 km/h | Min. | 3.01 | 3.78 | 3.80 | 0.63 | ||
Maj. | −2.61 | −2.52 | −2.85 | −0.17 | |||
Fat. | −0.40 | −1.26 | −0.95 | −0.45 | |||
Traffic control (ref. none) | Signal | Min. | 5.02 | 1.53 | |||
Maj. | −2.31 | −1.58 | |||||
Fat. | −2.72 | 0.05 | |||||
Signs and surface marking | Min. | 0.23 | 1.37 | ||||
Maj. | 0.25 | −0.36 | |||||
Fat. | −0.46 | −0.99 | |||||
Road type (ref. one-way) | Divided two-way | Min. | −3.39 | −10.53 | −0.86 | ||
Maj. | 1.87 | 11.79 | 3.95 | ||||
Fat. | 1.52 | −1.26 | −3.09 | ||||
Undivided two-way | Min. | −0.47 | −0.30 | ||||
Maj. | −1.95 | −0.44 | |||||
Fat. | 2.42 | 0.74 | |||||
Road width (ref. <20 m) | >20m | Min. | −5.12 | −4.62 | |||
Maj. | 4.16 | −0.17 | |||||
Fat. | 0.96 | 4.79 | |||||
Sidewalk (ref. no) | Yes | Min. | 11.04 | 16.89 | |||
Maj. | −8.71 | −14.01 | |||||
Fat. | −2.34 | −2.87 | |||||
Vegetation (ref. no) | Yes | Min. | 1.29 | 4.70 | −9.00 | ||
Maj. | −0.43 | −2.30 | 9.27 | ||||
Fat. | −0.86 | −2.40 | −0.26 | ||||
Park lane (ref. no) | Yes | Min. | −3.51 | −13.26 | −2.30 | ||
Maj. | 4.03 | 13.34 | 0.38 | ||||
Fat. | −0.52 | −0.08 | 1.92 | ||||
Overpass/underpass (ref. no) | Yes | Min. | −14.97 | −13.13 | −7.23 | −23.77 | −6.68 |
Maj. | 13.87 | 14.48 | 5.63 | 20.14 | 5.82 | ||
Fat. | 1.10 | −1.35 | 1.62 | 3.62 | 0.86 | ||
AADT (ref. low) | High (>30,000) | Min. | 3.53 | 17.13 | −0.92 | ||
Maj. | −2.52 | −13.01 | −0.35 | ||||
Fat. | −1.01 | −4.13 | 1.25 | ||||
Medium (15,000–30,000) | Min. | 2.09 | 14.84 | ||||
Maj. | −1.31 | −10.67 | |||||
Fat. | −0.78 | −4.17 | |||||
Population density (ref. <100 person/km2) | 100−200 | Min. | 0.11 | 4.52 | −2.48 | ||
Maj. | 0.28 | −2.39 | 0.92 | ||||
Fat. | −0.39 | −2.12 | 1.55 | ||||
>200 | Min. | 3.65 | |||||
Maj. | −1.52 | ||||||
Fat. | −2.15 | ||||||
Land use (ref. commercial) | Other | Min. | −2.68 | 0.50 | |||
Maj. | 0.97 | −2.06 | |||||
Fat. | 1.72 | 1.56 | |||||
Residential | Min. | −0.95 | −14.88 | 4.13 | |||
Maj. | 0.12 | 13.85 | −1.53 | ||||
Fat. | 0.83 | 1.04 | −2.58 |
Cluster # | Effect on Probability | Major Injuries | Fatal Injuries | ||
---|---|---|---|---|---|
Significant in Both Overall and Cluster Models | Significant Just in Cluster Models | Significant in Both Overall and Cluster Models | Significant Just in Cluster Models | ||
Cluster1 | Increase | Aged 45–65; aged > 65; crash time 10–14 *; 14–18 *; hit and run; near overpass | Crash time 18–22 | Aged 45–65; aged >65 | Residential |
Decrease | Bicycle; posted speed 40–60 km/h | Spring | Motorcycle; crash time at 6–10; crash time 6–10; 10–14; 14–18 **; 18–22 | ||
Cluster2 | Increase | Aged 45–65; aged > 65; heavy vehicle, bus; minibus, van; pickup; hit and run; with park lane; near overpass; adverse weather | Divided two-way; residential | Men; aged 45–65; aged >65; heavy vehicle, bus; minibus, van; pickup; hit and run; near overpass | Aged 30–45; road width > 20 m; adverse weather |
Decrease | Posted speed < 40 km/h ** | Motorcycle; crash time at 6–10; 10–14; 14–18 **; 18–22; posted speed <40; control with signs and surface markings **; with vegetated buffer | Posted speed 40–60; high AADT | ||
Cluster3 | Increase | Men; aged 45–65; > 65; heavy vehicle, bus; minibus, van; pickup; hit and run **; with park lane; near overpass | Aged 30–45; with vegetated buffer | Aged 45–65; aged > 65; heavy vehicle, bus; minibus, van; pickup; hit and run; near overpass; other land uses | Aged 30–45; road width > 20 m; with park lane; adverse weather |
Decrease | Motorcycle; crash time at 6–10; 10–14; at junction **; posted speed < 40 km/h | Medium AADT; high AADT | Crash time at 6–10; 10–14; 14–18 **; 18–22; at junction; posted speed < 40 km/h; divided two-way *; medium AADT; medium density | Summer; high AADT; high density | |
Cluster4 | Increase | Heavy vehicle, bus; minibus, van; hit and run **; near overpass | High AADT | Aged < 15 **; 45–65; > 65; heavy vehicle, bus; pickup; hit and run; undivided two-way; near overpasses; medium density * | High AADT |
Decrease | Motorcycle; posted speed 40–60 km/h; <40 km/h; control with signals; with sidewalk | Residential | Crash time at 10–14; 14–18 **; weekend; at junction; with sidewalk | Residential *** |
References
- World Health Organization. Global Status Report on Road Safety 2018; World Health Organization (WHO): Geneva, Switzerland, 2019. [Google Scholar]
- Kayani, A.; King, M.J.; Fleiter, J.J. Fatalism and road safety in developing countries, with a focus on Pakistan. J. Australas. Coll. Road Saf. 2011, 22, 41–47. [Google Scholar]
- Jadaan, K.; Al-Braizat, E.; Al-Rafayah, S.; Gammoh, H.; Abukahlil, Y. Traffic safety in developed and developing countries: A comparative analysis. J. Traffic Logist. Eng. 2018, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Safarpour, H.; Khorasani-Zavareh, D.; Mohammadi, R. The common road safety approaches: A scoping review and thematic analysis. Chin. J. Traumatol. 2020, 23, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Salamati, P.; Moradi, A.; Soori, H.; Amiri, M.; Soltani, M. High crash areas resulting in injuries and deaths in Tehran traffic areas from november 2011 through february 2012: A geographic information system analysis. Med. J. Islam. Repub. Iran 2015, 29, 214. [Google Scholar]
- Shabanikiya, H.; Hashtarkhani, S.; Bergquist, R.; Bagheri, N.; VafaeiNejad, R.; Amiri-Gholanlou, M.; Akbari, T.; Kiani, B. Multiple-scale spatial analysis of paediatric, pedestrian road traffic injuries in a major city in North-Eastern Iran 2015–2019. BMC Public Health 2020, 20, 722. [Google Scholar] [CrossRef]
- Delaney, P.G.; Eisner, Z.J.; Bustos, A.; Hancock, C.J.; Thullah, A.H.; Jayaraman, S.; Raghavendran, K. Cost-effectiveness of lay first responders addressing road traffic injury in sub-Saharan Africa. J. Surg. Res. 2022, 270, 104–112. [Google Scholar] [CrossRef]
- Spencer, M.R.; Hedegaard, H.; Garnet, M. Motor vehicle traffic death rates by sex, age group, and road-user type: United States, 1999–2019. NCHS Data Brief 2021. [Google Scholar] [CrossRef]
- Safaei, B.; Safaei, N.; Masoud, A.; Seyedekrami, S. Weighing criteria and prioritizing strategies to reduce motorcycle-related injuries using combination of fuzzy TOPSIS and AHP methods. Adv. Transp. Stud. 2021, 54, 217–234. [Google Scholar]
- Nasri, M.; Aghabayk, K.; Esmaili, A.; Shiwakoti, N. Using ordered and unordered logistic regressions to investigate risk factors associated with pedestrian crash injury severity in Victoria, Australia. J. Saf. Res. 2022, 81, 78–90. [Google Scholar] [CrossRef]
- Mukherjee, D.; Mitra, S. Investigating the fatal pedestrian crash occurrence in urban setup in a developing country using multiple-risk source model. Accid. Anal. Prev. 2021, 163, 106469. [Google Scholar] [CrossRef]
- Iranian Legal Medicine Organization. National Status Report on Pedestrian Fatalities; Iranian Legal Medicine Organization: Tehran, Iran, 2019.
- Sheykhfard, A.; Haghighi, F.; Papadimitriou, E.; Van Gelder, P. Analysis of the occurrence and severity of vehicle-pedestrian conflicts in marked and unmarked crosswalks through naturalistic driving study. Transp. Res. Part F Traffic Psychol. Behav. 2021, 76, 178–192. [Google Scholar] [CrossRef]
- Mashhad Transport and Traffic Organization. 13th Statistical Report on Mashhad Traffic. 2019. Available online: https://traffic.mashhad.ir/ (accessed on 13 November 2022).
- Chakraborty, A.; Mukherjee, D.; Mitra, S. Development of pedestrian crash prediction model for a developing country using artificial neural network. Int. J. Inj. Control Saf. Promot. 2019, 26, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Arango, R.; Valencia-Alaix, V.G.; Pineda-Mendez, R.A.; Eissa, T. Influence of socioeconomic conditions on crash injury severity for an urban area in a developing country. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 41–53. [Google Scholar] [CrossRef]
- Gupta, U.; Tiwari, G.; Chatterjee, N.; FAzio, J. Case study of pedestrian risk behavior and survival analysis. In Proceedings of the 8th International Conference of Eastern Asia Society for Transportation Studies, Surabaya, Indonesia, 16–19 November 2009; Volume 7, p. 389. [Google Scholar]
- Sheykhfard, A.; Haghighi, F.; Nordfjærn, T.; Soltaninejad, M. Structural equation modelling of potential risk factors for pedestrian accidents in rural and urban roads. Int. J. Inj. Control Saf. Promot. 2020, 28, 46–57. [Google Scholar] [CrossRef]
- Jamali-Dolatabad, M.; Sadeghi-Bazargani, H.; Sarbakhsh, P. Predictors of fatal outcomes in pedestrian accidents in Tabriz Metropolis of Iran: Application of PLS-DA method. Traffic Inj. Prev. 2019, 20, 873–879. [Google Scholar] [CrossRef]
- Kashani, A.T.; Besharati, M.M. Fatality rate of pedestrians and fatal crash involvement rate of drivers in pedestrian crashes: A case study of Iran. Int. J. Inj. Control Saf. Promot. 2017, 24, 222–231. [Google Scholar] [CrossRef]
- Payam, P.; Seyed, T.H.; Amin, H.; Yaser, S.; Arya, H.; Mohammad, Z.; Ghasem, M.; Mohammad, R.A.; Najmeh, M.; Ali, F.; et al. Epidemiological characteristics of fatal pedestrian accidents in Fars Province of Iran: A community-based survey. Chin. J. Traumatol. 2012, 15, 279–283. [Google Scholar]
- Miranda-Moreno, L.F.; Morency, P.; El-Geneidy, A.M. The link between built environment, pedestrian activity and pedestrian–vehicle collision occurrence at signalized intersections. Accid. Anal. Prev. 2011, 43, 1624–1634. [Google Scholar] [CrossRef]
- Wang, Y.; Kockelman, K.M. A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods. Accid. Anal. Prev. 2013, 60, 71–84. [Google Scholar] [CrossRef]
- Lee, J.; Abdel-Aty, M.; Choi, K.; Huang, H. Multi-level hot zone identification for pedestrian safety. Accid. Anal. Prev. 2015, 76, 64–73. [Google Scholar] [CrossRef]
- Su, J.; Sze, N.; Bai, L. A joint probability model for pedestrian crashes at macroscopic level: Roles of environment, traffic, and population characteristics. Accid. Anal. Prev. 2021, 150, 105898. [Google Scholar] [CrossRef]
- Sze, N.N.; Wong, S.C. Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes. Accid. Anal. Prev. 2007, 39, 1267–1278. [Google Scholar] [CrossRef]
- Aziz, H.A.; Ukkusuri, S.V.; Hasan, S. Exploring the determinants of pedestrian–vehicle crash severity in New York City. Accid. Anal. Prev. 2013, 50, 1298–1309. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Saunier, N.; Miranda-Moreno, L.F.; Ukkusuri, S.V. A clustering regression approach: A comprehensive injury severity analysis of pedestrian–vehicle crashes in New York, US and Montreal, Canada. Saf. Sci. 2013, 54, 27–37. [Google Scholar] [CrossRef]
- Sasidharan, L.; Wu, K.-F.; Menendez, M. Exploring the application of latent class cluster analysis for investigating pedestrian crash injury severities in Switzerland. Accid. Anal. Prev. 2015, 85, 219–228. [Google Scholar] [CrossRef]
- Sun, M.; Sun, X.; Shan, D. Pedestrian crash analysis with latent class clustering method. Accid. Anal. Prev. 2019, 124, 50–57. [Google Scholar] [CrossRef]
- Li, Y.; Song, L.; Fan, W. Day-of-the-week variations and temporal instability of factors influencing pedestrian injury severity in pedestrian-vehicle crashes: A random parameters logit approach with heterogeneity in means and variances. Anal. Methods Accid. Res. 2021, 29, 100152. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Guo, F.; Fang, S.; Xu, X.; Chen, X. Causation analysis of crashes and near crashes using naturalistic driving data. Accid. Anal. Prev. 2022, 177, 106821. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Valero-Mora, P.M.; Berné-Valero, J.L.; Varela-García, F.-A. GIS mapping of driving behavior based on naturalistic driving data. ISPRS Int. J. Geo-inf. 2019, 8, 226. [Google Scholar] [CrossRef] [Green Version]
- Balsa-Barreiro, J.; Valero-Mora, P.M.; Menéndez, M.; Mehmood, R. Extraction of naturalistic driving patterns with geographic information systems. Mob. Netw. Appl. 2020, 1–17. [Google Scholar] [CrossRef]
- Eluru, N.; Bhat, C.R.; Hensher, D.A. A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accid. Anal. Prev. 2008, 40, 1033–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Abdel-Aty, M. Comprehensive analysis of vehicle–pedestrian crashes at intersections in Florida. Accid. Anal. Prev. 2005, 37, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Tay, R.; Choi, J.; Kattan, L.; Khan, A. A multinomial logit model of pedestrian–vehicle crash severity. Inr. J. Sustain. Transp. 2011, 5, 233–249. [Google Scholar] [CrossRef]
- Kim, J.-K.; Ulfarsson, G.F.; Shankar, V.N.; Mannering, F.L. A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model. Accid. Anal. Prev. 2010, 42, 1751–1758. [Google Scholar] [CrossRef]
- Harruff, R.C.; Avery, A.; Alter-Pandya, A.S. Analysis of circumstances and injuries in 217 pedestrian traffic fatalities. Accid. Anal. Prev. 1998, 30, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.; Park, S.H.; Kang, S.; Song, K.H.; Kang, S.; Chung, S. Evaluation of pedestrian safety: Pedestrian crash hot spots and risk factors for injury severity. Transp. Res. Rec. 2013, 2393, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Tay, R.; Hunt, J.D. Logistic regression model of risk of fatality in vehicle–pedestrian crashes on national highways in Bangladesh. Transp. Res. Rec. J. Transp. Res. Board 2011, 2264, 128–137. [Google Scholar] [CrossRef]
- Tarko, A.; Azam, M.S. Pedestrian injury analysis with consideration of the selectivity bias in linked police-hospital data. Accid. Anal. Prev. 2011, 43, 1689–1695. [Google Scholar] [CrossRef]
- Ukkusuri, S.; Miranda-Moreno, L.F.; Ramadurai, G.; Isa-Tavarez, J. The role of built environment on pedestrian crash frequency. Saf. Sci. 2012, 50, 1141–1151. [Google Scholar] [CrossRef]
- Zhai, X.; Huang, H.; Sze, N.N.; Song, Z.; Hon, K.K. Diagnostic analysis of the effects of weather condition on pedestrian crash severity. Accid. Anal. Prev. 2019, 122, 318–324. [Google Scholar] [CrossRef]
- Peng, H.; Ma, X.; Chen, F. Examining injury severity of pedestrians in vehicle–pedestrian crashes at mid-blocks using path analysis. Int. J. Environ. Res. Public Health 2020, 17, 6170. [Google Scholar] [CrossRef]
- Wang, J.; Huang, H.; Xu, P.; Xie, S.; Wong, S.C. Random parameter probit models to analyze pedestrian red-light violations and injury severity in pedestrian–motor vehicle crashes at signalized crossings. J. Transp. Saf. Secur. 2020, 12, 818–837. [Google Scholar] [CrossRef]
- Ulfarsson, G.F.; Kim, S.; Booth, K.M. Analyzing fault in pedestrian–motor vehicle crashes in North Carolina. Accid. Anal. Prev. 2010, 42, 1805–1813. [Google Scholar] [CrossRef]
- Holubowycz, O.T. Age, sex, and blood alcohol concentration of killed and injured pedestrians. Accid. Anal. Prev. 1995, 27, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.B.; Lekawa, M.; Navarro, R.A.; McGrath, J.; Cohen, M.; Margulies, D.R.; Hiatt, J.R. Pedestrian-motor vehicle trauma: An analysis of injury profiles by age. J. Am. Coll. Surg. 1996, 182, 17–23. [Google Scholar]
- Lefler, D.E.; Gabler, H.C. The fatality and injury risk of light truck impacts with pedestrians in the United States. Accid. Anal. Prev. 2004, 36, 295–304. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, W. A multinomial logit model of pedestrian-vehicle crash severity in North Carolina. Int. J. Transp. Sci. Technol. 2019, 8, 43–52. [Google Scholar] [CrossRef]
- Zajac, S.S.; Ivan, J.N. Factors influencing injury severity of motor vehicle–crossing pedestrian crashes in rural Connecticut. Accid. Anal. Prev. 2003, 35, 369–379. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Menendez, M.; Morales, A.J. Scale, context, and heterogeneity: The complexity of the social space. Sci. Rep. 2022, 12, 9037. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Q.; Ci, Y.; Chen, C.; Chen, X.; Zhang, G. Using latent class analysis and mixed logit model to explore risk factors on driver injury severity in single-vehicle crashes. Accid. Anal. Prev. 2019, 129, 230–240. [Google Scholar] [CrossRef]
- Pai, C.-W.; Saleh, W. An analysis of motorcyclist injury severity under various traffic control measures at three-legged junctions in the UK. Saf. Sci. 2007, 45, 832–847. [Google Scholar] [CrossRef]
- Liu, P.; Fan, W. Exploring injury severity in head-on crashes using latent class clustering analysis and mixed logit model: A case study of North Carolina. Accid. Anal. Prev. 2020, 135, 105388. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aty, M.; Chundi, S.S.; Lee, C. Geo-spatial and log-linear analysis of pedestrian and bicyclist crashes involving school-aged children. J. Saf. Res. 2007, 38, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Wheeler-Martin, K.C.; Curry, A.E.; Metzger, K.B.; DiMaggio, C.J. Trends in school-age pedestrian and pedalcyclist crashes in the USA: 26 states, 2000–2014. Inj. Prev. 2020, 26, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Azimi, G.; Asgari, H.; Jin, X. Injury severity of pedestrian and bicyclist crashes involving large trucks. In Proceedings of the International Conference on Transportation and Development 2020, Seattle, WA, USA, 26–29 May 2020; pp. 110–122. [Google Scholar]
- Nasri, M.; Aghabayk, K. Assessing risk factors associated with urban transit bus involved accident severity: A case study of a Middle East country. Int. J. Crashworthiness 2021, 26, 413–423. [Google Scholar] [CrossRef]
- Chung, Y. Injury severity analysis in taxi-pedestrian crashes: An application of reconstructed crash data using a vehicle black box. Accid. Anal. Prev. 2018, 111, 345–353. [Google Scholar] [CrossRef]
- Rifaat, S.M.; Tay, R.; Raihan, S.M.; Fahim, A.; Touhidduzzaman, S.M. Vehicle-Pedestrian crashes at Intersections in Dhaka city. Open Transp. J. 2017, 11, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Depaire, B.; Wets, G.; Vanhoof, K. Traffic accident segmentation by means of latent class clustering. Accid. Anal. Prev. 2008, 40, 1257–1266. [Google Scholar] [CrossRef] [Green Version]
- De Ona, J.; López, G.; Mujalli, R.; Calvo, F.J. Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accid. Anal. Prev. 2013, 51, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Yamashita, E.Y. Using ak-means clustering algorithm to examine patterns of pedestrian involved crashes in Honolulu, Hawaii. J. Adv. Transp. 2007, 41, 69–89. [Google Scholar] [CrossRef]
- Anderson, T.K. Kernel density estimation and K-means clustering to profile road accident hotspots. Accid. Anal. Prev. 2009, 41, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Xu, P.; Zhou, H.; Chan, A.H.; Huang, H. Investigating injury severities of motorcycle riders: A two-step method integrating latent class cluster analysis and random parameters logit model. Accid. Anal. Prev. 2019, 131, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Behnood, A.; Mannering, F.L. An empirical assessment of the effects of economic recessions on pedestrian-injury crashes using mixed and latent-class models. Anal. Methods Accid. Res. 2016, 12, 1–17. [Google Scholar] [CrossRef]
- Caliendo, C.; De Guglielmo, M.L.; Russo, I. Analysis of crash frequency in motorway tunnels based on a correlated random-parameters approach. Tunn. Undergr. Space Technol. 2019, 85, 243–251. [Google Scholar] [CrossRef]
- Caliendo, C.; Guida, M.; Postiglione, F.; Russo, I. A Bayesian bivariate hierarchical model with correlated parameters for the analysis of road crashes in Italian tunnels. Stat. Methods Appl. 2022, 31, 109–131. [Google Scholar] [CrossRef]
- Wang, K.; Shirani-Bidabadi, N.; Shaon, M.R.R.; Zhao, S.; Jackson, E. Correlated mixed logit modeling with heterogeneity in means for crash severity and surrogate measure with temporal instability. Accid. Anal. Prev. 2021, 160, 106332. [Google Scholar] [CrossRef] [PubMed]
- Mariel, P.; Artabe, A. Interpreting correlated random parameters in choice experiments. J. Environ. Econ. Manag. 2020, 103, 102363. [Google Scholar] [CrossRef]
- Song, L.; Fan, W.; Li, Y.; Wu, P. Exploring pedestrian injury severities at pedestrian-vehicle crash hotspots with an annual upward trend: A spatiotemporal analysis with latent class random parameter approach. J. Saf. Res. 2021, 76, 184–196. [Google Scholar] [CrossRef]
- Statistical Center of Iran. Detailed Results of the General Census of Population and Housing in the Country Iran; Statistical Center of Iran: Tehran, Iran, 2016.
- Kaplan, S.; Prato, C.G. Cyclist–motorist crash patterns in Denmark: A latent class clustering approach. Traffic Inj. Prev. 2013, 14, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Lanza, S.T.; Rhoades, B.L. Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prev. Sci. 2013, 14, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Anderson, R.; Tatham, R.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice Hall: Hoboken, NJ, USA, 1998; p. 730. [Google Scholar]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences; John Wiley & Sons: New York, NY, USA, 2009; Volume 718. [Google Scholar]
- Lanza, S.T.; Dziak, J.J.; Huang, L.; Wagner, A.T.; Collins, L.M. LCA Stata Plugin Users’ Guide (Version 1.2); The Methodology Center, Penn State: University Park, PA, USA, 2015. [Google Scholar]
- Biernacki, C.; Govaert, G. Choosing models in model-based clustering and discriminant analysis. J. Stat. Comput. Simul. 1999, 64, 49–71. [Google Scholar] [CrossRef] [Green Version]
- Bijmolt, T.H.; Paas, L.J.; Vermunt, J. Country and consumer segmentation: Multi-level latent class analysis of financial product ownership. Int. J. Res. Mark. 2004, 21, 323–340. [Google Scholar] [CrossRef] [Green Version]
- Samerei, S.A.; Aghabayk, K.; Mohammadi, A.; Shiwakoti, N. Data mining approach to model bus crash severity in Australia. J. Saf. Res. 2021, 76, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Peel, D.; McLachlan, G. Robust mixture modelling using the t distribution. Stat. Comput. 2000, 10, 339–348. [Google Scholar] [CrossRef]
- Manski, C.F.; McFadden, D. Structural Analysis of Discrete Data with Econometric Applications; MIT press: Cambridge, MA, USA, 1981. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Li, Z.; Ci, Y.; CheCamn, C.; Zhang, G.; Wu, Q.; Qian, Z.S.; Prevedouros, P.D.; Ma, D.T. Investigation of driver injury severities in rural single-vehicle crashes under rain conditions using mixed logit and latent class models. Accid. Anal. Prev. 2019, 124, 219–229. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, F.; Zhang, G.; Liu, X.C.; Wang, H.; Bogus, S.M. Mixed logit model-based driver injury severity investigations in single- and multi-vehicle crashes on rural two-lane highways. Accid. Anal. Prev. 2014, 72, 105–115. [Google Scholar] [CrossRef]
- Liu, P.; Fan, W. Modeling head-on crash severity on NCDOT freeways: A mixed logit model approach. Can. J. Civ. Eng. 2019, 46, 322–328. [Google Scholar] [CrossRef]
- Kim, J.-K.; Ulfarsson, G.F.; Kim, S.; Shankar, V.N. Driver-injury severity in single-vehicle crashes in California: A mixed logit analysis of heterogeneity due to age and gender. Accid. Anal. Prev. 2013, 50, 1073–1081. [Google Scholar] [CrossRef]
- Onieva-García, M.Á.; Martínez-Ruiz, V.; Lardelli-Claret, P.; Jiménez-Moleón, J.J.; Amezcua-Prieto, C.; Luna-del-Castillo, J.d.D.; Jiménez-Mejías, E. Gender and age differences in components of traffic-related pedestrian death rates: Exposure, risk of crash and fatality rate. Inj. Epidemiol. 2016, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, P.; Szagała, P.; Wolański, M.; Zielińska, A. Pedestrian fatality risk in accidents at unsignalized zebra crosswalks in Poland. Accid. Anal. Prev. 2015, 84, 83–91. [Google Scholar] [CrossRef]
- Esmaili, A.; Aghabayk, K.; Parishad, N.; Stephens, A.N. Investigating the interaction between pedestrian behaviors and crashes through validation of a pedestrian behavior questionnaire (PBQ). Accid. Anal. Prev. 2021, 153, 106050. [Google Scholar] [CrossRef]
- Sullman, M.J.M.; Gras, M.E.; Font-Mayolas, S.; Masferrer, L.; Cunill, M.; Planes, M. The pedestrian behaviour of Spanish adolescents. J. Adolesc. 2011, 34, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Preusser, D.F. Reducing pedestrian crashes among children. Bull. New York Acad. Med. 1988, 64, 623–631. [Google Scholar]
- Haleem, K.; Alluri, P.; Gan, A. Analyzing pedestrian crash injury severity at signalized and non-signalized locations. Accid. Anal. Prev. 2015, 81, 14–23. [Google Scholar] [CrossRef]
- Pour-Rouholamin, M.; Zhou, H. Investigating the risk factors associated with pedestrian injury severity in Illinois. J. Saf. Res. 2016, 57, 9–17. [Google Scholar] [CrossRef]
- Jahangeer, A.A.; Anjana, S.S.; Das, V.R. A hierarchical modeling approach to predict pedestrian crash severity. In Transportation Research; Springer: Singapore, 2020; pp. 355–366. [Google Scholar]
- Hu, L.; Wu, X.; Huang, J.; Peng, Y.; Liu, W. Investigation of clusters and injuries in pedestrian crashes using GIS in Changsha, China. Saf. Sci. 2020, 127, 104710. [Google Scholar] [CrossRef]
- Zhang, T.; Chan, A.H.; Zhang, W. Dimensions of driving anger and their relationships with aberrant driving. Accid. Anal. Prev. 2015, 81, 124–133. [Google Scholar] [CrossRef]
- Mitra, S. Sun glare and road safety: An empirical investigation of intersection crashes. Saf. Sci. 2014, 70, 246–254. [Google Scholar] [CrossRef]
- Ma, H.-P.; Chen, P.-L.; Chen, S.-K.; Chen, L.-H.; Linkov, V.; Pai, C.-W. Population-based case–control study of the effect of sun glare on pedestrian fatalities in Taiwan. BMJ Open 2019, 9, e028350. [Google Scholar] [CrossRef] [Green Version]
- Williamson, A.; Lombardi, D.A.; Folkard, S.; Stutts, J.; Courtney, T.K.; Connor, J.L. The link between fatigue and safety. Accid. Anal. Prev. 2011, 43, 498–515. [Google Scholar] [CrossRef]
- Caponecchia, C.; Williamson, A. Drowsiness and driving performance on commuter trips. J. Saf. Res. 2018, 66, 179–186. [Google Scholar] [CrossRef]
- Sun, R.; Zhuang, X.; Wu, C.; Zhao, G.; Zhang, K. The estimation of vehicle speed and stopping distance by pedestrians crossing streets in a naturalistic traffic environment. Transp. Res. Part F Traffic Psychol. Behav. 2015, 30, 97–106. [Google Scholar] [CrossRef]
- Iran Meteorological Organization. Monthly Total Precipitation in Mashhad by Month 1951–2010; Iran Meteorological Organization: Tehran, Iran, 2018.
- Zegeer, C.V.; Bushell, M. Pedestrian crash trends and potential countermeasures from around the world. Accid. Anal. Prev. 2012, 44, 3–11. [Google Scholar] [CrossRef]
- Tulu, G.S.; Washington, S.; Haque, M.M.; King, M.J. Injury severity of pedestrians involved in road traffic crashes in Addis Ababa, Ethiopia. J. Transp. Saf. Secur. 2017, 9, 47–66. [Google Scholar] [CrossRef]
- Prato, C.G.; Kaplan, S.; Patrier, A.; Rasmussen, T.K. Considering built environment and spatial correlation in modeling pedestrian injury severity. Traffic Inj. Prev. 2018, 19, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Moradi, A.; Motevalian, S.A.; Mirkoohi, M.; McKay, M.P.; Rahimi-Movaghar, V. Exceeding the speed limit: Prevalence and determinants in Iran. Int. J. Inj. Control Saf. Promot. 2013, 20, 307–312. [Google Scholar] [CrossRef]
- Zafri, N.M.; Prithul, A.A.; Baral, I.; Rahman, M. Exploring the factors influencing pedestrian-vehicle crash severity in Dhaka, Bangladesh. Int. J. Inj. Control Saf. Promot. 2020, 27, 300–307. [Google Scholar] [CrossRef]
- Xin, C.; Guo, R.; Wang, Z.; Lu, Q.; Lin, P.-S. The effects of neighborhood characteristics and the built environment on pedestrian injury severity: A random parameters generalized ordered probability model with heterogeneity in means and variances. Anal. Methods Accid. Res. 2017, 16, 117–132. [Google Scholar] [CrossRef]
- Cinnamon, J.; Schuurman, N.; Hameed, S.M. Pedestrian injury and human behaviour: Observing road-rule violations at high-incident intersections. PLoS ONE 2011, 6, e21063. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-K.; Ulfarsson, G.F.; Shankar, V.N.; Kim, S. Age and pedestrian injury severity in motor-vehicle crashes: A heteroskedastic logit analysis. Accid. Anal. Prev. 2008, 40, 1695–1702. [Google Scholar] [CrossRef]
- Li, Y.; Fan, W. Mixed logit approach to modeling the severity of pedestrian-injury in pedestrian-vehicle crashes in North Carolina: Accounting for unobserved heterogeneity. J. Transp. Saf. Secur. 2022, 14, 796–817. [Google Scholar] [CrossRef]
- Dommes, A.; Cavallo, V.; Dubuisson, J.-B.; Tournier, I.; Vienne, F. Crossing a two-way street: Comparison of young and old pedestrians. J. Saf. Res. 2014, 50, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Hanson, C.S.; Noland, R.B.; Brown, C. The severity of pedestrian crashes: An analysis using Google Street View imagery. J. Transp. Geogr. 2013, 33, 42–53. [Google Scholar] [CrossRef]
- Yue, L.; Abdel-Aty, M.; Wu, Y.; Zheng, O.; Yuan, J. In-depth approach for identifying crash causation patterns and its implications for pedestrian crash prevention. J. Saf. Res. 2020, 73, 119–132. [Google Scholar] [CrossRef]
- Fitzpatrick, K.; Iragavarapu, V.; Brewer, M.; Lord, D.; Hudson, J.G.; Avelar, R.; Robertson, J. Characteristics of Texas Pedestrian Crashes and Evaluation of Driver Yielding at Pedestrian Treatments. 2014. Available online: http://tti.tamu.edu/documents/0-6702-1.pdf (accessed on 13 November 2022).
- Rankavat, S.; Tiwari, G. Association between built environment and pedestrian fatal crash risk in Delhi, India. Transp. Res. Rec. J. Transp. Res. Board 2015, 2519, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Morency, P.; Gauvin, L.; Plante, C.; Fournier, M.; Morency, C. Neighborhood social inequalities in road traffic injuries: The influence of traffic volume and road design. Am. J. Public Health 2012, 102, 1112–1119. [Google Scholar] [CrossRef]
- Pour, A.T.; Moridpour, S.; Tay, R.; Rajabifard, A. Modelling pedestrian crash severity at mid-blocks. Transp. A Transp. Sci. 2017, 13, 273–297. [Google Scholar]
- Gårder, P.E. The impact of speed and other variables on pedestrian safety in Maine. Accid. Anal. Prev. 2004, 36, 533–542. [Google Scholar] [CrossRef]
- Goel, R.; Jain, P.; Tiwari, G. Correlates of fatality risk of vulnerable road users in Delhi. Accid. Anal. Prev. 2018, 111, 86–93. [Google Scholar] [CrossRef]
- Cai, Q.; Abdel-Aty, M.; Lee, J. Macro-level vulnerable road users crash analysis: A Bayesian joint modeling approach of frequency and proportion. Accid. Anal. Prev. 2017, 107, 11–19. [Google Scholar] [CrossRef]
- Tay, R.; Rifaat, S.M.; Chin, H.C. A logistic model of the effects of roadway, environmental, vehicle, crash and driver characteristics on hit-and-run crashes. Accid. Anal. Prev. 2008, 40, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
Variables | Description | No. of Crashes | Injury Severity (%) | ||
---|---|---|---|---|---|
Minor | Major | Fatal | |||
Pedestrian crashes | 6215 | 51.36% | 40.50% | 8.14% | |
Pedestrian characteristics | |||||
Pedestrian gender | Women (ref.) | 2489 | 55.16% | 38.37% | 6.47% |
Men | 3726 | 48.82% | 41.92% | 9.26% | |
Pedestrian age | <15 | 1115 | 58.83% | 36.95% | 4.22% |
15–30 (ref.) | 1847 | 56.96% | 40.44% | 2.60% | |
30–45 | 1292 | 54.80% | 39.24% | 5.96% | |
45–65 | 1239 | 43.99% | 46.17% | 9.85% | |
>65 | 722 | 31.99% | 38.64% | 29.36% | |
Involved party characteristics | |||||
Involved vehicle type | Motorcycle | 1710 | 59.30% | 36.73% | 3.98% |
Heavy vehicle, bus | 261 | 21.46% | 43.30% | 35.25% | |
Minibus, van | 62 | 17.74% | 54.84% | 27.42% | |
Pickup | 210 | 31.90% | 45.24% | 22.86% | |
Bicycle | 32 | 68.75% | 25.00% | 6.25% | |
Passenger car (ref.) | 3940 | 51.32% | 41.60% | 7.08% | |
Hit and run | No (ref.) | 5332 | 54.08% | 37.79% | 8.12% |
Yes | 883 | 34.88% | 56.85% | 8.26% | |
Temporal characteristics | |||||
Time of crash | 6–10 | 988 | 49.80% | 39.27% | 10.93% |
10–14 | 1525 | 56.79% | 38.62% | 4.59% | |
14–18 | 1570 | 53.31% | 40.51% | 6.18% | |
18–22 | 1498 | 50.20% | 43.39% | 6.41% | |
22–6 (ref.) | 634 | 38.64% | 40.06% | 21.29% | |
Day type | Weekday(ref.) | 2533 | 50.02% | 41.33% | 8.65% |
Weekend | 3682 | 52.28% | 39.92% | 7.79% | |
Environmental characteristics | |||||
Weather | Adverse | 506 | 41.90% | 47.83% | 10.28% |
Clear (ref.) | 5709 | 52.20% | 39.85% | 7.95% | |
Season | Spring | 1531 | 52.12% | 39.91% | 7.97% |
Summer | 1878 | 51.65% | 40.73% | 7.60% | |
Autumn | 1540 | 51.33% | 40.36% | 8.31% | |
Winter (ref.) | 1266 | 50.08% | 41.00% | 8.93% | |
Roadway and built-environment characteristics | |||||
Posted speed | 40–60 km/h | 2043 | 50.56% | 41.16% | 8.27% |
<40 km/h | 1937 | 55.14% | 37.07% | 7.80% | |
>60 km/h (ref.) | 2235 | 48.81% | 42.86% | 8.32% | |
Junction | No (ref.) | 4588 | 50.00% | 40.80% | 9.20% |
Yes | 1627 | 55.19% | 39.64% | 5.16% | |
Traffic control | None (ref.) | 1792 | 48.05% | 42.91% | 9.04% |
Signal | 861 | 54.01% | 40.30% | 5.69% | |
Sign | 3562 | 52.40% | 39.33% | 8.28% | |
Road type | Divided two-way | 3885 | 52.48% | 40.18% | 7.34% |
Undivided two-way | 1736 | 48.50% | 41.19% | 10.31% | |
One-way (ref.) | 594 | 52.36% | 40.57% | 7.07% | |
Road width | <20 m (ref.) | 3366 | 49.35% | 42.96% | 7.69% |
>20 m | 2849 | 53.74% | 37.59% | 8.67% | |
Sidewalk | No (ref.) | 1956 | 46.27% | 45.30% | 8.44% |
Yes | 4259 | 53.69% | 38.30% | 8.01% | |
Vegetation | No (ref.) | 2750 | 49.60% | 39.85% | 10.55% |
Yes | 3465 | 52.76% | 41.01% | 6.23% | |
Park lane | No (ref.) | 2744 | 54.05% | 37.76% | 8.19% |
Yes | 3471 | 49.24% | 42.67% | 8.10% | |
Overpass/underpass (in 300 m) | No (ref.) | 3825 | 56.31% | 36.24% | 7.45% |
Yes | 2390 | 43.43% | 47.32% | 9.25% | |
AADT | High (>30,000) | 1656 | 52.72% | 39.98% | 7.31% |
Medium (15,000–30,000) | 1987 | 50.63% | 42.93% | 6.44% | |
Low (<15,000)(ref.) | 2572 | 51.05% | 38.96% | 9.99% | |
Population density | <100 person/km2 (ref.) | 1164 | 44.16% | 41.32% | 14.52% |
>200 person/km2 | 3738 | 54.25% | 40.10% | 5.64% | |
100–200 person/km2 | 1313 | 49.50% | 40.90% | 9.60% | |
Land use | Other | 1207 | 45.15% | 41.51% | 13.34% |
Residential | 3088 | 53.21% | 39.73% | 7.06% | |
Commercial (ref.) | 1920 | 52.29% | 41.09% | 6.61% |
Dataset | Proportion of Whole Dataset | Number of Observations |
---|---|---|
Cluster 1 | 10.39% | 646 |
Cluster 2 | 37.32% | 2320 |
Cluster 3 | 26.96% | 1675 |
Cluster 4 | 25.33% | 1574 |
Overall sample | 100% | 6215 |
Variables | C 1 | C 2 | C 3 | C 4 | O.S. |
---|---|---|---|---|---|
Aged 15–30 | 19.81% | 25.43% | 44.18% | 24.71% | 29.72% |
Motorcycle | 15.79% | 47.46% | 18.03% | 13.02% | 27.51% |
No traffic control | 15.63% | 0.26% | 93.43% | 7.62% | 28.83% |
Undivided two-way | 100.00% | 2.84% | 59.88% | 1.33% | 27.93% |
Road width: >20 m | 100.00% | 41.72% | 28.12% | 48.54% | 45.84% |
Without usable sidewalk | 15.48% | 12.93% | 22.81% | 74.59% | 31.47% |
Vegetated buffer | 99.38% | 40.91% | 57.37% | 58.01% | 55.75% |
Without park lane | 49.23% | 15.69% | 91.82% | 33.29% | 44.15% |
With park lane | 50.77% | 84.31% | 8.18% | 66.71% | 55.85% |
Near overpass/underpass | 60.53% | 16.72% | 71.88% | 25.86% | 38.46% |
Low AADT | 32.66% | 47.76% | 3.22% | 76.18% | 41.38% |
High density (>200 person/km2) | 99.69% | 96.29% | 51.34% | 0.00% | 60.14% |
Low density (<100 person/km2) | 0.31% | 0.00% | 9.85% | 63.34% | 18.73% |
Commercial land use | 97.99% | 24.09% | 22.63% | 22.17% | 30.89% |
Other land uses | 0.00% | 0.00% | 20.66% | 54.70% | 19.42% |
Variables | Overall Sample | Cluster1 | Cluster2 | Cluster3 | Cluster4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Severity | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | |
Constant | Major | −0.17 | 0.40 | −4.77 *** | 1.71 | −5.02 ** | 1.96 | −0.90 | 0.62 | 0.70 | 0.78 |
Fatal | −3.28 ** | 1.45 | −2.28 * | 1.28 | −3.88 ** | 1.56 | −3.59 *** | 1.03 | −2.80 ** | 1.37 | |
Gender (ref. female) | |||||||||||
Male | Major | 0.31 *** | 0.11 | 0.34 ** | 0.13 | ||||||
Fatal | 0.76 ** | 0.36 | 1.49 *** | 0.54 | |||||||
Age (ref. 15–30) | |||||||||||
<15 | Fatal | 2.27 *** | 0.82 | 2.65 *** | 0.69 | ||||||
SD | 2.37 *** | 0.71 | |||||||||
30–45 | Major | 0.28 * | 0.17 | ||||||||
Fatal | 2.22 ** | 0.87 | 1.01 *** | 0.39 | |||||||
45–65 | Major | 0.71 *** | 0.15 | 1.60 ** | 0.71 | 1.32 *** | 0.48 | 0.51 *** | 0.17 | ||
Fatal | 4.25 *** | 0.71 | 3.06 *** | 1.10 | 3.25 *** | 0.96 | 1.69 *** | 0.39 | 2.19 *** | 0.66 | |
>65 | Major | 0.88 *** | 0.20 | 3.78 *** | 0.96 | 0.98 ** | 0.46 | 0.70 ** | 0.27 | ||
Fatal | 4.39 *** | 0.95 | 4.49 *** | 1.28 | 6.08 *** | 1.57 | 2.85 *** | 0.44 | 4.63 *** | 0.74 | |
Vehicle (ref. passenger car) | |||||||||||
Motorcycle | Major | −0.40 *** | 0.12 | −0.37 ** | 0.15 | −0.42 ** | 0.19 | ||||
Fatal | −1.04 ** | 0.48 | −2.28 ** | 0.98 | −1.25 ** | 0.61 | |||||
Heavy vehicle, bus | Major | 1.62 *** | 0.32 | 1.91 ** | 0.91 | 1.30 *** | 0.39 | 1.24 *** | 0.42 | ||
Fatal | 5.89 *** | 0.78 | 4.75 *** | 1.45 | 2.94 *** | 0.47 | 3.77 *** | 0.67 | |||
Minibus, van | Major | 2.50 *** | 0.66 | 2.69 * | 1.55 | 1.76 * | 0.93 | 1.79 ** | 0.78 | ||
Fatal | 5.47 *** | 1.17 | 5.54 *** | 2.01 | 3.63 *** | 1.03 | |||||
Pickup | Major | 0.79 *** | 0.30 | 1.68 ** | 0.84 | 0.93 *** | 0.36 | ||||
Fatal | 3.47 *** | 0.75 | 2.55 ** | 1.01 | 2.24 *** | 0.48 | 1.65 ** | 0.79 | |||
Bicycle | Major | −1.36 * | 0.79 | −2.91 ** | 1.46 | ||||||
Time (ref. 22–6) | |||||||||||
6–10 | Major | −0.41 * | 0.20 | −0.45 * | 0.24 | ||||||
Fatal | −2.36 *** | 0.59 | −2.55 ** | 1.27 | −2.89 *** | 0.92 | −0.76 ** | 0.38 | |||
10–14 | Major | −0.51 *** | 0.19 | 3.36 ** | 1.51 | −0.49 ** | 0.22 | ||||
Fatal | −3.27 *** | 0.64 | −3.87 *** | 1.29 | −3.59 *** | 1.03 | −1.94 *** | 0.43 | −1.80 *** | 0.65 | |
14–18 | Major | −0.38 ** | 0.19 | 2.88 * | 1.51 | ||||||
Fatal | −4.62 *** | 0.86 | −3.44 ** | 1.46 | −3.80 *** | 1.11 | −1.02 *** | 0.39 | −2.37 *** | 0.67 | |
SD | 2.87 *** | 0.61 | |||||||||
18–22 | Major | 3.67 ** | 1.55 | ||||||||
Fatal | −2.81 *** | 0.60 | −2.18 * | 1.12 | −3.62 *** | 1.07 | −1.62 *** | 0.40 | |||
Day type (ref. weekday) | |||||||||||
Weekend | Fatal | −0.79 ** | 0.34 | −0.92 ** | 0.38 | ||||||
Weather (ref. clear) | |||||||||||
Adverse | Major | 0.65 *** | 0.19 | 1.83 ** | 0.79 | ||||||
Fatal | 1.30 * | 0.77 | 0.91 ** | 0.42 | |||||||
Season (ref. winter) | |||||||||||
Spring | Major | −1.40 * | 0.77 | ||||||||
Summer | Fatal | −0.67 * | 0.38 | ||||||||
Junction (ref. no) | |||||||||||
Yes | Major | −1.14 *** | 0.18 | −0.75 *** | 0.18 | ||||||
SD | 1.94 *** | 0.48 | |||||||||
Fatal | −1.15 *** | 0.20 | −1.97 *** | 0.40 | −6.43 *** | 0.67 | |||||
Hit and run (ref. no) | |||||||||||
Yes | Major | 1.47 *** | 0.21 | 3.58 * | 1.99 | 3.19 ** | 1.38 | 1.01 *** | 0.18 | 1.19 *** | 0.30 |
SD | 3.30 *** | 0.69 | 10.04 * | 5.93 | 6.39 * | 3.55 | |||||
Fatal | 1.52 *** | 0.50 | 1.33 ** | 0.65 | 0.90 ** | 0.36 | 1.05 * | 0.55 | |||
Posted speed (ref. 60 km/h) | |||||||||||
40–60 km/h | Major | −0.31 *** | 0.12 | −2.30 *** | 0.79 | −0.35 * | 0.20 | ||||
Fatal | −1.24 ** | 0.63 | |||||||||
<40 km/h | Major | −0.88 *** | 0.20 | −1.02 ** | 0.45 | −0.69 *** | 0.22 | −1.33 ** | 0.56 | ||
SD | 2.37 *** | 0.65 | 1.71 ** | 0.70 | 3.76 ** | 1.46 | |||||
Fatal | −0.89 ** | 0.44 | −2.03 *** | 0.74 | −0.85 ** | 0.37 | |||||
Traffic control (ref. none) | |||||||||||
Signals | Major | −1.47 *** | 0.30 | −0.98 ** | 0.49 | ||||||
Fatal | −2.64 *** | 0.49 | |||||||||
SD | 3.44 *** | 1.01 | |||||||||
Signs/Surface markings | Major | −0.67 ** | 0.33 | ||||||||
SD | 3.64 *** | 1.04 | |||||||||
Fatal | −2.32 *** | 0.74 | −1.47 * | 0.89 | |||||||
SD | 2.79 *** | 0.66 | |||||||||
Road type (ref. one-way) | |||||||||||
Divided two-way | Major | 1.38 * | 0.71 | ||||||||
Fatal | 0.98 * | 0.54 | −1.32 ** | 0.62 | |||||||
Undivided two-way | Fatal | 3.34 *** | 0.85 | 5.30 *** | 1.57 | ||||||
Road width (ref. <20 m) | |||||||||||
>20 m | Fatal | 0.99 * | 0.60 | 2.77 *** | 0.66 | ||||||
Sidewalk (ref. no) | |||||||||||
Yes | Major | −0.94 *** | 0.25 | −1.13 * | 0.62 | ||||||
Fatal | −1.66 *** | 0.63 | −1.70 ** | 0.74 | |||||||
Vegetation (ref. no) | |||||||||||
Yes | Major | 0.60 *** | 0.18 | ||||||||
Fatal | −0.96 ** | 0.39 | −2.09 *** | 0.65 | |||||||
Park lane (ref. no) | |||||||||||
Yes | Major | 0.31 * | 0.17 | 2.58 ** | 1.01 | 1.61 *** | 0.54 | ||||
Fatal | 5.08 *** | 0.79 | |||||||||
Overpass/Underpass (ref. no) | |||||||||||
Yes | Major | 1.49 *** | 0.23 | 2.10 *** | 0.68 | 3.23 *** | 1.02 | 1.77 *** | 0.19 | 1.32 *** | 0.33 |
Fatal | 1.74 *** | 0.45 | 3.11 *** | 0.85 | 2.23 *** | 0.46 | 1.47 *** | 0.44 | |||
AADT (ref. low) | |||||||||||
High (>30,000) | Major | −1.32 ** | 0.51 | 1.47 ** | 0.63 | ||||||
Fatal | −2.59 ** | 1.11 | −2.37 *** | 0.67 | 3.93 *** | 0.85 | |||||
Medium (15,000–30,000) | Major | −0.98 * | 0.51 | ||||||||
Fatal | −1.68 *** | 0.50 | −1.83 *** | 0.61 | |||||||
Density (ref. <100 person/km2 | |||||||||||
100–200 person/km2 | Fatal | −1.12 * | 0.61 | −1.35 *** | 0.49 | 0.83 * | 0.48 | ||||
>200 person/km2 | Fatal | −0.96 ** | 0.40 | ||||||||
Land use (ref. commercial) | |||||||||||
Other | Major | 0.40 ** | 0.19 | ||||||||
Fatal | 2.41 *** | 0.65 | 0.88 * | 0.50 | |||||||
Residential | Major | 1.64 ** | 0.67 | −0.59 * | 0.31 | ||||||
Fatal | 3.44 ** | 1.38 | −3.11 *** | 0.76 | |||||||
SD | 2.05 *** | 0.71 | |||||||||
Model performance | |||||||||||
Restricted log likelihood | −6827.87 | −709.70 | −2548.78 | −1840.18 | −1729.22 | ||||||
Log likelihood at convergence | −4572.91 | −435.63 | −1708.99 | −1191.74 | −1030.65 | ||||||
AIC | 9327.83 | 969.30 | 3578.00 | 2525.50 | 2225.30 | ||||||
Pseudo r2 | 0.33 | 0.39 | 0.33 | 0.35 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmaili, A.; Aghabayk, K.; Shiwakoti, N. Latent Class Cluster Analysis and Mixed Logit Model to Investigate Pedestrian Crash Injury Severity. Sustainability 2023, 15, 185. https://doi.org/10.3390/su15010185
Esmaili A, Aghabayk K, Shiwakoti N. Latent Class Cluster Analysis and Mixed Logit Model to Investigate Pedestrian Crash Injury Severity. Sustainability. 2023; 15(1):185. https://doi.org/10.3390/su15010185
Chicago/Turabian StyleEsmaili, Arsalan, Kayvan Aghabayk, and Nirajan Shiwakoti. 2023. "Latent Class Cluster Analysis and Mixed Logit Model to Investigate Pedestrian Crash Injury Severity" Sustainability 15, no. 1: 185. https://doi.org/10.3390/su15010185
APA StyleEsmaili, A., Aghabayk, K., & Shiwakoti, N. (2023). Latent Class Cluster Analysis and Mixed Logit Model to Investigate Pedestrian Crash Injury Severity. Sustainability, 15(1), 185. https://doi.org/10.3390/su15010185