Urban Expansion Simulation Coupled with Residential Location Selection and Land Acquisition Bargaining: A Case Study of Wuhan Urban Development Zone, Central China’s Hubei Province
Abstract
:1. Introduction
2. Methodology
2.1. Residential Location Selection Sub-Model
2.1.1. The Behavior of the Resident Agent
2.1.2. The Behavior of the Real Estate Developer Agent
2.1.3. The Behavior of the Government Agent
2.2. Land Acquisition Bargaining Sub-Model
2.3. Urban Expansion Simulation Coupled with Residential Location Selection and Land Acquisition Bargaining
3. Research Area and Data
3.1. Research Area
3.2. Data Preparation and Processing
4. Model Implementation and Results
4.1. RA Location Selection Probability Using ANN
4.2. Urban Expansion Simulation Dynamic Process and Results in 2019
4.3. Accuracy Evaluation and Comparison of Urban Expansion Simulation Results in 2019
4.4. Prediction of Future Urban Expansion in the WHUDZ
5. Discussion
5.1. The Significance of a Coupled Residential Location Selection and Land Acquisition Bargaining Model
5.2. Factors Influencing RA Residential Location Selection
5.3. Changes to GA and FA Income before and after Bargaining
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. The World’s Cities in 2016; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Gao, J.; Bao, J.; Liu, Y.; Chen, J. Regional disparity and the influencing factors of land urbanization in China at the county level, 2000–2015. Acta. Geogr. Sin. 2018, 73, 2329–2344. [Google Scholar]
- Lu, D. Urbanization process and spatial sprawl in China. Urban Plan. Forum 2007, 4, 47–52. [Google Scholar]
- Feng, W.; Liu, Y.; Qu, L. Effect of land-centered urbanization on rural development: A regional analysis in China. Land Use Policy 2019, 87, 104072. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, Y. Land use optimization allocation based on multi-agent genetic algorithm. Trans. Chin. Soc. Agric. Eng. 2014, 30, 191–199. [Google Scholar]
- Tan, R.; Liu, Y.; Zhou, K.; Jiao, L.; Tang, W. A game-theory based agent-cellular model for use in urban growth simulation: A case study of the rapidly urbanizing Wuhan area of central China. Comput. Environ. Urban Syst. 2015, 49, 15–29. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y.; Cao, X.; Imura, H. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China. Landsc. Urban Plan. 2009, 91, 133–141. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.; Liu, X.; Yang, Q. Geographical Simulation Systems: Cellcular Automata and Multi Agent Systems; China Science Press: Beijing, China, 2007. [Google Scholar]
- Zhuang, H.; Chen, G.; Yan, Y.; Li, B.; Zeng, L.; Ou, J.; Liu, K.; Liu, X. Simulation of urban land expansion in China at 30 m resolution through 2050 under shared socioeconomic pathways. Gisci. Remote Sens. 2022, 59, 1301–1320. [Google Scholar] [CrossRef]
- Liu, Y.; Batty, M.; Wang, S.; Corcoran, J. Modelling urban change with cellular automata: Contemporary issues and future research directions. Prog. Hum. Geog. 2021, 45, 3–24. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Li, Z.; Hu, T.; Wu, Q.; Yang, J.; Huang, J.; Su, W.; Zhao, Y.; Zhou, Y.; et al. Critical role of temporal contexts in evaluating urban cellular automata models. Gisci. Remote Sens. 2021, 58, 799–811. [Google Scholar] [CrossRef]
- Wu, F. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 2002, 16, 795–818. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yeh, A.G. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wu, F.; Webster, C.J. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ. Plan. B Plan. Des. 1998, 25, 103–126. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Torrens, P.M.; O’Sullivan, D. Cellular Automata and Urban Simulation: Where Do We Go from Here? Environ. Plan. B Plan. Des. 2001, 28, 163–168. [Google Scholar] [CrossRef]
- Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-based land-use models: A review of applications. Landsc. Ecol. 2007, 22, 1447–1459. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Parker, D.C.; Filatova, T.; Sun, S. A Review of Urban Residential Choice Models Using Agent-Based Modeling. Environ. Plan. B Plan. Des. 2014, 41, 661–689. [Google Scholar] [CrossRef]
- Jiang, X.; Li, B.; Zhao, H.; Zhang, Q.; Song, X.; Zhang, H. Examining the spatial simulation and land-use reorganisation mechanism of agricultural suburban settlements using a cellular-automata and agent-based model: Six settlements in China. Land Use Policy 2022, 120, 106304. [Google Scholar] [CrossRef]
- Sadooghi, S.E.; Taleai, M.; Abolhasani, S. Simulation of urban growth scenarios using integration of multi-criteria analysis and game theory. Land Use Policy 2022, 120, 106267. [Google Scholar] [CrossRef]
- An, L. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol Model 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Marvuglia, A.; Bayram, A.; Baustert, P.; Gutiérrez, T.N.; Igos, E. Agent-based modelling to simulate farmers’ sustainable decisions: Farmers’ interaction and resulting green consciousness evolution. J. Clean Prod. 2022, 332, 129847. [Google Scholar] [CrossRef]
- Koch, J.; Dorning, M.A.; Van Berkel, D.B.; Beck, S.M.; Sanchez, G.M.; Shashidharan, A.; Smart, L.S.; Zhang, Q.; Smith, J.W.; Meentemeyer, R.K. Modeling landowner interactions and development patterns at the urban fringe. Landsc. Urban Plan 2019, 182, 101–113. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Wang, S.; Liu, X. Defining agents’ behaviour based on urban economic theory to simulate complex urban residential dynamics. Int. J. Geogr. Inf. Sci. 2012, 26, 1155–1172. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Li, X.; Chen, Y. Simulation model of land use dynamics and application: Progress and prospects. J. Remote Sens. 2017, 3, 329–340. [Google Scholar]
- Li, X.; Liu, X. Defining agents’ behaviors to simulate complex residential development using multicriteria evaluation. J. Environ. Manag. 2007, 85, 1063–1075. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Helbich, M.; de Noronha Vaz, E. Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran. Cities 2013, 32, 33–42. [Google Scholar] [CrossRef]
- Kong, L.; Tian, G.; Ma, B.; Liu, X. Embedding ecological sensitivity analysis and new satellite town construction in an agent-based model to simulate urban expansion in the beijing metropolitan region, China. Ecol. Indic. 2017, 82, 233–249. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Model 2020, 417, 108924. [Google Scholar] [CrossRef]
- Tian, G.; Ma, B.; Xu, X.; Liu, X.; Xu, L.; Liu, X.; Xiao, L.; Kong, L. Simulation of urban expansion and encroachment using cellular automata and multi-agent system model—A case study of Tianjin metropolitan region, China. Ecol. Indic 2016, 70, 439–450. [Google Scholar] [CrossRef]
- Tong, D.; Wang, X.; Wu, L.; Zhao, N. Land ownership and the likelihood of land development at the urban fringe: The case of Shenzhen, China. Habitat Int. 2018, 73, 43–52. [Google Scholar] [CrossRef]
- Ding, C. Land policy reform in China: Assessment and prospects. Land Use Policy 2003, 20, 109–120. [Google Scholar] [CrossRef]
- Gyourko, J.; Shen, Y.; Wu, J.; Zhang, R. Land finance in China: Analysis and review. China Econ. Rev. 2022, 76, 101868. [Google Scholar] [CrossRef]
- Liu, Y.; He, Q.; Tan, R.; Zhou, K.; Liu, G.; Tang, S. Urban growth modeling based on a game between farmers and governments: Case study of urban fringe in Wuhan, Hubei province in China. J. Urban Plan Dev. 2016, 142, 4015018. [Google Scholar] [CrossRef]
- Tang, D.; Liu, H.; Song, E.; Chang, S. Urban expansion simulation from the perspective of land acquisition-based on bargaining model and ant colony optimization. Comput. Environ. Urban Syst. 2020, 82, 101504. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Tang, W.; Liu, D. An adaptive agent-based optimization model for spatial planning: A case study of Anyue County, China. Sustain. Cities Soc. 2019, 51, 101733. [Google Scholar] [CrossRef]
- Xu, T.; Gao, J.; Coco, G.; Wang, S. Urban expansion in Auckland, New Zealand: A GIS simulation via an intelligent self-adapting multiscale agent-based model. Int. J. Geogr. Inf. Sci. 2020, 34, 2136–2159. [Google Scholar] [CrossRef]
- Xu, T.; Gao, J.; Coco, G. Simulation of urban expansion via integrating artificial neural network with Markov chain-cellular automata. Int. J. Geogr. Inf. Sci. 2019, 33, 1960–1983. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Brown, D.G.; Shellito, B.A.; Manik, G.A. Using neural networks and GIS to forecast land use changes: A Land Transformation Model. Comput. Environ. Urban Syst. 2002, 26, 553–575. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, D.; Li, Y. Integrating ANNs and Cellular Automata–Markov Chain to Simulate Urban Expansion with Annual Land Use Data. Land 2022, 11, 1074. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Asghari, A.; Tayyebi, A.; Taleai, M. Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Comput. Environ. Urban Syst. 2017, 64, 297–308. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Tayyebi, A.; Helbich, M. Transition index maps for urban growth simulation: Application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environ. Monit. Assess 2017, 189, 300. [Google Scholar] [CrossRef] [PubMed]
- Tayyebi, A.; Pijanowski, B.C. Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools. Int. J. Appl. Earth. Obs. 2014, 28, 102–116. [Google Scholar] [CrossRef]
- Garson, G.D. Interpreting neural-network connection weights. Artif. Intell. Expert 1991, 6, 47–51. [Google Scholar]
- Goh, A.T.C. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 1995, 9, 143–151. [Google Scholar] [CrossRef]
- Azodi, C.B.; Tang, J.; Shiu, S. Opening the Black Box: Interpretable Machine Learning for Geneticists. Trends Genet. 2020, 36, 442–455. [Google Scholar] [CrossRef]
- Bao, H.; Wu, C. Discussion on compensition for land acquisition. Price Theory Pract. 2002, 6, 28–30. [Google Scholar]
- Xu, H.; Song, Y.; Tian, Y. Simulation of land-use pattern evolution in hilly mountainous areas of North China: A case study in Jincheng. Land Use Policy 2022, 112, 105826. [Google Scholar] [CrossRef]
- Wang, F. The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environ. Plan. A Econ. Space 1994, 26, 265–284. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Liu, X.; Li, D.; He, J. Concepts, methodologies, and tools of an integrated geographical simulation and optimization system. Int. J. Geogr. Inf. Sci. 2011, 25, 633–655. [Google Scholar] [CrossRef]
Type | Name | Year | Data Source |
---|---|---|---|
Spatial data | Landsat TM and OLI | 2009, 2014, and 2019 | USGS |
DEM | USGS | ||
Road network | 2015 | China Basic Geographic Database (1:250,000), Open Street Map | |
Gaode POIs | 2019 | Gaode map (https://ditu.amap.com/), accessed on 1 August 2020 | |
Socioeconomic data | GDP and population density | 2015 | RESDC (http://www.resdc.cn), accessed on 1 August 2020 |
House price | 2019 | Lianjia (https://wh.lianjia.com), accessed on 1 August 2020 | |
Land acquisition compensation standard | 2019 | Department of Natural Resources of Hubei Province | |
Benchmark land price for residential | 2019 | Wuhan natural resources and planning bureau |
Land-Use Type | Actual | Simulation Accuracies/% | |||||
---|---|---|---|---|---|---|---|
Urban | Non-Urban | Producer’s Accuracy | User’s Accuracy | Overall Accuracy | Kappa Coefficient | ||
Coupled model | Urban | 12,042 | 8983 | 61.25 | 57.27 | 92.78 | 55.24 |
Non-urban | 7617 | 201,116 | 95.72 | 96.35 | |||
LRCA | Urban | 11,175 | 9850 | 56.84 | 53.15 | 92.02 | 50.56 |
Non-urban | 8484 | 200,249 | 95.31 | 95.94 |
Landscape Metrics | NP | LPI | ENN_MN | PARA_MN | PLADJ |
---|---|---|---|---|---|
Observed 2019 | 202 | 39.91 | 250.78 | 363.44 | 90.09 |
LRCA | 128 | 40.91 | 215.13 | 519.07 | 93.17 |
Coupled model | 150 | 40.55 | 235.35 | 478.41 | 92.73 |
Before | After | Growth/% | |
---|---|---|---|
FA | 306.30 | 604.76 | 97.44 |
GA | 2099.87 | 1624.48 | −22.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhou, L.; Tang, D. Urban Expansion Simulation Coupled with Residential Location Selection and Land Acquisition Bargaining: A Case Study of Wuhan Urban Development Zone, Central China’s Hubei Province. Sustainability 2023, 15, 290. https://doi.org/10.3390/su15010290
Liu H, Zhou L, Tang D. Urban Expansion Simulation Coupled with Residential Location Selection and Land Acquisition Bargaining: A Case Study of Wuhan Urban Development Zone, Central China’s Hubei Province. Sustainability. 2023; 15(1):290. https://doi.org/10.3390/su15010290
Chicago/Turabian StyleLiu, Heng, Lu Zhou, and Diwei Tang. 2023. "Urban Expansion Simulation Coupled with Residential Location Selection and Land Acquisition Bargaining: A Case Study of Wuhan Urban Development Zone, Central China’s Hubei Province" Sustainability 15, no. 1: 290. https://doi.org/10.3390/su15010290
APA StyleLiu, H., Zhou, L., & Tang, D. (2023). Urban Expansion Simulation Coupled with Residential Location Selection and Land Acquisition Bargaining: A Case Study of Wuhan Urban Development Zone, Central China’s Hubei Province. Sustainability, 15(1), 290. https://doi.org/10.3390/su15010290