Production of Syrups from Corinthian Currant Industrial Finishing Side-Stream: Quality Evaluation and Volatilome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. FSS Extract Production
2.3. Syrup Production from FSS
2.3.1. Production of Brown Syrups
2.3.2. Production of Blonde Syrups
2.4. Analytical Methods
2.4.1. Determination of pH, Acidity, and Total Nitrogen
2.4.2. Determination of Sugars
2.4.3. Determination of TPC and AC
2.4.4. HMF Analysis
2.4.5. Titrimetric Determination of Sulfite
2.4.6. Analysis of Volatile Compounds
2.4.7. Microbiological Analysis
2.4.8. Sensory Evaluation
2.4.9. Statistical Analysis
3. Results and Discussion
3.1. Composition of the Brown and Blonde Syrups Made from FSS
3.2. Volatilome
3.3. Microbial Stability
3.4. Sensory Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 360 Research Reports. Global Syrups Market-Segmented by Type, Application, and Geography (2022–2030). Available online: https://www.360researchreports.com/global-syrups-market-13100587 (accessed on 31 October 2022).
- IMARC. Syrup Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022–2027. Available online: https://www.imarcgroup.com/syrup-market (accessed on 31 October 2022).
- Weaver, N.J.; Wilkin, G.S.; Morison, K.R.; Watson, M.J. Minimizing the energy requirements for the production of maple syrup. J. Food Eng. 2020, 273, 109823. [Google Scholar] [CrossRef]
- Djalal, M.; Bastian, F.; Putra, A.M.; Laga, A. Buffer determination for immobilized enzymes in a batch system for glucose syrup production. IOP Conf. Ser. Earth Environ. Sci. 2019, 343, 012071. [Google Scholar] [CrossRef]
- Neifar, S.; Cervantes, F.V.; Bouanane-Darenfed, A.; BenHlima, H.; Ballesteros, A.O.; Plou, F.J.; Bejar, S. Immobilization of the glucose isomerase from Caldicoprobacter algeriensis on Sepabeads EC-HA and its efficient application in continuous High Fructose Syrup production using packed bed reactor. Food Chem. 2020, 309, 125710. [Google Scholar] [CrossRef] [PubMed]
- Yulistiani, F.; Maulani, L.; Ramdhayani, W.S.; Wibisono, W.; Permanasari, A.R. Fructose syrup production from tapioca solid waste (Onggok) by using enzymatic hydrolysis in various pH and isomerization process. J. Phys. Conf. Ser. 2019, 1295, 012032. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Zhao, N.; Ma, J.-W.; Liu, J.; Yan, Q.-J.; Jiang, Z.-Q. High-level expression of a novel α-amylase from Thermomyces dupontii in Pichia pastoris and its application in maltose syrup production. Int. J. Biol. Macromol. 2019, 127, 683–692. [Google Scholar] [CrossRef]
- Independent Authority for Public Revenue (IAPR) of the Hellenic Republic. Food and Drinks Code. Available online: https://www.aade.gr/sites/default/files/2020-03/66-iss2.pdf (accessed on 31 October 2022). (In Greek).
- Papadakis, E.; Gardeli, C.; Tzia, C. Spray drying of raisin juice concentrate. Drying Technol. 2006, 24, 173–180. [Google Scholar] [CrossRef]
- Plioni, I.; Bekatorou, A.; Terpou, A.; Mallouchos, A.; Plessas, S.; Koutinas, A.A.; Katechaki, E. Vinegar production from Corinthian currants finishing side-stream: Development and comparison of methods based on immobilized acetic acid bacteria. Foods 2021, 10, 3133. [Google Scholar] [CrossRef]
- European Currants. Agricultural Cooperatives Union-Aeghion, Greece. Available online: https://www.eu-currants.eu/index.php/en/agricultural-cooperatives-union-12 (accessed on 25 July 2022).
- Plioni, I.; Bekatorou, A.; Mallouchos, A.; Kandylis, P.; Chiou, A.; Panagopoulou, E.A.; Dede, V.; Styliara, P. Corinthian currants finishing side-stream: Chemical characterization, volatilome, and valorisation through wine and baker’s yeast production-technoeconomic evaluation. Food Chem. 2021, 342, 128161. [Google Scholar] [CrossRef] [PubMed]
- Mountaki, C.; Dafnis, I.; Panagopoulou, E.A.; Vasilakopoulou, P.B.; Karvelas, M.; Chiou, A.; Karathanos, V.T.; Chroni, A. Mechanistic insight into the capacity of natural polar phenolic compounds to abolish Alzheimer’s disease-associated pathogenic effects of apoE4 forms. Free Radic. Biol. Med. 2021, 171, 284–301. [Google Scholar] [CrossRef] [PubMed]
- Yanni, A.E.; Efthymiou, V.; Lelovas, P.; Agrogiannis, G.; Kostomitsopoulos, N.; Karathanos, V.T. Effects of dietary Corinthian currants (Vitis vinifera L., var. Apyrena) on atherosclerosis and plasma phenolic compounds during prolonged hypercholesterolemia in New Zealand White rabbits. Food Funct. 2015, 6, 963–971. [Google Scholar] [CrossRef]
- Deli, C.K.; Poulios, A.; Georgakouli, K.; Papanikolaou, K.; Papoutsis, A.; Selemekou, M.; Karathanos, V.T.; Draganidis, D.; Tsiokanos, A.; Koutedakis, Y.; et al. The effect of pre-exercise ingestion of Corinthian currant on endurance performance and blood redox status. J. Sports Sci. 2018, 36, 2172–2180. [Google Scholar] [CrossRef]
- Chiou, A.; Panagopoulou, E.A.; Karathanos, V.T. Anthocyanins and other flavonoids in dried fruits of the Mediterranean area. In Handbook of Anthocyanins: Food Sources, Chemical Applications and Health Benefits; Warner, L.M., Ed.; Nova Science Publishers: New York, NY, USA, 2014; pp. 395–419. [Google Scholar]
- Bekatorou, A.; Plioni, I.; Sparou, K.; Maroutsiou, R.; Tsafrakidou, P.; Petsi, T.; Kordouli, E. Bacterial cellulose production using the Corinthian currant finishing side-stream and cheese whey: Process optimization and textural characterization. Foods 2019, 8, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Australian Wine Research Institute. Available online: https://www.awri.com.au/industry_support/winemaking_resources/frequently_asked_questions/deacidification (accessed on 31 October 2022).
- The Australian Wine Research Institute. Available online: https://www.awri.com.au/wp-content/uploads/2018/08/Technical_Review_Issue_235_McRae.pdf (accessed on 31 October 2022).
- Association of Official Analytical Chemists (AOAC). Chapter 37. Methods 942.15, 925.34, 920.152. In Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, TX, USA, 1995; Volume II, pp. 10–11. [Google Scholar]
- Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food Chem. Toxicol. 2010, 48, 2388–2392. [Google Scholar] [CrossRef] [PubMed]
- International Honey Commission. Harmonised methods of the International honey commission. Available online: http://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 31 October 2022).
- Murray, J.M.; Baxter, I.A. Sensory evaluation-Food acceptability and sensory evaluation. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 5130–5136. [Google Scholar]
- Jackson, R.S. Wine Science. Principles and Applications, 3rd ed.; Academic Press: San Diego, CA, USA, 2008; pp. 3, 82, 279, 297, 375, 426, 691. [Google Scholar]
- Tzanidis, Food Ingredients. Raw materials. Available online: https://www.tzanidis.gr/en/raw-materials/ (accessed on 31 October 2022).
- Tripodakis Wines & Gourmet. Natural Sweeteners. Available online: https://www.tripodakis.gr/en/concentrated-raisin-syrup/ (accessed on 1 November 2022).
- Muhlack, R.A.; Colby, C.B. Reduced product loss associated with inline bentonite treatment of white wine by simultaneous centrifugation with yeast lees. Food Bioprod. Process. 2018, 108, 51–57. [Google Scholar] [CrossRef]
- Vernhet, A. Chapter 16-Red Wine Clarification and Stabilization. In Red Wine Technology, 1st ed.; Morata, A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 237–251. [Google Scholar]
- Vally, H.; Misso, N.L. Adverse reactions to the sulphite additives. Gastroenterol. Hepatol. Bed. Bench. 2012, 5, 16–23. [Google Scholar] [PubMed]
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives (Text with EEA relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008R1333 (accessed on 1 November 2022).
- International Agency for Research on Cancer. Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024. Available online: https://monographs.iarc.who.int/wp-content/uploads/2019/10/IARCMonographs-AGReport-Priorities_2020-2024.pdf (accessed on 1 November 2022).
- Sing, K.S.W. Chapter 10-Adsorption by Active Carbons. In Adsorption by Powders and Porous Solids, 2nd ed.; Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 321–391. [Google Scholar]
- Capanoglu, E.; de Vos, R.C.H.; Hall, R.D.; Boyacioglu, D.; Beekwilder, J. Changes in polyphenol content during production of grape juice concentrate. Food Chem. 2013, 139, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.; Tokuşoğlu, Ö.; Artik, N. Alterations on phenolic compounds and antioxidant activity during sour grape juice concentrate processing. Cienc. Tec. 2018, 33, 136–144. [Google Scholar] [CrossRef]
- Aydinlik, Z.; Battaloglu, R. Determination of phenolic compound contents in traditionally produced grape Pekmez samples. Asian J. Chem. 2016, 28, 1399–1400. [Google Scholar] [CrossRef]
- Helvacıoğlu, S.; Charehsaz, M.; Güzelmeriç, E.; Türköz Acar, E.; Yeşilada, E.; Aydın, A. Comparatively investigation of grape molasses produced by conventional and industrial techniques. Marmara Pharm. J. 2018, 22, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Hui, Y.H. Handbook of Fruit and Vegetable Flavors; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Khiari, R.; Zemni, H.; Mihoubi, D. Raisin processing: Physicochemical, nutritional and microbiological quality characteristics as affected by drying process. Food Rev. Int. 2019, 35, 246–298. [Google Scholar] [CrossRef]
Parameter | Syrup Type | |||
---|---|---|---|---|
BrST | BrS | BlST | BlS | |
pH | 4.35 ± 0.04 a | 5.57 ± 0.52 b | 4.46 ± 0.15 a | 6.25 ± 0.18 c |
TTA (% w/w tartaric acid) | 0.88 ± 0.08 a | 0.91 ± 0.08 a | 1.18 ± 0.30 b | 0.75 ± 0.16 a |
VA (% w/w acetic acid) | 0.16 ± 0.13 a | 0.11 ± 0.04 b | 0.27 ± 0.03 a | 0.09 ± 0.00 b |
Total sugar content (% w/w) | 65.4 ± 0.5 a | 69.4 ± 0.5 b | 66.5 ± 0.6 a | 66.3 ± 7.5 a |
Glucose (% w/w) | 32.9 ± 0.7 a | 31.3 ± 1.5 a | 35.4 ± 0.6 a | 34.6 ± 4.1 a |
Fructose (% w/w) | 32.5 ± 0.2 a | 34.5 ± 4.1 a | 33.4 ± 3.3 a | 30.5 ± 5.1 a |
Sucrose (% w/w) | nd | nd | nd | nd |
Total SO2 (mg/kg) | 40.7 ± 1.1 a | 33.0 ± 0.5 b | 22.1 ± 0.8 c | 26.1 ± 0.1 d |
Protein (% w/w) | 1.56 ± 0.05 a | 1.68 ± 0.16 a | 1.52 ± 0.18 a | 1.40 ± 0.18 b |
TPC (mg GAE/100 g) | 213.3 ± 7.7 a | 184.9 ± 4.5 b | 134.0 ± 2.9 c | 143.3 ± 2.4 d |
AC (mg AAΕ/g) | 0.90 ± 0.09 a | 1.03 ± 0.03 b | 0.29 ± 0.02 c | 0.58 ± 0.04 d |
HMF (mg/kg) | nd | nd | nd | nd |
Compound | CAS | RID | RIref | RI | FSS | BrST | BlST |
---|---|---|---|---|---|---|---|
Esters | |||||||
Methyl acetate | 79-20-9 | A | 828 | 820 | 0.20 | 0.19 | <0.01 |
Ethyl acetate | 141-78-6 | A | 888 | 882 | 5.29 | 4.38 | 9.68 |
Ethyl 2-methylpropanoate (ethyl isobutyrate) | 97-62-1 | A | 961 | 958 | <0.01 | <0.01 | <0.01 |
2-Methylpropyl acetate (isobutyl acetate) | 110-19-0 | A | 1012 | 1012 | <0.01 | 0.03 | 0.10 |
Ethyl butanoate (ethyl butyrate) | 105-54-4 | A | 1035 | 1034 | <0.01 | 0.02 | 0.03 |
Ethyl 3-methylbutanoate (ethyl isovalerate) | 108-64-5 | B | 1068 | 1066 | <0.01 | 0.01 | 0.03 |
3-Methylbutyl acetate (isoamyl acetate) | 123-92-2 | A | 1122 | 1118 | 0.05 | 0.17 | 1.19 |
Ethyl hexanoate (ethyl caproate) | 123-66-0 | A | 1233 | 1229 | 0.07 | 0.02 | 0.02 |
Ethyl 2-hydroxypropanoate (ethyl lactate) | 97-64-3 | A | 1347 | 1344 | 0.02 | <0.01 | <0.01 |
Ethyl octanoate (ethyl caprylate) | 106-32-1 | A | 1435 | 1435 | 0.70 | 0.06 | <0.01 |
Ethyl decanoate (ethyl caprate) | 110-38-3 | A | 1638 | 1640 | 0.33 | <0.01 | <0.01 |
Ethyl 2-phenylacetate (ethyl benzeneacetate) | 101-97-3 | C | 1783 | 1781 | <0.01 | 0.01 | <0.01 |
2-Phenylethyl acetate | 103-45-7 | A | 1813 | 1810 | 0.38 | 0.44 | 0.29 |
2-Phenylethyl butanoate (phenethyl butyrate) | 103-52-6 | B | 1958 | 1965 | 0.02 | <0.01 | <0.01 |
Octyl octanoate | 2306-88-9 | B | 2009 | 2014 | <0.01 | 0.03 | 0.11 |
Total | <7.12 | <5.40 | <11.52 | ||||
Alcohols | |||||||
Ethanol | 64-17-5 | A | 932 | 931 | 6.54 | 0.15 | 0.27 |
2-Methyl-1-propanol (isobutanol) | 78-83-1 | A | 1092 | 1098 | 0.23 | <0.01 | 0.02 |
1-Butanol | 71-36-3 | A | 1142 | 1151 | 0.12 | 0.07 | 0.05 |
1-Penten-3-ol (ethyl vinyl carbinol) | 616-25-1 | B | 1159 | 1166 | 0.24 | <0.01 | 0.01 |
3-Methyl-1-butanol (isoamyl alcohol) | 123-51-3 | A | 1209 | 1211 | 1.57 | 0.65 | 0.32 |
1-Pentanol | 71-41-0 | A | 1250 | 1256 | 0.59 | 0.43 | 0.52 |
(Z)-2-Penten-1-ol | 1576-95-0 | B | 1318 | 1324 | 0.08 | <0.01 | <0.01 |
3-Methyl-2-buten-1-ol (prenol) | 556-82-1 | C | 1320 | 1324 | 0.05 | 0.03 | 0.02 |
1-Hexanol | 111-27-3 | A | 1355 | 1357 | 1.31 | 0.75 | 0.28 |
(E)-3-Hexen-1-ol | 928-97-2 | B | 1367 | 1370 | <0.01 | 0.02 | <0.01 |
(Z)-3-Hexen-1-ol | 928-96-1 | B | 1382 | 1387 | 0.09 | <0.01 | <0.01 |
(E)-2-Hexen-1-ol | 928-95-0 | B | 1405 | 1409 | 0.09 | 0.13 | <0.01 |
1-Octen-3-ol | 3391-86-4 | A | 1450 | 1454 | 1.99 | 0.11 | 0.05 |
1-Heptanol | 111-70-6 | B | 1453 | 1460 | 0.14 | 0.11 | <0.01 |
2-Ethyl-1-hexanol | 104-76-7 | A | 1491 | 1493 | 0.61 | 4.08 | 0.34 |
(E)-2-Hepten-1-ol | 33467-76-4 | C | 1517 | 1514 | 0.05 | 0.01 | <0.01 |
2,3-Butanediol isomer 1 | 513-85-9 | C | 1543 | 1544 | 0.49 | 0.30 | 0.49 |
1-Octanol | 111-87-5 | A | 1557 | 1562 | 1.07 | 0.45 | 0.28 |
2,3-Butanediol isomer 2 | 24347-58-8 | C | 1556 | 1581 | 0.53 | 0.26 | 0.51 |
(E)-2-Octen-1-ol | 18409-17-1 | C | 1614 | 1617 | 0.16 | 0.01 | <0.01 |
2-Furanmethanol (Furfuryl alcohol) | 98-00-0 | B | 1660 | 1661 | 0.11 | 1.28 | 0.33 |
1-Nonanol | 143-08-8 | B | 1660 | 1665 | 0.68 | 0.03 | 0.10 |
5-Methylfurfuryl alcohol | 3857-25-8 | C | 1714 | 1725 | <0.01 | 0.42 | 0.02 |
3-(Methylthio)-1-propanol (methionol) | 505-10-2 | B | 1719 | 1721 | <0.01 | 0.01 | 0.08 |
2-Dodecanol | 10203-28-8 | C | 1813 | 1822 | 0.14 | 0.02 | 0.04 |
Phenylmethanol (benzyl alcohol) | 100-51-6 | B | 1870 | 1875 | 0.53 | 0.24 | 0.07 |
2-Phenylethanol (phenylethyl alcohol) | 60-12-8 | A | 1906 | 1912 | 0.63 | 0.28 | 0.16 |
1-Tetradecanol (myristyl alcohol) | 112-72-1 | C | 2165 | 2181 | 0.41 | 0.06 | 0.15 |
Total | <18.45 | <9.90 | <4.11 | ||||
Organic acids | |||||||
Acetic acid | 64-19-7 | A | 1449 | 1445 | 10.75 | 3.90 | 4.35 |
Formic acid | 64-18-6 | B | 1503 | 1506 | 0.05 | 0.05 | 0.10 |
Propanoic acid | 79-09-4 | B | 1535 | 1538 | 0.08 | 0.11 | 0.12 |
Butanoic acid | 107-92-6 | B | 1625 | 1628 | 0.01 | 0.01 | 0.01 |
3-Methylbutanoic acid (isovaleric acid) | 503-74-2 | B | 1666 | 1670 | 0.14 | 0.12 | 0.03 |
2-Methylbutanoic acid | 116-53-0 | C | 1662 | 1671 | 0.05 | <0.01 | <0.01 |
Pentanoic acid (valeric acid) | 109-52-4 | B | 1733 | 1737 | 0.12 | 0.04 | 0.02 |
Hexanoic acid (caproic acid) | 142-62-1 | A | 1846 | 1844 | 1.14 | 0.26 | 0.14 |
3-Methylhexanoic acid | 3780-58-3 | C | - | 1954 | 0.16 | 0.03 | 0.01 |
Octanoic acid (caprylic acid) | 124-07-2 | A | 2060 | 2063 | 8.48 | <0.01 | <0.01 |
Nonanoic acid | 112-05-0 | C | 2171 | 2174 | 0.23 | 0.14 | 0.04 |
n-Decanoic acid (capric acid) | 334-48-5 | Β | 2276 | 2251 | 0.89 | 0.11 | 0.11 |
Total | 22.10 | <4.77 | <4.93 | ||||
Carbonyl compounds | |||||||
Acetaldehyde | 75-07-0 | A | 702 | 701 | <0.01 | 0.29 | 0.53 |
2-Methylpropanal (isobutyraldehyde) | 78-84-2 | B | 819 | 13 | 0.14 | 3.39 | 0.60 |
Butanal (butyraldehyde) | 123-72-8 | B | 877 | 867 | 0.03 | 0.02 | 0.03 |
2-Butanone (methyl ethyl ketone) | 78-93-3 | B | 907 | 899 | 0.04 | 0.23 | 0.35 |
2-Methylbutanal | 96-17-3 | B | 914 | 908 | 0.59 | 8.73 | 2.63 |
3-Methylbutanal (isovaleraldehyde) | 590-86-3 | B | 918 | 911 | 1.64 | 12.09 | 8.66 |
2,3-Butanedione (Diacetyl) | 431-03-8 | A | 979 | 970 | 5.91 | 0.92 | 5.43 |
Hexanal | 66-25-1 | A | 1083 | 1076 | 3.32 | 0.78 | 2.05 |
2-Methyl-2-butenal | 1115-11-3 | B | 1095 | 1089 | <0.01 | 0.05 | <0.01 |
2-Heptanone | 110-43-0 | B | 1182 | 1178 | 0.05 | 0.07 | 0.02 |
Heptanal (oenanthic aldehyde) | 111-71-7 | B | 1184 | 1179 | 0.17 | <0.01 | 0.09 |
2-Methyltetrahydrofuran-3-one (coffee furanone) | 3188-00-9 | B | 1268 | 1262 | <0.01 | 1.47 | 0.46 |
3-Hydroxy-2-butanone (acetoin) | 513-86-0 | A | 1284 | 1281 | 21.52 | 2.29 | 3.95 |
Octanal | 124-13-0 | B | 1289 | 1284 | 0.21 | 0.15 | 0.07 |
1-Hydroxy-2-propanone (hydroxyacetone) | 116-09-6 | B | 1303 | 1293 | <0.01 | 0.27 | 0.15 |
2-Heptenal | 18829-55-5 | B | 1323 | 1319 | 0.21 | 0.01 | <0.01 |
6-Methyl-5-hepten-2-one | 110-93-0 | C | 1338 | 1335 | 0.09 | 0.03 | 0.01 |
2-Acetoxy-3-butanone (acetoin acetate) | 4906-24-5 | C | 1378 | 1381 | 0.10 | 0.01 | <0.01 |
1-Hydroxybutan-2-one | 5077-67-8 | B | 1388 | 1376 | 0.02 | 0.05 | 0.08 |
2-Nonanone | 821-55-6 | C | 1390 | 1387 | <0.01 | <0.01 | <0.01 |
Nonanal | 124-19-6 | B | 1391 | 1391 | 0.40 | 0.36 | 0.18 |
5-Ethyl-1-formylcyclopentene (Phoracanthal) | 36431-60-4 | C | 1410 | 1411 | 0.40 | <0.01 | <0.01 |
3-Octen-2-one | 1669-44-9 | C | 1411 | 1405 | 0.31 | 0.01 | <0.01 |
(E)-2-Octenal | 2548-87-0 | C | 1429 | 1426 | 0.16 | <0.01 | <0.01 |
2-Furfuraldehyde (furfural) | 98-01-1 | A | 1461 | 1459 | 3.36 | 24.21 | 38.24 |
Phenylmethanal (benzaldehyde) | 100-52-7 | A | 1520 | 1517 | 0.96 | 1.09 | <0.01 |
(E)-2-Nonenal | 18829-56-6 | C | 1534 | 1533 | 0.07 | <0.01 | <0.01 |
1-(2-Furyl)-1-propanone | 3194-15-8 | B | 1563 | 1576 | <0.01 | 0.11 | 0.09 |
(3E,5E)-3,5-Octadien-2-one | 30086-02-3 | C | 1570 | 1569 | 0.12 | <0.01 | <0.01 |
5-Methyl-2-furfural | 620-02-0 | B | 1570 | 1572 | 0.25 | 10.67 | 6.03 |
1-(Furan-2-yl)butan-2-one | 4208-63-3 | C | 1584 | 1598 | <0.01 | 0.07 | 0.05 |
6-Methyl-3,5-heptadiene-2-one | 1604-28-0 | B | 1602 | 1591 | 0.27 | <0.01 | 0.01 |
Ethyl-1H-pyrrole-2-carboxaldehyde | 2167-14-8 | C | 1610 | 1605 | 0.14 | 3.30 | 2.66 |
1-Methylpyrrole-2-carboxaldehyde | 1192-58-1 | C | 1626 | 1620 | <0.01 | 0.20 | 0.20 |
Phenylacetaldehyde | 122-78-1 | C | 1640 | 1636 | 0.27 | 0.19 | 0.16 |
Acetophenone | 98-86-2 | B | 1647 | 1646 | <0.01 | <0.01 | 0.10 |
2,4-Nonadienal | 6750-03-4 | C | 1700 | 1700 | 0.07 | <0.01 | <0.01 |
2-Acetylpyrrole | 1072-83-9 | B | 1973 | 1971 | 0.03 | 0.73 | 0.19 |
2-Hydroxyacetylfuran | 17678-19-2 | C | 1995 | 2003 | 0.15 | 0.14 | 0.27 |
2,4-Decadienal | 2363-88-4 | B | 1797 | 1805 | 0.10 | <0.01 | <0.01 |
1H-Pyrrole-2-carboxaldehyde (pyrrole aldehyde) | 1003-29-8 | B | 2030 | 2023 | 0.01 | 0.11 | 0.11 |
Total | <41.11 | <71.75 | <72.87 | ||||
Terpenes | |||||||
a-Pinene (2,6,6-Trimethylbicyclo [3.1.1]hept-2-ene) | 80-56-8 | C | 1028 | 1018 | <0.01 | 0.02 | 0.03 |
D-Limonene (1-methyl-4-prop-1-en-2-ylcyclohexene) | 5989-27-5 | A | 1200 | 1185 | 0.39 | 0.15 | 0.10 |
Eucalyptol (1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane) | 470-82-6 | B | 1213 | 1200 | <0.01 | <0.01 | <0.01 |
p-Cymene (1-Isopropyl-4-methylbenzene) | 99-87-6 | B | 1272 | 1265 | <0.01 | 0.01 | 0.02 |
cis-Linalool oxide | 5989-33-3 | B | 1444 | 1447 | <0.01 | 0.23 | 0.12 |
trans-Linalool oxide | 34995-77-2 | C | 1452 | 1477 | <0.01 | 0.24 | <0.01 |
Linalool (3,7-dimethyl-1,6-octadien-3-ol) | 78-70-6 | A | 1547 | 1551 | 0.08 | 0.06 | 0.02 |
Fenchol (1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol) | 1632-73-1 | B | 1582 | 1588 | <0.01 | 0.03 | 0.03 |
L-4-Terpineol (4-methyl-1-propan-2-ylcyclohex-3-en-1-ol) | 20126-76-5 | B | 1593 | 1606 | <0.01 | 0.06 | 0.03 |
β-Cyclocitral (2,6,6-trimethylcyclohexene-1-carbaldehyde) | 432-25-7 | C | 1611 | 1618 | 0.08 | <0.01 | <0.01 |
(-)-Menthol (5-methyl-2-(1-methylethyl)-cyclohexanol) | 2216-51-5 | C | 1633 | 1647 | <0.01 | 0.08 | 0.17 |
4-Ketoisophorone (2,6,6-trimethyl-2-cyclohexene-1,4-dione) | 1125-21-9 | C | 1676 | 1690 | 0.04 | 0.09 | 0.05 |
α-Terpineol [2-(4-methyl-3-cyclohexen-1-yl)-2-propanol] | 98-55-5 | A | 1697 | 1700 | 0.07 | 0.44 | 0.19 |
L-Borneol (1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-ol) | 507-70-0 | B | 1702 | 1706 | <0.01 | 0.03 | 0.03 |
β-Damascenone | 23726-93-4 | C | 1823 | 1818 | 0.06 | 0.11 | 0.14 |
p-Cymen-8-ol (2-(4-methylphenyl)propan-2-ol) | 1197-01-9 | C | 1852 | 1851 | <0.01 | 0.14 | 0.05 |
trans-Geranylacetone [(E)-6,10-dimethylundeca-5,9-dien-2-one] | 3796-70-1 | C | 1859 | 1853,9 | 0.09 | 0.06 | 0.10 |
trans-β-Ionone [(E)-4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one] | 79-77-6 | C | 1940 | 1941 | 0.08 | 0.01 | 0.01 |
Total | <0.89 | <1.74 | <1.06 | ||||
Lactones | |||||||
γ-Butyrolactone (dihydrofuran-2(3H)-one) | 96-48-0 | B | 1632 | 1621 | 1.92 | 1.10 | 1.80 |
β-Angelica lactone (5-methyl-2(5H)-furanone) | 591-11-7 | C | 1669 | 1674 | 0.03 | 0.01 | 0.02 |
γ-Hexalactone (dihydro-5-ethyl-2(3H)-furanone) | 695-06-7 | C | 1694 | 1698 | 0.04 | 0.03 | 0.01 |
γ-Crotonolactone (2(5H)-Furanone) | 497-23-4 | B | 1742 | 1750 | <0.01 | 0.04 | 0.01 |
2-Hexen-1,4-lactone (5-ethyl-2(5H)-furanone) | 2407-43-4 | C | 1745 | 1753 | 0.06 | 0.01 | <0.01 |
γ-Octalactone (5-Butyldihydrofuran-2(3H)-one) | 104-50-7 | C | 1910 | 1915 | 0.01 | 0.02 | 0.01 |
γ-Nonalactone (dihydro-5-pentyl-2(3H)-furanone) | 104-61-0 | C | 2024 | 2028 | 0.06 | 0.03 | 0.01 |
Total | <2.12 | 1.24 | <1.86 | ||||
Other compounds | |||||||
Dimethyl sulfide (DMS) | 75-18-3 | B | 754 | 739 | 0.01 | 0.60 | 0.78 |
Furan | B | 799 | 793 | <0.01 | 0.05 | 0.01 | |
2-Μethylfuran | 534-22-5 | B | 869 | 861 | <0.01 | 0.03 | 0.01 |
2-Ethylfuran | 3208-16-0 | B | 950 | 943 | 0.04 | 0.04 | 0.02 |
1,4-Dioxane (IS) | 123-91-1 | 1055.5 | |||||
2-Pentylfuran | 3777-69-3 | B | 1231 | 1220 | 0.22 | 0.08 | 0.02 |
2,6-Dimethylpyrazine | 108-50-9 | B | 1328 | 1327 | <0.01 | 0.03 | <0.01 |
2-Ethyl-6-methylpyrazine | 13925-03-6 | B | 1386 | 1385 | 0.04 | 0.04 | 0.06 |
2,3,5-Trimethylpyrazine | 14667-55-1 | B | 1402 | 1404 | <0.01 | 0.03 | 0.03 |
2,6-Diethylpyrazine | 13067-27-1 | C | 1444 | 1437 | <0.01 | 0.02 | <0.01 |
2,3-Dimethyl-5-ethylpyrazine | 15707-34-3 | C | 1460 | 1463 | 0.08 | 0.03 | 0.05 |
2,3,5,6-Tetramethylpyrazine (Ligustrazine) | 1124-11-4 | B | 1469 | 1477 | 0.03 | 0.04 | 0.01 |
2-Acetylfuran (2-furyl methyl ketone) | 1192-62-7 | B | 1499 | 1500 | 0.16 | 3.44 | 1.75 |
2-Acetyl-5-methylfuran | 1193-79-9 | C | 1606 | 1611 | <0.01 | 0.03 | <0.01 |
Guaiacol (2-Methoxyphenol) | 90-05-1 | B | 1861 | 1856 | <0.01 | 0.03 | <0.01 |
Benzothiazole | 95-16-9 | C | 1958 | 1953 | <0.01 | 0.02 | <0.01 |
Total | <0.57 | 3.91 | <1.96 | ||||
Hydrocarbons (alkanes/alkenes) | |||||||
Hexane | 110-54-3 | A | 600 | 600 | 5.91 | 0.05 | 0.14 |
Heptane | 142-82-5 | A | 700 | 700 | 0.35 | <0.01 | <0.01 |
Octane | 111-65-9 | A | 800 | 800 | 0.33 | 0.02 | 0.01 |
Nonane | 111-84-2 | A | 900 | 900 | 0.07 | <0.01 | <0.01 |
Decane | 124-18-5 | A | 1000 | 999 | 0.10 | <0.01 | <0.01 |
Dodecane | 112-40-3 | A | 1200 | 1200 | 0.32 | <0.01 | <0.01 |
Tetradecane | 629-59-4 | A | 1400 | 1400 | 0.46 | 0.01 | 0.02 |
Hexadecane | 544-76-3 | A | 1600 | 1600 | 0.06 | 0.03 | 0.01 |
Total | 7.6 | <0.11 | <0.18 |
Microbial Group | Month | Syrup Type | |||
---|---|---|---|---|---|
BrST | BrS | BlST | BlS | ||
TMB | 1 | <102 | <102 | 12 × 103 ± 3 × 103 | <102 |
3 | <102 | <102 | 7 × 103 ± 3 × 103 | <102 | |
Yeasts | 1 | <102 | <102 | 9 × 103 ± 2 × 103 | <102 |
3 | <102 | <102 | 104 ± 3 × 103 | <102 | |
Molds | 1 | <102 | <102 | <102 | <102 |
3 | <102 | <102 | <102 | <102 | |
Enterobacteria | 1 | <102 | <102 | <102 | <102 |
3 | <102 | <102 | <102 | <102 |
Syrup | Taste | Aftertaste | Metallic Aftertaste | Aroma | Color | Clarity |
---|---|---|---|---|---|---|
BrST | 3.3 ± 0.8; raisin, typical | Long | No | 3.9 ± 0.8; Raisin | Brown, honey-like | Slightly cloudy |
BrS | 3.8 ± 0.8; honey-like | Medium | No | 3.8 ± 1.4; Raisin | Brown-red, honey-like | Clear |
BlST | 3.2 ± 1.3; sweet-sour | Long | No | 3.6 ± 0.4; Raisin | Golden yellow | Clear |
BlS | 4.3 ± 1.0; honey-like | Long | No | 2.9 ± 1.1; Raisin | Orange-yellow, amber | Cloudy |
CGS | 2.8 ± 0.9 | Long | No | 3.0 ± 1.0; Raisin | Dark brown | Cloudy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plioni, I.; Panitsa, A.; Mallouchos, A.; Terpou, A.; Tsogka, I.; Adamopoulou, V.; Bekatorou, A. Production of Syrups from Corinthian Currant Industrial Finishing Side-Stream: Quality Evaluation and Volatilome. Sustainability 2023, 15, 495. https://doi.org/10.3390/su15010495
Plioni I, Panitsa A, Mallouchos A, Terpou A, Tsogka I, Adamopoulou V, Bekatorou A. Production of Syrups from Corinthian Currant Industrial Finishing Side-Stream: Quality Evaluation and Volatilome. Sustainability. 2023; 15(1):495. https://doi.org/10.3390/su15010495
Chicago/Turabian StylePlioni, Iris, Athanasia Panitsa, Athanasios Mallouchos, Antonia Terpou, Ioanna Tsogka, Vasiliki Adamopoulou, and Argyro Bekatorou. 2023. "Production of Syrups from Corinthian Currant Industrial Finishing Side-Stream: Quality Evaluation and Volatilome" Sustainability 15, no. 1: 495. https://doi.org/10.3390/su15010495
APA StylePlioni, I., Panitsa, A., Mallouchos, A., Terpou, A., Tsogka, I., Adamopoulou, V., & Bekatorou, A. (2023). Production of Syrups from Corinthian Currant Industrial Finishing Side-Stream: Quality Evaluation and Volatilome. Sustainability, 15(1), 495. https://doi.org/10.3390/su15010495