Research on Promoting Carbon Sequestration of Urban Green Space Distribution Characteristics and Planting Design Models in Xi’an
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Remote Sensing Data
2.3. Simulation Method of Carbon Sequestration Data
2.4. Quadrat Selection and Data Estimation
3. Results
3.1. Distribution and Variation Characteristics of Carbon Sequestration in Urban Green Space in the Study Area
3.2. Heterogeneity of Plants and Habitats in the Study Area
3.2.1. Type and Size of Plants under Investigation
3.2.2. Analysis of Differences in Carbon Sequestration of Investigated Plants
3.2.3. Analysis of Differences in Carbon Sequestration of Investigated Plants Communities
3.3. Influence of Plant Community Characteristic Factors on Carbon Sequestration of Urban Green Spaces
- Hierarchical structure of plant community
- 2.
- Canopy density of the plant community
- 3.
- Diameter at breast height of plants
- 4.
- Community density of plant community
4. Discussion
4.1. The Relationship between the Distribution of Carbon Sequestration in Urban Green Space and Land-Use Change
4.2. Changes in Carbon Sequestration with the Growth of Plant Biomass
4.3. Implication for Planting Design for Promoting Carbon Sequestration in Urban Green Space
4.3.1. Suggestions for Low-Carbon Green Space Planting Design
4.3.2. Extraction of Planting Design Models on Promoting Carbon Sequestration
- “Tree-shrub-grass” type plant community
- 2.
- “Shrub-grass” type plant community
- 3.
- Ground cover plant communities
5. Limitations of the Study and Future Research Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef]
- Nowak, D.J. Atmospheric Carbon Reduction by urban trees. J. Environ. Manag. 1993, 37, 207–217. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon Storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Crane, D.E. Carbon Storage, and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007: Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-52-170597-4. [Google Scholar]
- Velasco, E.; Roth, M.; Tan, S.H.; Quak, M.; Nabarro, S.D.; Norford, L. The role of vegetation in the CO2 Flux from a tropical urban neighbourhood. Atmos. Chem. Phys. 2013, 13, 10185–10202. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of urban green patterns on Surface Urban Cool Islands and its seasonal variations. Urban For. Urban Green. 2014, 13, 646–654. [Google Scholar] [CrossRef]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the cool island effects of urban green spaces using remote sensing data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Boot, L.M.; Wang, Y.-H.; Chiang, C.-M.; Lai, C.-M. Effects of a green space layout on the outdoor thermal environment at the neighborhood level. Energies 2012, 5, 3723–3735. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.M.; Schwarz, N. The bigger, the better? The influence of urban green space design on cooling effects for residential areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Duan, L. Adjusting the structure combinations of plant communities in urban greenspace reduced the maintenance energy consumption and GHG emissions. J. Environ. Eng. Landsc. Manag. 2018, 26, 261–274. [Google Scholar] [CrossRef]
- Velasco, E.; Perrusquia, R.; Jiménez, E.; Hernández, F.; Camacho, P.; Rodríguez, S.; Retama, A.; Molina, L.T. Sources and sinks of carbon dioxide in a neighborhood of Mexico City. Atmos. Environ. 2014, 97, 226–238. [Google Scholar] [CrossRef]
- Fan, H.; Yu, Z.; Yang, G.; Liu, T.Y.; Liu, T.Y.; Hung, C.H.; Vejre, H. How to cool hot-humid (Asian) cities with urban trees? an optimal landscape size perspective. Agric. For. Meteorol. 2019, 265, 338–348. [Google Scholar] [CrossRef]
- Disheng, W. Research on Measurement of Urban Landscape Plants’ Biomass in Beijing City: Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Research-on-Measurement-of-Urban-Landscape-Plants’-Disheng/dd902e00939d0de4d9791856ec9530f3559b1bb5 (accessed on 20 May 2009).
- Kuittinen, M.; Moinel, C.; Adalgeirsdottir, K. Carbon sequestration through Urban Ecosystem Services. Sci. Total Environ. 2016, 563, 623–632. [Google Scholar] [CrossRef]
- Zhao, M.; Kong, Z.H.; Escobedo, F.J.; Gao, J. Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. J. Environ. Manag. 2010, 91, 807–813. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J.; Timilsina, N.; Zerbe, S. Transportation carbon dioxide emission offsets by public urban trees: A case study in Bolzano, Italy. Urban For. Urban Green. 2015, 14, 398–403. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban Tree Design Approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The influence of small green space type and structure at the street level on Urban Heat Island mitigation. Urban For. Urban Green. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Vaccari, F.P.; Gioli, B.; Toscano, P.; Perrone, C. Carbon Dioxide Balance Assessment of the city of Florence (Italy), and implications for Urban Planning. Landsc. Urban Plan. 2013, 120, 138–146. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban For. Urban Green. 2019, 41, 255–263. [Google Scholar] [CrossRef]
- Yin, J.; Wu, X.; Shen, M.; Zhang, X.; Zhu, C.; Xiang, H.; Shi, C.; Guo, Z.; Li, C. Impact of urban greenspace spatial pattern on land surface temperature: A case study in Beijing metropolitan area, China. Landsc. Ecol. 2019, 34, 2949–2961. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating cooling extents of green parks using remote sensing: Method and test. Landsc. Urban Plan. 2015, 134, 66–75. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Song, P.; Kim, G.; Mayer, A.; He, R.; Tian, G. Assessing the ecosystem services of various types of urban green spaces based on I-Tree Eco. Sustainability 2020, 12, 1630. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Wang, Z.; Liu, C.; Han, Y. Mapping aboveground biomass and carbon in Shanghai’s urban forest using Landsat ETM+ and Inventory Data. Urban For. Urban Green. 2020, 51, 126655. [Google Scholar] [CrossRef]
- Varone, L.; Vitale, M.; Catoni, R.; Gratani, L. Physiological differences of five holm oak (Quercus ilex L.) ecotypes growing under common growth conditions were related to native local climate. Plant Species Biol. 2015, 31, 196–210. [Google Scholar] [CrossRef]
- Homepage of China Weather Network. Available online: http://www.weather.com.cn/ (accessed on 21 August 2022).
- Houghton, R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 1999, 51, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, P. A carbon budget for Brazil: Influence of future land-use change. Clim. Chang. 1996, 33, 369–383. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Peng, C. Land use induced changes of organic carbon storage in soils of China. Glob. Chang. Biol. 2003, 9, 305–315. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and Land Management 1850–2000. Tellus B 2003, 55, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Batlle-Bayer, L.; Batjes, N.H.; Bindraban, P.S. Changes in organic carbon stocks upon land use conversion in the Brazilian cerrado: A Review. Agric. Ecosyst. Environ. 2010, 137, 47–58. [Google Scholar] [CrossRef]
- Ge, Q.S.; Dai, J.H.; He, F.N.; Pan, Y.; Wang, M.M. Land use changes and their relations with carbon cycles over the past 300 A in China. Sci. China Ser. D Earth Sci. 2008, 51, 871–884. [Google Scholar] [CrossRef]
- Houghton, R.A. Interactions between land-use change and climate-carbon cycle feedbacks. Curr. Clim. Chang. Rep. 2018, 4, 115–127. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Shao, Q.; Xu, X. Carbon sequestration by forestation across China: Past, present, and future. Renew. Sustain. Energy Rev. 2012, 16, 1291–1299. [Google Scholar] [CrossRef]
- van Minnen, J.G.; Strengers, B.J.; Eickhout, B.; Swart, R.J.; Leemans, R. Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Balance Manag. 2008, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ostle, N.J.; Le Zhang, P.; He, J.; Hong, X.; Zhang, W.; Qin, C.; Pang, B.; Li, Y.; Liu, Y. Carbon sources/sequestration analysis of land use changes in China based on data envelopment analysis. J. Clean. Prod. 2018, 204, 702–711. [Google Scholar] [CrossRef]
- Ostle, N.J.; Levy, P.E.; Evans, C.D.; Smith, P. UK land use and soil carbon sequestration. Land Use Policy 2009, 26, S274–S283. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.B.; Gifford, R.M. Soil Carbon Stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, J.; Sheng, H.; Chen, G.; Li, X.; Yang, Z. The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of southern China. J. Geogr. Sci. 2009, 19, 49–57. [Google Scholar] [CrossRef]
- Sahu, C.; Nayak, H.N.; Sahu, S.K. Carbon sequestration potential of a teak plantation forest in the Eastern Ghats of India. J. Environ. Biol. 2020, 41, 770–775. [Google Scholar] [CrossRef]
- Islam, K.N.; Rahman, M.M.; Jashimuddin, M.; Islam, K.; Zhang, Y. Impact of co-management on tree diversity and carbon sequestration in protected areas: Experiences from Bangladesh. Trees For. People 2020, 2, 100033. [Google Scholar] [CrossRef]
- Timilsina, N.; Staudhammer, C.L.; Escobedo, F.J.; Lawrence, A. Tree biomass, wood waste yield, and carbon storage changes in an urban forest. Landsc. Urban Plan. 2014, 127, 18–27. [Google Scholar] [CrossRef]
- Baldauf, R. Roadside vegetation design characteristics that can improve local, near-road air quality. Transp. Res. Part D Transp. Environ. 2017, 52, 354–361. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Rainer, T.; West, C. Planting in a Post-wild World: Designing Plant Communities for Resilient Landscapes; Timber Press: Portland, OR, USA, 2016; ISBN 978-1-60-469553-3. [Google Scholar]
- Whittinghill, L.J.; Rowe, D.B.; Schutzki, R.; Cregg, B.M. Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landsc. Urban Plan. 2014, 123, 41–48. [Google Scholar] [CrossRef]
Plant Species | Annual Carbon Sequestration (kg/km²) | Plant Species | Annual Carbon Sequestration (kg/km²) |
---|---|---|---|
Deciduous Plants | Evergreens | ||
Trees | |||
Platanus orientalis | 17,800 | Photinia serratifolia | 12,519 |
Salix babylonica | 14,107 | Magnolia grandiflora | 8074 |
Koelreuteria paniculata | 12,111 | Ligustrum lucidum | 6486 |
Melia azedarach | 11,476 | Juniperus chinensis ‘Kaizuca’ | 5534 |
Ulmus pumila | 10,070 | Pinus tabuliformis | 4808 |
Celtis sinensis | 9616 | Osmanthus fragrans | 3039 |
Styphnolobium japonicum | 6940 | Pinus bungeana | 1950 |
Acer pictum subsp. mono | 3078 | Eriobotrya japonica | 759 |
Acer buergerianum | 2634 | ||
Punica granatum | 2631 | ||
Prunus cerasifera ‘Atropurpurea’ | 1134 | ||
Acer palmatum ‘Atropurpureum’ | 771 | ||
Prunus davidiana | 635 | ||
Acer palmatum | 260 | ||
Mean value | 6662 | Mean value | 5396 |
Shrubs | |||
Lonicera maackii | 1673 | Rosa (Floribundas Group) | 2349 |
Rosa xanthina | 1108 | Nandina domestica | 1765 |
Kerria japonica | 1058 | Photinia × fraseri | 1412 |
Spiraea salicifolia | 1029 | Pittosporum tobira | 1085 |
Chimonanthus praecox | 873 | Ligustrum quihoui | 1005 |
Forsythia suspensa | 733 | Buxus bodinieri | 972 |
Ligustrum sinense | 626 | Buxus sinica var. parvifolia | 639 |
Jasminum nudiflorum | 611 | Buxus megistophylla | 534 |
Amorpha fruticosa | 118 | Juniperus procumbens | 30 |
Weigela florida | 62 | Pyracantha fortuneana | 25 |
Mean value | 789 | Mean value | 897 |
Plant Species | Annual Carbon Sequestration (kg/km²) | Plant Species | Annual Carbon Sequestration (kg/km²) |
---|---|---|---|
Iris pseudacorus | 1013 | Miscanthus sinensis | 63 |
Physostegia virginiana | 432 | Ophiopogon japonicus | 52 |
Carex giraldiana Kukenth | 262 | Coreopsis basalis | 38 |
Zephyranthes candida | 256 | Lolium perenne | 32 |
Stipa lessingiana | 230 | Fatsia japonica | 27 |
Iris tectorum | 137 | Dianthus plumarius | 25 |
Miscanthus sinensis ‘Gracillimus’ | 123 | Ophiopogon bodinieri | 23 |
Pennisetum alopecuroides | 112 | Pennisetum alopecuroides ‘Little Bunny’ | 20 |
Oxalis corymbosa | 102 | Arundo donax ‘Versicolor’ | 11 |
Juncus effusus | 91 | Cynodon dactylon | 9 |
Hedera nepalensis var. sinensis | 86 | Poa annua | 4 |
Mean value 143 |
Research Site | Quadrat | Plant Community (the Number of Plants) | Annual Carbon Sequestration (kg/km²) |
---|---|---|---|
Site A | A1 | Salix babylonica (4) + Ligustrum lucidum (4) + Acer pictum subsp. Mono (3) + Cupressus funebris + Punica granatum (3) + Prunus persica (1) − Photinia × fraseri (1) + Amorpha fruticosa (3) + Ligustrum quihoui (1) + Spiraea salicifolia (1) + Lonicera maackii + Pyracantha fortuneana + Fatsia japonica + Kerria japonica | 49,925 |
A2 | Salix babylonica (4) + Acer buergerianum (4) − Pittosporum tobira (6) + Nandina domestica (8) + Photinia × fraseri (4) − Oxalis corymbosa + Iris tectorum + Ophiopogon bodinieri | 21,195 | |
A3 | Pinus bungeana (7) + Ligustrum lucidum (2) + Ulmus pumila (3) + Styphnolobium japonicum ‘Pendula ’(1) − Chimonanthus praecox (1) + Pyracantha fortuneana (2) + Spiraea salicifolia − Phyllostachys sulphurea var. viridis + Ophiopogon bodinieri | 22,593 | |
A4 | Pinus tabuliformis (5) + Ligustrum lucidum (3) − Lonicera maackii (3) + Chimonanthus praecox (1) + Ligustrum quihoui (1) + Photinia × fraseri (2) + Weigela florida (3) + Pittosporum tobira − Ophiopogon bodinieri | 17,427 | |
A5 | Pinus bungeana (6) + Celtis sinensis (2) + Punica granatum (1) + Photinia × fraseri (2) + Ligustrum lucidum (3) + Styphnolobium japonicum (1) + Pinus tabuliformis (3) − Spiraea salicifolia (2) + Lonicera maackii + Buxus bodinieri + Rosa xanthina − Fatsia japonica | 49,759 | |
A6 | Salix babylonica (4) + Punica granatum (1) + Prunus cerasifera ‘Atropurpurea’ (6) + Styphnolobium japonicum (2) + Ligustrum lucidum (4) − Pyracantha fortuneana (3) + Juniperus chinensis ‘Kaizuca’ | 36,857 | |
Site B | B1 | Styphnolobium japonicum (5) − Ilex chinensis (3) + Nandina domestica (2) + Rosa (Floribundas Group) (8) + Photinia × fraseri (2) − Iris pseudacorus + Carex giraldiana Kukenth + Miscanthus sinensis + Physostegia virginiana + Iris tectorum + Pennisetum alopecuroides + Poa annua | 1665 |
B2 | Ilex chinensis (5) + Nandina domestica (3) + Pittosporum tobira (6) + Photinia × fraseri (6) − Coreopsis basalis + Miscanthus sinensis ‘Gracillimus’ + Stipa lessingiana + Lolium perenne | 6308 |
Characteristic Factors of Plant Communities | Canopy Density | DBH | Hierarchical Structure | Community Density | Carbon Fixation |
---|---|---|---|---|---|
Canopy density | 1 | ||||
DBH | 0.828 * | 1 | |||
Hierarchical structure | 0.483 | 0.657 | 1 | ||
Community density | 0.820 * | 0.953 ** | 0.57 | 1 | |
Carbon fixation | 0.621 | 0.859 ** | 0.747 * | 0.889 ** | 1 |
Types of Plant Communities | Types of Application Sites | Layout Models | Vertical Layout Models |
---|---|---|---|
Tree–shrub–grass plant community | Park green space, residential green space, etc. | ||
Shrub–grass plant community | Square green space, road green space, etc. | ||
Ground cover plant communities | Road green space, roof greening, bioretention facilities, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Wang, J.; Han, D.; Gao, J.; Yao, Y. Research on Promoting Carbon Sequestration of Urban Green Space Distribution Characteristics and Planting Design Models in Xi’an. Sustainability 2023, 15, 572. https://doi.org/10.3390/su15010572
Fan L, Wang J, Han D, Gao J, Yao Y. Research on Promoting Carbon Sequestration of Urban Green Space Distribution Characteristics and Planting Design Models in Xi’an. Sustainability. 2023; 15(1):572. https://doi.org/10.3390/su15010572
Chicago/Turabian StyleFan, Liyixuan, Jingmao Wang, Du Han, Jie Gao, and Yingyu Yao. 2023. "Research on Promoting Carbon Sequestration of Urban Green Space Distribution Characteristics and Planting Design Models in Xi’an" Sustainability 15, no. 1: 572. https://doi.org/10.3390/su15010572
APA StyleFan, L., Wang, J., Han, D., Gao, J., & Yao, Y. (2023). Research on Promoting Carbon Sequestration of Urban Green Space Distribution Characteristics and Planting Design Models in Xi’an. Sustainability, 15(1), 572. https://doi.org/10.3390/su15010572