The Industrial Potential of Fique Cultivated in Colombia
Abstract
:1. Introduction
2. The Fique Plant
3. Fique Production System in Colombia
3.1. Fique Crop
3.2. Fique Postharvest
3.2.1. Leaf-Cutting
3.2.2. Leaf Defibration
3.2.3. Fiber Drying
4. Fique Plantations in Colombia
5. The Use of Fique Products
5.1. Fique Fibers: Targeted Product from the Beginning
5.1.1. Reinforcement in Composite Materials
5.1.2. Bioinsulators
5.1.3. Versatile Supports
5.1.4. Construction Material
5.2. Juice and Bagasse
5.2.1. Fique Bagasse
5.2.2. Fique Juice
6. Perspectives and Green Chemistry
7. Technology Transfer
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogužas, V.; Skinulienė, L.; Butkevičienė, L.M.; Steponavičienė, V.; Petrauskas, E.; Maršalkienė, N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants 2022, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Jarzebski, M.P.; Ahmed, A.; Boafo, Y.A.; Balde, B.S.; Chinangwa, L.; Saito, O.; von Maltitz, G.; Gasparatos, A. Food Security Impacts of Industrial Crop Production in Sub-Saharan Africa: A Systematic Review of the Impact Mechanisms. Food Secur. 2020, 12, 105–135. [Google Scholar] [CrossRef]
- Toloza-Moreno, D.L.; Villamizar-Rivero, L.F.; Cuartas-Otalora, P.E.; Barrera-Cubillos, G.P. Immunodetection of Furcraea Necrotic Streak Virus-FNSV in Fique Plants (Furcraea Macrophylla Baker) Using a Polyclonal Antibody IgY Produced in Chicken Egg Yolk. J. Immunol. Methods 2022, 503, 113232. [Google Scholar] [CrossRef] [PubMed]
- Gomez, T.S.; Zuluaga, S.; Jimenez, M.; de los Ángeles Navacerrada, M.; del Mar Barbero-Barrera, M.; de la Prida, D.; Restrepo-Osorio, A.; Fernández-Morales, P. Evaluation of Colombian Crops Fibrous Byproducts for Potential Applications in Sustainable Building Acoustics. Polymers 2020, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Escalante, H.; Castro, L.; Gauthier-Maradei, P.; De La Vega, R.R. Spatial Decision Support System to Evaluate Crop Residue Energy Potential by Anaerobic Digestion. Bioresour. Technol. 2016, 219, 80–90. [Google Scholar] [CrossRef]
- Rua, J.; Buchely, M.F.; Monteiro, S.N.; Echeverri, G.I.; Colorado, H.A. Impact Behavior of Laminated Composites Built with Fique Fibers and Epoxy Resin: A Mechanical Analysis Using Impact and Flexural Behavior. J. Mater. Res. Technol. 2021, 14, 428–438. [Google Scholar] [CrossRef]
- Guancha-Chalapud, M.A.; Serna-Cock, L.; Tirado, D.F. Hydrogels Are Reinforced with Colombian Fique Nanofibers to Improve Techno-Functional Properties for Agricultural Purposes. Agriculture 2022, 12, 117. [Google Scholar] [CrossRef]
- Ministerio de Agricultura. Cadena Agroindustrial Del Fique; Ministerio de Agricultura: Bogotá, Colombia, 2019.
- Benavides, O.L.; Arango, O.; Hurtado, A.M.; Rojas, M.C. Cuantificación de Sapogeninas Del Jugo Fresco y Fermentado de Fique (Furcraea Gigantea) Mediante Cromatografía Liquida de Alta Resolución (HPLC-PDA). Inf. Tecnológica 2012, 23, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Minambiente. Guía Ambiental Del Sector Fiquero, 2nd ed.; Cadena Productiva Nacional del Fique, Ed.; Ministerio de Ambiente, Vivienda y Desarrollo Territorial: Bogotá, Colombia, 2006; ISBN 958-97785-3-4.
- Minagricultura. Cadena Del Fique y Su Agroindustria; Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2018; Volume 19.
- Ministerio de Agricultura. Cadena Del Fique y Su Agroindustria; Ministerio de Agricultura: Bogotá, Colombia, 2018.
- Correa-Navarro, Y.M.; Giraldo, L.; Moreno-Piraján, J.C. Biochar from Fique Bagasse for Remotion of Caffeine and Diclofenac from Aqueous Solution. Molecules 2020, 25, 1849. [Google Scholar] [CrossRef] [Green Version]
- Echeverry, R.D.; Franco, L.M.; González, M.R. Fique En Colombia, 1st ed.; Fondo Editorial ITM: Medellín, Colombia, 2015; ISBN 978-958-8743-82-0. [Google Scholar]
- Echeverry Echeverry, R.; Franco Montoya, L.M. Hacia Una Política Pública Para El Sector Fiquero En Colombia, El Rol Del Estado y La Transferencia de Tecnología. Rev. Electrónica Gestión Las Pers. Y La Tecnol. 2015, 8, 29–43. [Google Scholar]
- Amaya Vergara, M.; Cortés Gómez, M.; Restrepo Restrepo, M.; Manrique Henao, J.; Pereira Soto, M.; Gañán Rojo, P.; Castro Herazo, C.; Zuluaga Gallego, R. Novel Biobased Textile Fiber from Colombian Agro-Industrial Waste Fiber. Molecules 2018, 23, 2640. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, D.M.; Cifuentes, G.C. El fique como aislante térmico. Biotecnol. Sect. Agropecu. Agroind. 2007, 5, 9–16. [Google Scholar]
- Gómez, S.A.; Cordoba, E.; Vega Mesa, C.; Gómez Becerra, S. Manufacture of Student Chair in Composite Material Reinforced with Fique Fiber. Sci. Tech. 2021, 26, 6–13. [Google Scholar] [CrossRef]
- de Moya, L.S. Exploración de La Viabilidad Para Uso de La Fibra de Fique Como Material Sostenible En El Reforzamiento Del Concreto. In Un Enfoque Eco-Amigable Como Alternativa de La Fibra de Polipropileno; Universidad Nacional de Colombia: Bogota, Colombia, 2021. [Google Scholar]
- Dorlhiac Hoeppner, G.A. Control de Tizón Tardío En Cultivo de Papa a Través de La Utilización de Biofungicida de Furcraea Spp.; Pontificia Universidad Católica de Valparaíso: Valparaiso, Chile, 2018. [Google Scholar]
- Lozano-Rivas, W. Uso Del Extracto de Fique (Furcraea Sp.) Como Coadyuvante de Coagulación En Tratamiento de Lixiviados. Rev. Int. Contam. Ambient. 2012, 28, 219–227. [Google Scholar]
- Lozano-Rivas, W.A.; Whiting, K.E.; Gómez-Lahoz, C.; Rodríguez-Maroto, J.M. Use of Glycosides Extracted from the Fique (Furcraea Sp.) in Wastewater Treatment for Textile Industry. Int. J. Environ. Sci. Technol. 2016, 13, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Correa-Navarro, Y.M.; Giraldo, L.; Moreno-Piraján, J.C. Dataset for Effect of PH on Caffeine and Diclofenac Adsorption from Aqueous Solution onto Fique Bagasse Biochars. Data Br. 2019, 25, 104111. [Google Scholar] [CrossRef]
- Correa-Navarro, Y.M.; Moreno-Piraján, J.C.; Giraldo, L. Processing of Fique Bagasse Waste into Modified Biochars for Adsorption of Caffeine and Sodium Diclofenac. Brazilian J. Chem. Eng. 2021, 39, 933–948. [Google Scholar] [CrossRef]
- Ovalle-Serrano, S.A.; Gómez, F.N.; Blanco-Tirado, C.; Combariza, M.Y. Isolation and Characterization of Cellulose Nanofibrils from Colombian Fique Decortication By-Products. Carbohydr. Polym. 2018, 189, 169–177. [Google Scholar] [CrossRef]
- Ortiz-González, D.; Paredes-Martínez, O.; García-Parra, M. Rehabilitation of Fique (Furcraea Macrophylla) Crop through Pruning “Descope” in Cauca, Colombia. Rev. Cent. Agrícola 2021, 48, 5–13. [Google Scholar]
- Bastidas, K.G.; Pereira, M.F.R.; Sierra, C.A.; Zea, H.R. Study and Characterization of the Lignocellulosic Fique (Furcraea Andina Spp.) Fiber. Cellulose 2022, 29, 2187–2198. [Google Scholar] [CrossRef]
- Zamoso, L.; Gaviria, J. El Fique y Los Empaques En Colombia; Fundación Mariano Ospina Pérez: Bogotá, Colombia, 1981. [Google Scholar]
- Ovalle-Serrano, S.A.; Blanco-Tirado, C.; Combariza, M.Y. Exploring the Composition of Raw and Delignified Colombian Fique Fibers, Tow and Pulp. Cellulose 2018, 25, 151–165. [Google Scholar] [CrossRef]
- Rojas-González, S.; García-Lozano, J.; Alarcón-Rojas, M. Propagación Asexual de Plantas. Conceptos Básicos y Experiencias Con Especies Amazónicas; Corpoica y Pronatta, Ed.; Produmedios: Bogotá, Colombia, 2004; ISBN 958-8210-57-7. [Google Scholar]
- Álvarez, A.; Zapata, A. Diagnóstico Agrotecnológico Del Cultivo Del Fique (Furcraea Sp.) En Dos Núcleos Veredales Del Departamento de Antioquia; Universidad Nacional de Colombia: Bogota, Colombia, 1990. [Google Scholar]
- Secretaría de Desarrollo Agropecuario y Fomento Económico y el Comité Cadena Productiva del Fique de Caldas. Cadena Productiva Del Fique; Manizales: Bogota, Colombia, 2002.
- Boix Aristu, E. Operaciones Básicas de Producción y Mantenimiento de Plantas En Viveros y Centros de Jardinería; Ediciones Paraninfo S.A.: Madrid, Spain, 2012. [Google Scholar]
- Acevedo-Osorio, A.; Martínez-Collazos, J. La Agricultura Familiar En Colombia. Estudios de Caso Desde La Multifuncionalidad y Su Aporte a La Paz; Fondo Editorial Ediciones Universidad Cooperativa de Colombia, Corporación Universitaria Minuto de Dios, Agrosolidaria.: Bogotá, Colombia, 2016; ISBN 978-958-760-047-6. [Google Scholar]
- Smith, A.; Beltrán-Acosta, C.; Cotes, A.M. Avances En El Estudio Del Virus de La Macana En El Cultivo de Fique (Furcraea Spp.), 1st ed.; Corpoica Mosquera: Cundinamarca, Colombia, 2013; ISBN 978-958-740-139-4. [Google Scholar]
- Peñaloza, N. Actualización, Ajuste y Validación de La Guía Ambiental Del Subsector Del Fique; Universidad de La Salle: Bogota, Colombia, 2005. [Google Scholar]
- Dirección de Cadenas Agrícolas y Forestales. Cadena Agroindustrial Del Fique; Dirección de Cadenas Agrícolas y Forestales: Bogotá, Colombia, 2021.
- Direccion de Cadenas Agricolas y Forestales. Diagnostico de La Cadena Del Fique y Su Agroindustria; Dirección de Cadenas Agrícolas y Forestales: Bogotá, Colombia, 2016.
- Mira, J. Intervew on Fique Sector in Colombia; Universidad Eafit: Medellin, Colombia, 2019; p. 1. [Google Scholar]
- Trujillo, E. Interview on Fique Sector in Antioquia; Universidad Eafit: Medellin, Colombia, 2019; p. 1. [Google Scholar]
- Gobernación de Antioquia. Anuario Estadístico Del Sector Agropecuario—Antioquia; Gobernación de Antioquia: Medelllín, Colombia, 2019.
- García-Orrego, F. Formulación, Evaluación y Apoyo En Presupuestos y Actividades Relacionadas Con Plantaciones; Universidad La Salle: Mexico City, Mexico, 2015. [Google Scholar]
- Global Market Insights. Cellulose Fiber Market Size By Application (Spun Yarn, Clothing, Fabrics), Industry Analysis Report, Regional Outlook (US, Canada, Germany, UK, France, Spain, Italy, China, India, Japan, Australia, Indonesia, Malaysia, Brazil, Mexico, South Africa, GCC); Global Market Insights: Ocean View, DL, USA, 2017. [Google Scholar]
- Echeverri Echeverri, R.D.; Franco Montoya, L.M.; González Velásquez, M.R. Fique En Colombia; Instituto Tecnológico Metropolitano: Antioquia, Colombia, 2015; ISBN 9789588743820. [Google Scholar]
- Komuraiah, A.; Kumar, N.S.; Prasad, B.D. Chemical Composition of Natural Fibers and Its Influence on Their Mechanical Properties. Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar] [CrossRef]
- Franck, R. Bast and Other Plant Fibers.; Woodhead Publishing Ltd.: London, UK, 2005. [Google Scholar]
- Buranov, A.U.; Mazza, G. Lignin in Straw of Herbaceous Crops. Ind. Crops Prod. 2008, 28, 237–259. [Google Scholar] [CrossRef]
- Müssig, J. Industrial Applications of Natural Fibres. Müssig, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; ISBN 9780470660324. [Google Scholar]
- Sfiligoj, M.; Hribernik, S.; Stana, K.; Kree, T. Plant Fibres for Textile and Technical Applications. In Advances in Agrophysical Research; InTech: London, UK, 2013. [Google Scholar]
- Kalia, S.; Kaith, B.S.; Kaur, I. Cellulose Fibers: Bio- and Nano-Polymer Composites; Kalia, S., Kaith, B.S., Kaur, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-17369-1. [Google Scholar]
- Van Dyk, J.S.; Pletschke, B.I. A Review of Lignocellulose Bioconversion Using Enzymatic Hydrolysis and Synergistic Cooperation between Enzymes—Factors Affecting Enzymes, Conversion and Synergy. Biotechnol. Adv. 2012, 30, 1458–1480. [Google Scholar] [CrossRef] [PubMed]
- Gomez, T.S.; Navacerrada, M.A.; Díaz, C.; Fernández-Morales, P. Fique Fibres as a Sustainable Material for Thermoacoustic Conditioning. Appl. Acoust. 2020, 164, 107240. [Google Scholar] [CrossRef]
- Muñoz-Vélez, M.; Hidalgo-Salazar, M.; Mina-Hernández, J. Effect of Content and Surface Modification of Fique Fibers on the Properties of a Low-Density Polyethylene (LDPE)-Al/Fique Composite. Polymers 2018, 10, 1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Suarez, S.A.; Córdoba-Tuta, E. Composite Materials Reinforced with Fique Fibers—A Review. Rev. UIS Ing. 2022, 21, 163–178. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Pereira, A.C.; da Costa Garcia Filho, F.; da Cruz Demosthenes, L.C.; Monteiro, S.N. Performance of Epoxy Matrix Reinforced with Fique Fibers in Pullout Tests. In Magnesium Technology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 729–734. [Google Scholar]
- Mina Hernandez, J.H.; Toro Perea, E.F.; Caicedo Mejía, K.; Meneses Jacobo, C.A. Effect of Fique Fibers in the Behavior of a New Biobased Composite from Renewable Mopa-Mopa Resin. Polymers 2020, 12, 1573. [Google Scholar] [CrossRef]
- Mina, J.H.; González, A.V.; Muñoz-Vélez, M.F. Micro- and Macromechanical Properties of a Composite with a Ternary PLA–PCL–TPS Matrix Reinforced with Short Fique Fibers. Polymers 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Navacerrada, M.A.; de la Prida, D.; Sesmero, A.; Pedrero, A.; Fernández-Morales, P. Acoustic and Thermal Behavior of Materials Based on Natural Fibers for Energy Efficiency in Buildings. Inf. la Construcción 2021, 73. [Google Scholar] [CrossRef]
- Rua, J.; Buchely, M.F.; Monteiro, S.N.; Colorado, H.A. Structure–Property Relation of Epoxy Resin with Fique Fibers: Dynamic Behavior Using Split-Hopkinson Pressure Bar and Charpy Tests; Springer: Berlin/Heidelberg, Germany, 2019; pp. 49–56. [Google Scholar]
- Hidalgo-Salazar, M.A.; Muñoz, M.F.; Mina, J.H. Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers. Int. J. Polym. Sci. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mina, J.; Anderson, S.; Bolaños, C.; Toro, E. Preparación y caracterización físico-química y térmica de mezclas binarias de resina Mopa-Mopa (elaegia pastoensis Mora) y policaprolactona (PCL). Rev. Latinoam. De Metal. Y Mater. 2012, 32, 176–184. [Google Scholar]
- Neves Monteiro, S.; Salgado de Assis, F.; Ferreira, C.; Tonini Simonassi, N.; Pondé Weber, R.; Souza Oliveira, M.; Colorado, H.; Camposo Pereira, A. Fique Fabric: A Promising Reinforcement for Polymer Composites. Polymers 2018, 10, 246. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.S.; da Luz, F.S.; Lopera, H.A.C.; Nascimento, L.F.C.; da Costa Garcia Filho, F.; Monteiro, S.N. Energy Absorption and Limit Velocity of Epoxy Composites Incorporated with Fique Fabric as Ballistic Armor—A Brief Report. Polymers 2021, 13, 2727. [Google Scholar] [CrossRef]
- Pereira, A.C.; de Assis, F.S.; da Costa Garcia Filho, F.; da Cruz Demosthenes, L.C.; Lopera, H.A.C.; Monteiro, S.N. Ballistic Test of Multilayered Armor with Intermediate Polyester Composite Reinforced with Fique Fabric. In Green Materials Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 161–167. [Google Scholar]
- Balador, Z.; Gjerde, M.; Isaacs, N.; Imani, M. Thermal and Acoustic Building Insulations from Agricultural Wastes. In Handbook of Ecomaterials; Springer International Publishing: Cham, Switzerland, 2019; pp. 2237–2257. [Google Scholar]
- García Sánchez, G.F.; Guzmán Lopez, R.E.; Restrepo Osorio, A.M.; Arroyo, E.H. Fique as Thermal Insulation Morphologic and Thermal Characterization of Fique Fibers. Cogent Eng. 2019, 6, 1579427. [Google Scholar] [CrossRef]
- Gil-Jaime, B.S.; Rojas-Sanabria, D.F. Aislante Termoacústico a Partir de Micelio, Fique y Heno; Universidad La Gran Colombia: Bogota, Colombia, 2021. [Google Scholar]
- Castellanos, L.J.; Blanco-Tirado, C.; Hinestroza, J.P.; Combariza, M.Y. In Situ Synthesis of Gold Nanoparticles Using Fique Natural Fibers as Template. Cellulose 2012, 19, 1933–1943. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Blanco-Tirado, C.; Hinestroza, J.P.; Combariza, M.Y. Biocomposite of Nanostructured MnO2 and Fique Fibers for Efficient Dye Degradation. Green Chem. 2013, 15, 2920. [Google Scholar] [CrossRef]
- Agudelo, N.; Hinestroza, J.P.; Husserl, J. Removal of Sodium and Chloride Ions from Aqueous Solutions Using Fique Fibers (Furcraea Spp.). Water Sci. Technol. 2016, 73, 1197–1201. [Google Scholar] [CrossRef]
- Bastidas G, K.G.; Sierra, C.A.; Ramirez, H.R.Z. Heterogeneous Fenton Oxidation of Orange II Using Iron Nanoparticles Supported on Natural and Functionalized Fique Fiber. J. Environ. Chem. Eng. 2018, 6, 4178–4188. [Google Scholar] [CrossRef]
- Llano, M.A.; Guzmán-Aponte, Á.; Cadavid-Mora, Y.; Buitrago-Sierra, R.; Cadena-Chamorro, E.M.; Santa, J.F. Eliminación Del Color de Las Soluciones de Tinte Índigo Carmín Utilizando Fibras Fique Modificadas Con Nanopartículas de ZnO. Respuestas 2020, 25, 147–158. [Google Scholar] [CrossRef]
- Quintero, M.; Castro, L.; Ortiz, C.; Guzmán, C.; Escalante, H. Enhancement of Starting up Anaerobic Digestion of Lignocellulosic Substrate: Fique’s Bagasse as an Example. Bioresour. Technol. 2012, 108, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Blandón, O.; Ramírez-Carmona, M.; Cuartas-Uribe, B.; Mendoza-Roca, J.A. Evaluation of Original and Enzyme-Modified Fique Fibers as an Azo Dye Biosorbent Material. Water 2022, 14, 1035. [Google Scholar] [CrossRef]
- Delvasto, S.; Toro, E.F.; Perdomo, F.; de Gutiérrez, R.M. An Appropriate Vacuum Technology for Manufacture of Corrugated Fique Fiber Reinforced Cementitious Sheets. Constr. Build. Mater. 2010, 24, 187–192. [Google Scholar] [CrossRef]
- Lima, P.R.L.; Barros, J.A.O. Exploring the Use of Cement Based Materials Reinforced with Sustainable Fibres for Structural Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 403–424. [Google Scholar]
- Correia, V.C.; Santos, S.F.; Tonoli, G.H.D.; Savastano, H. Characterization of Vegetable Fibers and Their Application in Cementitious Composites. In Nonconventional and Vernacular Construction Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 141–167. [Google Scholar]
- Tonoli, G.H.D.; Santos, S.F.; Savastano, H.; Delvasto, S.; Mejía de Gutiérrez, R.; de Murphy, M.D.M.L. Effects of Natural Weathering on Microstructure and Mineral Composition of Cementitious Roofing Tiles Reinforced with Fique Fibre. Cem. Concr. Compos. 2011, 33, 225–232. [Google Scholar] [CrossRef]
- Gómez-Hoyos, C.; Zuluaga, R.; Gañán, P.; Pique, T.M.; Vazquez, A. Cellulose Nanofibrils Extracted from Fique Fibers as Bio-Based Cement Additive. J. Clean. Prod. 2019, 235, 1540–1548. [Google Scholar] [CrossRef]
- Quinchia-Figueroa, A.; Ramírez-Carmona, M.; Tafurt-García, G. Biosorption of Chlorothalonil on Fique’s Bagasse (Furcraea Sp.): Equilibrium and Kinetic Studies. J. Mater. Sci. Eng. 2010, 4, 1–8. [Google Scholar]
- Escalante, H.; Guzman, C.; Castro, L. Anaerobic Digestion of Fique Bagasse: An Energy Alternative. Dyna 2014, 81, 74–85. [Google Scholar] [CrossRef]
- Escobar-Galvis, A.; Quira-Bolaños, N. Elaboración de Aglomerados a Partir Del Residuo Del Fique “Bagazo” En El Resguardo de Paniquita, Del Municipio de Totoro-Cauca; Corporación Universitaria Autónoma del Cauca: Cauca, Colombia, 2017. [Google Scholar]
- Valdés, C.F.; Gómez, C.A.; Ortiz, M.; Mena, D.; Ruiz, R.; Cogollo, K.; Mira, J.; Chejne, F. Thermochemical Evaluation of Fique Bagasse Waste (FBW) Resulting from Industrial Processes as an Energy Precursor through Combustion and Gasification. Biomass Convers. Biorefinery 2021, 21, 1–14. [Google Scholar] [CrossRef]
- Parra-Campos, A. Extracción e Incorporación de Micropartículas de Bagazo de Fique En Un Material Espumado Obtenido a Partir de Almidón de Yuca; Universidad Nacional de Colombia: Bogota, Colombia, 2020. [Google Scholar]
- Panamericana Formas e Impresos S.A. Cadena Productiva Nacional de Fique—Guía Ambiental de Subsector Fiquero; Panamericana Formas e Impresos S.A.: Bogota, Colombia, 2006. [Google Scholar]
- Velásquez Flórez, M.A.; Vélez Salazar, Y. Conceptual Design or a Plant of Extraction of Saponins Presents in the Fique’s Juice. Rev. Ing. 2020, 25, 50–67. [Google Scholar]
- Universidad Pontificia Bolivariana Centro de Estudios y de Investigación En Biotecnología—CIBIOT. Available online: https://www.upb.edu.co/es/investigacion/nuestro-sistema/grupos/grupo-investigaciones-biotecnologia-medellin (accessed on 24 August 2022).
- Jaramillo-Zapata, L. Evaluación Del Jugo de Fique Como Aditivo Oclusor de Aire y Su Influencia En La Durabilidad y Resistencia Del Concreto; Universidad Nacional de Colombia: Bogota, Colombia, 2009. [Google Scholar]
- Vasco-Echeverry, O.; Ramírez-Carmona, M.; Velez-Salazar, Y.; Giraldo-Ramírez, M. Producción de Bioetanol Empleando Fermentación Tradicional y Extractiva a Partir de Jugo de Fique. Hechos Microbiológicos 2009, 4, 91–97. [Google Scholar]
- Imbachí-Hoyos, J.F.; Morales-Velasco, S.; Albán-López, N. Utilización Del Subproducto Del Fique: Licor Verde, Como Controlador de Plagas En El Cultivo Del Repollo. Biotecnol. En El Sect. Agropecu. Y Agroind. 2012, 10, 109–115. [Google Scholar]
- Rojas Salas, M.C.; Luque Turriago, J.E. Biofungicida a Partir Del Jugo de Fique (Furcraea Spp.) y Evaluación de Su Efectividad Sobre La Gota (Phytopthora Infestans) En El Cultivo de Papa (Solanum Tuberosum). Rev. Educ. En Ing. 2012, 7, 13–22. [Google Scholar] [CrossRef]
- Santander, M.; Cerón, L.; Hurtado, A. Acción Biocida Del Jugo de Fique (Furcraea Gigantea Vent.) Sobre Colletotrichum Gloeosporioides Aislado de Tomate de Árbol (Solanum Betaceum Cav.). Agro. Sur. 2014, 42, 13–17. [Google Scholar] [CrossRef]
- Quinchia-Figueroa, A.; Ramírez-Carmona, M. Ensayos Para La Concentración de Saponinas Extraídas Del Jugo de Fique. Investig. Apl. 2009, 3, 1–7. [Google Scholar]
- Anastas, P.; Warner, J. Green Chemistry: Theory and Practice, 1st ed.; Oxford University Press: Oxford, UK, 2000; ISBN 978-0198506980. [Google Scholar]
- Franco, R.; Ordoñez, L. The Green Chemistry Approach in the Didactic Research of Experimental Sciences. His Approach in Latin American Journals: 2002–2018. Educ. Química 2020, 31, 84–104. [Google Scholar] [CrossRef]
- Ardanuy, M. Aplicaciones de Las Fibras Naturales En Los Textiles de Uso Técnico. Rev. química Text. 2010, 1, 46–53. [Google Scholar]
- Gobernación de Antioquia Plan y Acuerdo Estratégico Departamental En Ciencia, Tenología e Innovación. Available online: https://www.colciencias.gov.co/sites/default/files/upload/paginas/paed-antioquia-2016.pdf (accessed on 10 July 2022).
- Ministerio de Agricultura Plan Integral de Desarrollo Agropecuario y Rural Con Enfoque Territorial—Departamento de Antioquia. Available online: https://www.adr.gov.co/servicios/pidaret/ANTIOQUIA-TOMO1.pdf (accessed on 10 July 2022).
- Ministerio de Comercio industria y Turismo Colombia Productiva. Available online: https://m.maro.com.co (accessed on 2 June 2022).
- Congreso de la República de Colombia—Cámara de Representantes Proyecto de Ley de. 2018. Available online: http://www.andi.com.co/Uploads/PLPLASTICOSV3_636755635434025819.pdf (accessed on 12 July 2022).
- Didone, M.; Saxena, P.; Brilhuis-Meijer, E.; Tosello, G.; Bissacco, G.; Mcaloone, T.C.; Pigosso, D.C.A.; Howard, T.J. Moulded Pulp Manufacturing: Overview and Prospects for the Process Technology. Packag. Technol. Sci. 2017, 30, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Yang, B.; Liu, J.; Sun, B.; Cao, C.; Zou, X.; Lutes, R.; He, Z. Prospects for Replacement of Some Plastics in Packaging with Lignocellulose Materials: A Brief Review. BioResources 2018, 13, 4550–4576. [Google Scholar] [CrossRef] [Green Version]
- Hogarth, C. Moulded Pulp Packaging. In Paper and Paperboard Packaging Technology; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 414–422. [Google Scholar]
- Orjuela-Garzon, W.A.; Quintero, S.; Maldonado, M.U. Trends in the Use of Multi-Criteria Decision-Making Methods in Technology Transfer Processes (a Critic Review). Int. J. Agric. Ext. 2021, 9, 533–557. [Google Scholar] [CrossRef]
- Aliakbari Nouri, F.; Khalili Esbouei, S.; Antucheviciene, J. A Hybrid MCDM Approach Based on Fuzzy ANP and Fuzzy TOPSIS for Technology Selection. Informatica 2015, 26, 369–388. [Google Scholar] [CrossRef] [Green Version]
- Mankins, J.C. Technology Readiness Assessments: A Retrospective. Acta Astronaut. 2009, 65, 1216–1223. [Google Scholar] [CrossRef]
- Chou, J.-R. A Gestalt–Minimalism-Based Decision-Making Model for Evaluating Product Form Design. Int. J. Ind. Ergon. 2011, 41, 607–616. [Google Scholar] [CrossRef]
- García Sánchez, G.F.; Guzmán López, R.E.; Gonzalez-Lezcano, R.A. Fique as a Sustainable Material and Thermal Insulation for Buildings: Study of Its Decomposition and Thermal Conductivity. Sustainability 2021, 13, 7484. [Google Scholar] [CrossRef]
- Navia, D. Desarrollo de Un Material Para Empaques de Alimentos a Partir de Harina de Yuca y Fibra de Fique; Universidad del Valle: Valle del Cauca, Colombia, 2011. [Google Scholar]
- Mejía-Peralta, M.; Gutiérrez-Franco, J. Potencial de Mallas Tejidas En Fibras de Fique (Furcraea) Para La Protección Del Suelo y El Control de Erosión En Taludes; Universidad de La Salle: Bogota, Colombia, 2021. [Google Scholar]
- Castro, M.; Salazar, V. Evaluación de La Remoción Del Colorante RB46 Mediante Carbón Activado Partiendo de Fique a Nivel Laboratorio; Fundación Universidad de América: Bogota, Colombia, 2020. [Google Scholar]
- Marinas-Triana, M. Mezcla de Fibras Sintéticas y Fique En Propuestas Textiles de Tejido Plano Para Decoración de Hogar, Siguiendo El Concepto de Protección Dentro de Un Estilo Étnico Contemporáneo Colombiano; Universidad de los Andes: Bogota, Colombia, 2004. [Google Scholar]
- Aguirre, G.; Fuel, J. Mejoramiento de Las Propiedades Mecánicas de Suelos Finos Mediante La Adición de Residuos Provenientes de Fibras Vegetales; Universidad Militar Nueva Granada: Bogota, Colombia, 2020. [Google Scholar]
- Peláez, F. Suavizado de La Fibra de Fique Por Métodos Enzimáticos y Químicos; Universidad Pontificia Bolivariana: Medellín, Colombia, 2010. [Google Scholar]
- Páez Bonilla, K.M. Proceso de Suavizado a La Fibra Natural Cabuya Para La Aplicación En Una Línea de Accesorios de Moda; Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2020. [Google Scholar]
- Muñoz Velez, M.F.; Idalgo Salazar, M.A.; Mina Hernandez, J.H. Fibras de Fique Una Alternativa Para El Reforzamiento de Plásticos. Influencia de La Modificación Superficial. Biotecnol. En El Sect. Agropecu. Y Agroind. 2014, 12, 60–70. [Google Scholar]
- Porras, M.S.; Guzmán, S. Uso de Materiales Alternativos Para Mejorar La Resistencia Del Mortero de Pega de Mampostería Estructural (Fibra de Fique); Universidad La Gran Colombia: Bogota, Colombia, 2020. [Google Scholar]
- Muñoz, J.F. Denim Con Fique: Nueva Aplicación Textil. Univ. Científica 2017, 20, 8–11. [Google Scholar]
- Ramirez-Carmona, M.; Muñoz-Blandón, O. Agroindustrial Waste Cellulose Using Fermented Broth of White Rot Fungi. Rev. Mex. Ing. Química 2016, 15, 23–31. [Google Scholar]
- Cano, E.J.; Mujica, J.A. Producción de Etanol a Partir de Bagazo de Fique Por Fermentación En Estado Sólido; Universidad Pontificia Bolivariana: Medellín, Colombia, 2010. [Google Scholar]
- Pantoja, J.; Sánchezm, S.; Hoyos, J.L. Obtención de Un Alimento Extruido Para Tilapia Roja (Oreochromis Spp) Utilizando Ensilaje Biológico de Pescado. Biotecnol. En El Sect. Agropecu. Y Agroind. 2011, 9, 178–186. [Google Scholar]
- Ochoa, J.; Jaramillo, L. Uso Del Jugo de Fique Como Aditivo Orgánico En El Hormigón. Sci. Tech. 2007, 1, 455–459. [Google Scholar] [CrossRef]
- Dávila, D.T.; Hoyos, L. Del Jugo de Cabuya Furcraea Como Aditivo Para Mejorar La Resistencia a La Compresión Del Concreto; Universidad César Vallejo: Trujillo, Peru, 2019. [Google Scholar]
- Torres-Taborda, M. Evaluación de La Biotransformación de Saponinas En El Jugo de Fique; Universidad Pontificia Bolivariana: Medellin, Colombia, 2010. [Google Scholar]
- Gutierrez, A.M.; Torres, M.M.; Ramirez, M.E.; Velez, Y.; Cardona, M.; Vasco, O.H. Fermentación Alcohólica de Jugo de Fique Con Candida Lusitaniae. Investig. Apl. 2011, 5, 51–58. [Google Scholar]
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT); Compañía de Empaques S.A. Proyecto: Aprovechamiento Múltiple Del Fique 2007–2009; Centro de Estudios y de Investigación en Biotecnología (CIBIOT): Medellín, Colombia, 2009. [Google Scholar]
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT). Proyecto: Aprovechamiento Múltiple Del Fique 2009–2010; Centro de Estudios y de Investigación en Biotecnología (CIBIOT): Medellín, Colombia, 2010. [Google Scholar]
- Lozano, W.A. Uso Del Extracto de Fique (Furcraea Sp.) Como Coadyugante de Coagulación En El Tratamiento de Aguas Residuales Industriales y Como Disruptor Del Proceso de Nitrificación Para La Recuperación de Cuerpos de Agua Hipereutrofizados; Universidad Internacional de Andalucía: Sevilla, Spain, 2014. [Google Scholar]
Machine | 250–300 kg Fiber/Day | 400–500 kg Fiber/Day |
---|---|---|
Cutters | 1 | 2 |
Porters | 2 | 4–5 |
Machine Operators | 2 | 3 |
Planted Area (Ha) | Harvested Area (Ha) | Production (Ton) | Performance (Ton/Ha) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Department | 2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 |
Nariño | 5982 | 6134 | 6196 | 6200 | 5775 | 5947 | 6020 | 6162 | 7454 | 7742 | 8882 | 8730 | 1.29 | 1.30 | 1.48 | 1.48 |
Cauca | 5199 | 5283 | 5761 | 5780 | 5119 | 5346 | 5608 | 5798 | 7528 | 7537 | 7087 | 7043 | 1.47 | 1.41 | 1.26 | 1.26 |
Santander | 898 | 815 | 883 | 891 | 595 | 895 | 819 | 808 | 1356 | 1377 | 1259 | 1200 | 2.28 | 1.54 | 1.54 | 1.54 |
Antioquia | 2061 | 1991 | 2109 | 2150 | 683 | 761 | 788 | 793 | 1040 | 1123 | 1405 | 1400 | 1.52 | 1.48 | 1.78 | 1.78 |
Guajira | 314 | 370 | 612 | 630 | 77 | 269 | 282 | 282 | 385 | 1091 | 1115 | 1254 | 5.00 | 4.21 | 3.95 | 3.95 |
Risaralda | 102 | 106 | 59 | 71 | 106 | 106 | 59 | 63 | 85 | 85 | 47 | 45 | 0.80 | 0.80 | 0.80 | 0.80 |
Boyacá | 35 | 37 | 35 | 38 | 35 | 35 | 35 | 35 | 24 | 23 | 26 | 23 | 0.68 | 0.67 | 0.70 | 0.70 |
N. Santander | 14 | 14 | 14 | 16 | 6 | 6 | 6 | 6 | 3 | 3 | 4 | 4 | 0.50 | 0.50 | 0.67 | 0.67 |
Caldas | 1 | 12 | 12 | 14 | 1 | 1 | 4 | 4 | 1 | 1 | 4 | 4 | 1.00 | 1.00 | 1.02 | 1.02 |
Total | 14,610 | 14,760 | 15,680 | 15,790 | 12,397 | 13,366 | 13,621 | 13,951 | 17,886 | 18,982 | 19,829 | 19,703 | 1.62 | 1.43 | 1.47 | 1.47 |
Properties | Values | References |
---|---|---|
Young’s modulus (GPa) | 8.0–24.0 | [18,27] |
Tensile strength (MPa) | 200–600 | [4,19,52] |
Elasticity (%) | 3.2–5.7 | [19] |
Diameter (µm) | 150–320 | [4,52,53] |
Fiber density (g/cm3) | 0.6–1.1 | [4,52] |
Ultimate elongation (%) | 6.0–10.0 | [54,55] |
Application | Matrix | Year | Observations | Reference |
---|---|---|---|---|
A low-density polyethylene and aluminum (LDPE-Al)/Fique fiber composite. | Low-density polyethylene and aluminum (LDPE-Al) | 2015 |
| [60] |
A fique fabric-reinforced polyester composite. | Polyester resin | 2019 |
| [62] |
A fully biobased composite. | A natural resin from the Elaeagia Pastoensis Mora plant | 2020 |
| [56] |
(PLA)/(PCL)/(TPS)/Fique fiber Biocomposites. | Polylactic acid (PLA), polycaprolactone (PCL), and thermoplastic starch (TPS) | 2020 |
| [57] |
Polymer composites reinforced with natural fabric | DGEBA/TETA epoxy resin | 2021 |
| [63] |
The manufacture of a student chair with fique fiber reinforced composite material. | Polyester resin | 2021 |
| [18] |
A natural fiber reinforced laminated polymer composites | Epoxy resin | 2021 |
| [6] |
Application | Year | Observations | Reference |
---|---|---|---|
Thermal insulator material | 2019 | Thermal characterization | [66] |
Thermoacoustic insulator material | 2020 | Fique nonwovens sound absorption, flow resistivity, dynamic stiffness, thermal conductivity | [52] |
Thermal insulator material | 2007 | Morphological analysis, thermal conductivity, kinetic study of its thermal decomposition | [17] |
Thermoacoustic insulator material implementing mycelium, fique, and grass | 2021 | Thermal conductivity, thermal reflectance, and soundproofing | [67] |
Thermoacoustic insulator material implementing coconut, fique, and recycled cotton | 2021 | Thermal conductivity, dynamic stiffness, sound absorption | [58] |
Application | Year | Observations | Reference |
---|---|---|---|
Au nanoparticles/Fique fiber nanobiocomposite | 2012 | The material was testing to selectively remove sulfur compounds from complex mixtures | [68] |
MnO2-Fique fiber bionanocomposite to dye removal | 2013 | The bionanocomposite was able to remove up to 98%, in less than 5 min. | [69] |
Biosorbent to Removal of sodium and chloride | 2016 | The material exhibits high removal capacities (13.26 meq/g for chloride ions and 15.52 meq/g for sodium ions) | [70] |
Iron nanoparticles-Fique fiber biosorbent to the degradation and mineralization of Orange II | 2018 | The nanostructured maerial yield up to 93.23% Orange II degradation. | [71] |
ZnO nanoparticles-Fique fiber biosorbent to dye removal | 2020 | The highest color removal was 90% in 180 min. | [72] |
Activated carbon obtained from fique fibers to RB46 dye removal | 2020 | The highest RB46 color removal was 95% under dye concentrations of 100ppm. | [73] |
Enzyme modified-Fique fiber biosorbent to RB5 dye removal | 2022 | Enzyme-pretreated fique fibers presented the highest dye removal of 66.29%, representing a 36% increase in RB5 dye removal | [74] |
Application | Year | Observations | Reference |
---|---|---|---|
Fique fiber reinforced cementitious sheets | 2010 | Sheets reinforced with fique fibers shown better mechanical properties than asbesto reinforced ones. | [75] |
Cementitious roofing tiles reinforced with fique fiber | 2011 | Tiles were exposed during 14 years under weathering conditions and evaluated in terms of microstructure and physical properties. | [78] |
Fique cellulose nanofibers as bio-based cement additive | 2019 | The FCN act as viscosity-modifying agents in fresh cement pastes and as microcracking-preventing agents in cement pastes. | [79] |
Fiber fique as a sustainable material for concrete reinforcement. | 2021 | The fique fibers increased the flexural strength of concrete | [19] |
Application | Observations | Year | Reference |
---|---|---|---|
Chlorothalonil biosorbent | The fique bagasse is a material with potential to be used in adsorption of pollutants. | 2010 | [80] |
Biogas production | The fique bagasse generates about 0.21 million m3 CH4/year | 2012, 2014 | [73,81] |
Particleboard production | Potential applications in furnitures manufacturing. | 2017 | [82] |
Fique cellulose nanofiber/silver nanoparticle (Ag NP) hydrogels | Potential applications in biomedicine. | 2018 | [29] |
Biochar production | The material was evaluated on caffeine and diclofenac adsorption processes. | 2019, 2020 | [13,23,24] |
Energy precursor through combustion and gasification | The bagasse showed a thermal efficiency greater than 90% and a potential of use as energy close to 80% in the combustion gasses. | 2021 | [83] |
Foamed material obtained from cassava starch | The incorporation of the bagasse increased the expansion index, density, compressibility and water absorption. | 2020 | [84] |
Application | Observations | Year | Reference |
---|---|---|---|
Saponin extraction and its use as a fungicide. | Saponin is extracted by a foaming technique and used to control Phytopthora infestans. | 2007–2010 | [87] |
Cement concret Additive | Adequate compression strengths and voids parameters can be obtained adding 5% of liquor in concrete mixes. The additive improves the resistance to sulfates and carbonation. | 2009 | [88] |
Adjuvant of coagulation to the treatment of leachate from landfill. | This additive improved on 15% removal of turbidity and COD of 9% | 2012 | [21] |
Bioethanol production | Bioethanol produced by Clavispora lusitaniae, a fique native yeast | 2013 | [89] |
Plant disease control | Control to Phytopthora infestans, Colletotrichum gloeosporioides, and Hemileia vastatrix phytopathogens | 2012, 2014 | [90,91,92] |
Sapogenic amphiphilic glycosides as a coagulation–flocculation aid. | This coagulation-flocculation aid causes an additional color and turbidity reduction of 31 and 17%, respectively. | 2016 | [22] |
Criteria | Likert Scale | ||
---|---|---|---|
1 | 3 | 5 | |
Technologies or similar products on the market (C2) | Numerous technologies on the market | Moderate technologies on the market | There is no evidence of these technologies on the market |
Benefits and added value (C3) | Does not replace already known technologies | Moderate technology substitution potential | Replaces already known technologies |
Application sectors (C4) | 1 applicable market sector | 2 applicable market sectors | 3 or more applicable market sectors |
Aplication | Location | Ref. | C1 | C2 | C3 | C4 | Score |
---|---|---|---|---|---|---|---|
Synthesis of gold nanoparticles on the surface of natural fique fibers, materials for the textile and packaging industry, and fillers for fiber-reinforced composites. | Santander, Colombia | [68] | 5 | 5 | 1 | 5 | 3.87 |
Development of materials with an elastic frame behavior used for thermal insulation, acoustic impact reduction, and acoustic absorption above 1000 Hz. | Antioquia, Colombia | [52] | 5 | 3 | 3 | 1 | 3.13 |
Fique as a sustainable material and thermal insulation for buildings. | Santander, Colombia | [108] | 3 | 3 | 5 | 1 | 3.18 |
Production of cellulose nanofibrils extracted from fique fibers that act as viscosity modifying agents in fresh cement pastes and as microcracking preventive agents in cement pastes exposed to high temperatures. | Antioquia, Colombia | [79] | 5 | 5 | 5 | 1 | 4.22 |
Absorbent hydrogel (AHR3) to improve water retention capacity and irrigation frequency reduction by up to 90%. Improved soil compaction and reduced fertilizer loss. | Valle del Cauca, Colombia | [7] | 6 | 3 | 5 | 1 | 3.95 |
Manufacture of chairs for students in composite reinforced with five layers of fique fiber. | Santander, Colombia | [54] | 7 | 5 | 1 | 1 | 3.61 |
Development of a semi-rigid bioplastic material based on cassava flour with mechanical, thermal, and water adsorption properties suitable for its application as food packaging. | Valle del Cauca, Colombia | [109] | 7 | 1 | 1 | 1 | 2.55 |
Obtaining viscose rayon from fique with potential application in the Colombian textile sector | Antioquia, Colombia | [16] | 4 | 5 | 3 | 1 | 3.40 |
Potential of meshes woven in fique fibers (furcraea) for soil protection and erosion control on slopes | Cundinamarca, Colombia | [110] | 5 | 5 | 5 | 1 | 4.22 |
Activated carbon obtained from fique, through the chemical activation technique, capable of removing RB46 dye from water by 95% under concentrations of 100ppm. | Cundinamarca, Colombia | [111] | 3 | 3 | 1 | 1 | 2.04 |
Development of an ethnic concept and added value to the national textile with an experimentation with Colombian sustainable textile fibers. | Cundinamarca, Colombia | [112] | 3 | 1 | 1 | 1 | 1.52 |
Use of fique fiber waste, as a natural fiber par excellence added to fine soils in order to improve its mechanical properties. | Cundinamarca, Colombia | [113] | 3 | 1 | 1 | 1 | 1.52 |
Fique fiber softening treatment, suitable for dyeing and finishing processes, since it is a substrate for reactive dyes, softeners and textile auxiliaries applied in the industry. | Antioquia, Colombia | [114] | 4 | 1 | 1 | 3 | 2.16 |
Smoothing process for the manufacture of bags, which allows handling and is comfortable in contact with the user. | Tungurahua, Ecuador | [115] | 4 | 1 | 1 | 1 | 1.78 |
Fique fibers as reinforcement of polymeric matrices, in particular polyethylene, using surface modifications from chemical treatments. | Valle del Cauca, Colombia | [116] | 5 | 1 | 5 | 1 | 3.17 |
Fique as a component in structural masonry glue to obtain greater resistance and durability in constructions. | Cundinamarca, Colombia | [117] | 5 | 5 | 5 | 1 | 4.22 |
Obtaining a fine, soft and flexible fiber from chemical, enzymatic and softening methods, for future use in the production of threads and textile bases for the diversification of its applications in clothing such as denim. | Antioquia, Colombia | [118] | 5 | 3 | 3 | 1 | 3.13 |
Fique fiber modified with enzymes to retain RB5 dye by adsorption and convert it into a promising biosorbent for the removal of azo dyes, with additional applications in textile wastewater treatment. | Valencia, España | [74] | 4 | 3 | 5 | 1 | 3.44 |
Fabric based on fique fibers from the leaves of the Furcraea andina as reinforcement for polymeric compounds used in a multilayer armor system (MAS). | Brasil | [63] | 3 | 5 | 5 | 1 | 3.71 |
Fique fibers as reinforcement of a Charpy impact epoxy resin material. The potential of compounds made with this type of reinforcement is wide and with particular applications in the automotive industry in which reliability, weight, cost reduction, and material sources. | Antioquia, Colombia; Misuri, Estados Unidos; Rio de Janeiro, Brasil | [6] | 5 | 1 | 5 | 5 | 3.94 |
Extraction of cellulose nanofibrils (CNF) from delignified fique tow. The results showed that their properties make them suitable materials for applications such as surfactant additives for the oil industry, raw materials to synthesize hydrophobic compounds or production of new nano and microfibers in spinning processes, among others. | Santander, Colombia | [25] | 6 | 3 | 3 | 5 | 4.16 |
Coconut fiber and fique emerge as an alternative, improving the sustainability of the construction sector with acoustic absorption panels. | Antioquia, Colombia; Madrid, España | [4] | 3 | 3 | 3 | 1 | 2.61 |
Development of a totally bio-based compound using a natural resin from the Elaeagia Pastoensis Mora plant, known as Mopa-Mopa reinforced with fique fibers. | Valle del Cauca, Colombia | [56] | 6 | 5 | 5 | 5 | 5.26 |
Separation of cellulose from fique gravel using fermented broth of different ligninolytic fungi, this process is useful for the exploitation of cellulose as raw material or the development of materials based on natural cellulose. | Antioquia, Colombia | [119] | 4 | 5 | 5 | 3 | 4.35 |
Aplication | Location | Ref. | C1 | C2 | C3 | C4 | Score |
---|---|---|---|---|---|---|---|
Gas as a potential source of heat or as fuel for energy generation in internal combustion engines and micro turbines. | Huila, Colombia | [83] | 4 | 3 | 5 | 3 | 3.83 |
Agglomerate from bagasse, using the green liquor from fique to mix it with a twin resin and obtain the binder with lower proportions of formaldehyde with which the fique residue was compacted. | Cauca, Colombia | [82] | 5 | 1 | 3 | 3 | 2.99 |
Extraction and incorporation of fique bagasse microparticles in a foamed material obtained from cassava starch | Valle del Cauca, Colombia | [84] | 4 | 5 | 5 | 3 | 4.35 |
Vegetal charcoal from fique bagasse for removal of caffeine and diclofenac from aqueous solution. Alternative material to capture contaminants from water. | Cundinamarca, Colombia | [13] | 3 | 5 | 5 | 1 | 3.71 |
Raw bagasse, washed and thermoactivated (RFB, WFB and ACFB), has the potential to be used in the adsorption of polychlorinated pesticides such as chlorothalonil. | Antioquia, Colombia | [80] | 5 | 5 | 5 | 1 | 4.22 |
Production of biogas from bagasse on a laboratory scale through the anaerobic digestion process using a mixture of ruminal fluid and pig manure sludge as inoculum. Bagasse is a potential residual source of renewable energy. | Santander, Colombia | [81] | 6 | 3 | 5 | 1 | 3.95 |
Ethanol production from fique bagasse using Rhizopus stolonifer by solid-state fermentation, with a fermentation time of 38 days at room temperature in a rotary reactor. | Antioquia, Colombia | [120] | 5 | 1 | 3 | 5 | 3.38 |
Aplication | Location | Ref. | C1 | C2 | C3 | C4 | Score |
---|---|---|---|---|---|---|---|
Biofungicide to prevent gout (Phytophthora infestans) in potato crops. | Nariño, Colombia | [91] | 4 | 1 | 1 | 1 | 1.78 |
Pest controller in cabbage cultivation to improve color and resistance. | Cauca, Colombia | [90] | 3 | 1 | 1 | 1 | 1.52 |
Biocides produced with Furcraea gigantea Vent. to control the phytopathogen Colletotrichum gloeosporioides (In vitro). | Nariño, Colombia | [92] | 2 | 1 | 1 | 1 | 1.26 |
Biocidal capacity of fermented fique juice to control the growth and development of rust in coffee. | Nariño, Colombia | [121] | 3 | 1 | 1 | 1 | 1.52 |
Fique juice as an air occluder as an interferent in the capillary network to reduce permeability and the entry of aggressive agents into concrete and mortar. | Antioquia, Colombia | [88] | 3 | 5 | 1 | 1 | 2.57 |
Fique juice as an air-occluding additive to reduce exudation and density in the fresh state. | Antioquia, Colombia | [122] | 5 | 3 | 3 | 1 | 3.13 |
Bioethanol production from fique juice using Clavispora lusitaniae and Saccharomyces cerevisiae. | Antioquia, Colombia | [89] | 6 | 5 | 3 | 1 | 3.92 |
Fique juice as an organic additive incorporated into concrete to increase its resistance over time. | San Martín, Perú | [123] | 3 | 3 | 5 | 1 | 3.18 |
Steroid synthesis using chemical and biological transformation methods from p-sitosterol, sapogenins, and saponins present in fique juice. | Antioquia, Colombia | [124] | 3 | 5 | 1 | 1 | 2.57 |
Ethanol production using fique juice fermented with Candida lusitaniae, an alternative using other substrates that do not compete with the food industry. | Antioquia, Colombia | [125] | 6 | 5 | 3 | 5 | 4.69 |
Biotransformation of fique juice for the industrial production of natural steroids or analogs under optimal operating conditions and purification of the final product. | Antioquia, Colombia | [126] | 5 | 5 | 1 | 1 | 3.09 |
Technology for the separation of fique juice as a raw material for industry: ethanol production, biopesticides. | Antioquia, Colombia | [127] | 6 | 1 | 1 | 3 | 2.68 |
Use of the substances extracted from fique juice as a coagulation aid for improving the physicochemical treatment of industrial wastewater. | La Rábida, España | [128] | 4 | 5 | 5 | 1 | 3.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendón-Castrillón, L.; Ramírez-Carmona, M.; Ocampo-López, C.; Pinedo-Rangel, V.; Muñoz-Blandón, O.; Trujillo-Aramburo, E. The Industrial Potential of Fique Cultivated in Colombia. Sustainability 2023, 15, 695. https://doi.org/10.3390/su15010695
Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C, Pinedo-Rangel V, Muñoz-Blandón O, Trujillo-Aramburo E. The Industrial Potential of Fique Cultivated in Colombia. Sustainability. 2023; 15(1):695. https://doi.org/10.3390/su15010695
Chicago/Turabian StyleRendón-Castrillón, Leidy, Margarita Ramírez-Carmona, Carlos Ocampo-López, Valentina Pinedo-Rangel, Oscar Muñoz-Blandón, and Eduardo Trujillo-Aramburo. 2023. "The Industrial Potential of Fique Cultivated in Colombia" Sustainability 15, no. 1: 695. https://doi.org/10.3390/su15010695
APA StyleRendón-Castrillón, L., Ramírez-Carmona, M., Ocampo-López, C., Pinedo-Rangel, V., Muñoz-Blandón, O., & Trujillo-Aramburo, E. (2023). The Industrial Potential of Fique Cultivated in Colombia. Sustainability, 15(1), 695. https://doi.org/10.3390/su15010695