A Network-Level Methodology for Evaluating the Hydraulic Quality Index of Road Pavement Surfaces
Abstract
:1. Introduction
- -
- Low gravity: The depression depth is less than 6 mm. Problems with aquaplaning and accidents in the wet are unlikely;
- -
- Moderate gravity: The depression depth is between 7 and 12 mm. An inadequate cross slope can cause aquaplaning and accidents in rainy weather;
- -
- High gravity: The depression depth is greater than 13 mm. The likelihood of aquaplaning and accidents in the wet is very high.
2. Proposed Methodology
- -
- Hydraulic coefficient (CH), depending on the geometric characteristics of the pavement, on the intensity of rain and, thus, on the return period, and the texture characteristics, described in terms of TXD;
- -
- Physical coefficient (CP), related to the severity of irregularities and their extension with respect to the area of the analysis.
- -
- Vpi is the aquaplaning speed for a fixed return period Tx (as a function of slope, s, and drainage path, L);
- -
- Vl is the legal speed, depending on the maximum allowable speed for the selected road during rain;
- -
- TXDi is the measured texture depth on the selected segment;
- -
- TXDref is a fixed value of the texture depth, assumed as a reference for the considered network;
- -
- k is a numerical coefficient calibrated as a function of the road classification and its relevance.
3. Numerical Applications and Discussions
- Road typology: A—motorway (autostrada), C—secondary highway (extraurbana secondaria), and F—local rural road (locale), classified according to the Italian Standards (MIT, 2001) [45];
- Density and severity of ruts and depressions (low, medium, and high);
- TXD (fine, medium, and coarse).
- -
- k = 1.7 (road type A), k = 1.5 (C), and k = 1.3 (F);
- -
- RDmax = 12 mm (A), 15 mm (C), and 20 mm (F);
- -
- Speed limit during rain, Vl = 110 km/h (A), Vl = 70 km/h (C), and Vl = 50 km/h (F).
- Traditional asphalt pavements;
- Length of the homogeneous hydraulic segment, Ls (125 m);
- Width of the hydraulic carriageway, w (varying with the road section);
- Grade (2.1%);
- Slope (2.5%).
- Tire pressure (180 kPa);
- tread depth (0.5 mm).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, J.; Zhang, H.; Hui, B. Analysis of the lateral slope’s impact on the calculation of water-filled rut depth. PLoS ONE 2020, 15, e0243952. [Google Scholar] [CrossRef] [PubMed]
- Mataei, B.; Nejad, F.M.; Zahedi, M.; Zakeri, H. Evaluation of pavement surface drainage using an automated image acquisition and processing system. Autom. Constr. 2018, 86, 240–255. [Google Scholar] [CrossRef]
- Cerezo, V.; Gothié, M.; Menissier, M.; Gibrat, T. Hydroplaning speed and infrastructure characteristics. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Wang, K.C.; Li, L.; Li, Q.J.; Moravec, M. Surface drainage evaluation for rigid pavements using an inertial measurement unit and 1-mm three-dimensional texture data. Transp. Res. Rec. 2014, 2457, 121–128. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Zou, Y.; Qi, Q.; Tan, K.; Santamouris, M.; He, B. Performance synergism of pervious pavement on stormwater management and urban heat island mitigation: A review of its benefits, key parameters, and co-benefits approach. Water Res. 2022, 221, 118755. [Google Scholar] [CrossRef]
- Sansalone, J.; Kuang, X.; Ying, G.; Ranieri, V. Filtration and clogging of permeable pavement loaded by urban drainage. Water Res. 2012, 46, 6763–6774. [Google Scholar] [CrossRef]
- Lee, H.S.; Carvajal, M.; Holzschuher, C.; Choubane, B. Florida department of transportation’s enhanced hydroplaning prediction tool. Transp. Res. Rec. 2021, 2675, 340–352. [Google Scholar] [CrossRef]
- Anderson, D.A.; Huebner, R.S.; Reed, J.R.; Warner, J.C.; Henry, J.J. Improved Surface Drainage of Pavements; Project 1-29, Contractor Final Report, PTI 9825; Transportation Research Board: Washington, DC, USA, 1998. [Google Scholar]
- Chesterton, J.; Nancekivell, N.; Tunnicliffe, N. The Use of the Gallaway Formula for Aquaplaning Evaluation in New Zealand. In Proceedings of the NZIHT Transit NZ 8th Annual Conference, Auckland, New Zealand, 15–17 October 2006; p. 22. [Google Scholar]
- Jayasooriya, W.; Gunaratne, M. Evaluation of widely used hydroplaning risk prediction methods using Florida’s past crash data. Transp. Res. Rec. 2014, 2457, 140–150. [Google Scholar] [CrossRef]
- Gallaway, B.M.; Ivey, D.L.; Hayes, G.; Ledbetter, W.B.; Olson, R.M.; Woods, D.L.; Schiller, R.F., Jr. Pavement and Geometric Design Criteria for Minimizing Hydroplaning; Publication FHWA-RD-79-31 FHWA; U.S. Department of Transportation: Washington, DC, USA, 1979.
- Agrawal, S.K.; Meyer, W.E.; Henry, J.J. Measurement of Hydroplaning Potential; PTI-7701 Final Rpt., FHWA/PA-72/6; National Technical Information Service: Alexandria, VA, USA, 1977.
- Horne, W.B.; Ivey, D.L.; Yager, T.J. Recent Studies to Investigate Effects of Tire Footprint Aspect Ratio on Dynamic Hydroplaning Speed; ASTM International: West Conshohocken, PA, USA, 1986; pp. 26–46. [Google Scholar]
- Gengenbach, W. Experimentelle Untersuchung von Raifen auf nasser Fahrbahn (Experimental Investigation of Tires on Wet Pavements). Automobiltechnische 1968, 70, 83–89, 288–293, 310–316. [Google Scholar]
- Russam, K.; Ross, N.F. The depth of rainwater on road surfaces. Ministry of Transport Report No.LR. Road Res. Lab. 1968, 236, 25. [Google Scholar]
- AASHTO. A Policy on Geometric Design of Highways and Street; AASHTO: Washington, DC, USA, 1990. [Google Scholar]
- Huebner, R.S.; Reed, J.R.; Henry, J. Criteria for predicting hydroplaning potential. J. Transp. Eng. 1986, 112, 549–553. [Google Scholar] [CrossRef]
- Gunaratne, M.; Lu, Q.; Yang, J.; Metz, J.; Jayasooriya, W.; Yassin, M.; Amarasiri, S. Hydroplaning on Multi Lane Facilities; University of South Florida; Department of Civil and Environmental Engineering: Tampa, FL, USA, 2012. [Google Scholar]
- Tan, S.A.; Fwa, T.F.; Chai, C. Drainage Considerations for Porous Drainage Considerations for Porous. J. Transp. Res. Board 2004, 1868, 142–149. [Google Scholar] [CrossRef]
- Luo, W.; Li, L. Estimation of water film depth for rutting pavement using IMU and 3D laser imaging data. Int. J. Pavement Eng. 2021, 22, 1334–1349. [Google Scholar] [CrossRef]
- Luo, W.; Wang, K.C.; Li, L. Field test validation of water film depth (WFD) prediction models for pavement surface drainage. Int. J. Pavement Eng. 2019, 20, 1170–1181. [Google Scholar] [CrossRef]
- Ong, G.P.; Fwa, T.F.; Guo, J. Modeling hydroplaning and effects of pavement microtexture. Transp. Res. Rec. 2005, 1905, 166–176. [Google Scholar] [CrossRef]
- Ong, G.P.; Fwa, T.F. Effectiveness of transverse and longitudinal pavement grooving in wet-skidding control. Transp. Res. Rec. 2007, 2005, 172–182. [Google Scholar] [CrossRef]
- Ong, G.P.; Fwa, T.F. Wet-pavement hydroplaning risk and skid resistance: Modeling. J. Transp. Eng. 2007, 133, 590–598. [Google Scholar] [CrossRef]
- Fwa, T.F.; Kumar, S.S.; Anupam, K.; Ong, G.P. Effectiveness of tire-tread patterns in reducing the risk of hydroplaning. Transp. Res. Rec. 2009, 2094, 91–102. [Google Scholar] [CrossRef]
- Chu, L.; Fwa, T.F. Incorporating pavement skid resistance and hydroplaning risk considerations in asphalt mix design. J. Transp. Eng. 2016, 142, 04016039. [Google Scholar] [CrossRef]
- Luo, W.; Li, L. Development of a new analytical water film depth (WFD) prediction model for asphalt pavement drainage evaluation. Constr. Build. Mater. 2019, 530–542. [Google Scholar] [CrossRef]
- Luo, W.; Li, L.; Wang, K.C.P.; Wei, C. Surface drainage evaluation of asphalt pavement using a new analytical water film depth model. Road Mater Pavement Des. 2020, 21, 1985–2004. [Google Scholar] [CrossRef]
- Alber, S.; Schuck, B.; Ressel, W.; Behnke, R.; Canon Falla, G.; Kaliske, M.; Leischner, S.; Wellner, F. Modeling of surface drainage during the service life of asphalt pavements showing long-term rutting: A modular hydromechanical approach. Adv. Mater. Sci. Eng. 2020, 2020, 8793652. [Google Scholar] [CrossRef]
- Fwa, T.F.; Pasindu, H.R.; Ong, G.P. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration. J. Transp. Eng. 2012, 138, 423. [Google Scholar] [CrossRef]
- Barksdale, R.D. Laboratory evaluation of rutting in base course materials. In Proceedings of the Third International Conference on the Structural Design of Asphalt Pavements, Grosvenor House, Park Lane, London, UK, 11–15 September 1972. [Google Scholar]
- Lister, N.W.; Addis, R.R. Field Observations of Rutting and Practical Implications. Transp. Res. Rec. J. Transp. Res. Board 1977, 640, 28–34. [Google Scholar]
- Balmer, G.G.; Gallaway, B.M. Pavement Design and Controls for Minimizing Automotive Hydroplaning and Increasing Traction; ASTM International Special Technical Publications; ASTM International: West Conshohocken, PA, USA, 1983. [Google Scholar]
- Sousa, J.B.; Craus, J.; Monismith, C.L. Summary Report on Permanent Deformation in Asphalt Concrete; Strategic Highway Research Program (SHRP); National Research Council: Washington, DC, USA; Institute of Transportation Studies University of California: Berkeley, CA, USA, 1991. [Google Scholar]
- Hicks, R.G.; Moulthrop, J.S.; Daleiden, J. Selecting a preventive maintenance treatment for flexible pavements. Transp. Res. Rec. 1999, 1680, 1–12. [Google Scholar] [CrossRef] [Green Version]
- UFC (Unified Facilities Criteria). Paver Asphalt Surfaced Airfields Pavement Condition Index (PCI); Departement of Defense: Washington, DC, USA, 2001.
- Bosurgi, G.; Pellegrino, O.; Sollazzo, G. Pavement condition information modelling in an I-BIM environment. Int. J. Pavement Eng. 2021, 23, 4803–4818. [Google Scholar] [CrossRef]
- Praticò, F.G.; Bosurgi, G.; Bruneo, D.; Cafiso, S.; De Vita, F.; Di Graziano, A.; Fedele, R.; Pellegrino, O.; Sollazzo, G. Innovative smart road management systems in the urban context: Integrating smart sensors and miniaturized sensing systems. Struct. Control. Health Monit. 2022, 29, e3044. [Google Scholar] [CrossRef]
- Chu, L.; Fwa, T.F.; Ong, G.P. Evaluating hydroplaning potential of rutted highway pavements. J. East. Asia Soc. Transp. Stud. 2015, 11, 1613–1622. [Google Scholar]
- Ding, Y.; Wang, H. Evaluation of hydroplaning risk on permeable friction course using tire–water–pavement interaction model. Transp. Res. Rec. 2018, 2672, 408–417. [Google Scholar] [CrossRef]
- Li, Y.; Che, P.; Liu, C.; Wu, D.; Du, Y. Cross-scene pavement distress detection by a novel transfer learning framework. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 1398–1415. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, H.; Li, S. Pavement anomaly detection based on transformer and self-supervised learning. Autom. Constr. 2022, 143, 104544. [Google Scholar] [CrossRef]
- Bosurgi, G.; Bruneo, D.; De Vita, F.; Pellegrino, O.; Sollazzo, G. A web platform for the management of road survey and maintenance information: A preliminary step towards smart road management systems. Struct. Control Health Monit. 2022, 29, e2905. [Google Scholar] [CrossRef]
- Bosurgi, G.; Modica, M.; Pellegrino, O.; Sollazzo, G. An automatic pothole detection algorithm using pavement 3D data. Int. J. Pavement Eng. 2022, 1–15. [Google Scholar] [CrossRef]
- MIT. Italian Road Standards. Norme Funzionali e Geometriche per la Costruzione delle Strade. Decree of Ministro Infrastrutture e Trasporti 5 November 2001. Available online: https://www.gazzettaufficiale.it/eli/gu/2002/01/04/3/so/5/sg/pdf (accessed on 4 January 2002). (In Italian).
- Bosurgi, G.; Celauro, C.; Pellegrino, O.; Rustica, N.; Giuseppe, S. The BIM (Building Information Modeling)-Based Approach for Road Pavement Maintenance. In Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE) (Lecture Notes in Civil Engineering 48); Pasetto, M., Partl, M., Tebaldi, G., Eds.; ISAP APE 2019; Springer: Cham, Switzerland, 2020. [Google Scholar]
(1) Roadway and Pavement Parameters | (2) Environmental Factors | (3) Driving Factors | (4) Vehicle Factors |
---|---|---|---|
|
|
|
|
Author | Formula | |
---|---|---|
Gallaway et al. [11] | (1) | |
Agrawal et al. [12] | (2) | |
Agrawal et al. [12] | (3) | |
NASA-modified equation [13] | (4) | |
Gengebach [14] | (5) |
Empirical Models | Formula | |
---|---|---|
RLL method [15] | (6) | |
Equation Modified New Zealand [9] | (7) | |
PAVDRN model [16] | (8) | |
Gallaway [11] | (9) | |
Analytical Models | Formula | |
PAVDRN model [16] | (10) |
Severity | All Pavement Sections |
---|---|
Low | ≤1/4 to 1/2 inch (≤6.4 to 12.7 mm) |
Medium | >1/2 inch ≤ 1 inch (>12.7 mm ≤ 25.4 mm) |
High | >1 inch (>25.4 mm) |
ID | Road Type | w (m) | Ls (m) | s | g | S | A [m2] | L [m] | Tx [y] | tc [h] | h [mm] | TXD [mm] | Vleg [km/h] | RDmax [mm] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | F | 9 | 125 | 0.025 | 0.021 | 0.033 | 1125 | 11.75 | 10 | 0.167 | 28.44 | 0.40 | 50 | 20 |
2 | F | 9 | 125 | 0.025 | 0.021 | 0.033 | 1125 | 11.75 | 10 | 0.167 | 28.44 | 0.80 | 50 | 20 |
3 | F | 9 | 125 | 0.025 | 0.021 | 0.033 | 1125 | 11.75 | 10 | 0.167 | 28.44 | 1.20 | 50 | 20 |
4 | C | 9.5 | 125 | 0.025 | 0.021 | 0.033 | 1187.5 | 12.41 | 10 | 0.167 | 28.44 | 0.40 | 70 | 15 |
5 | C | 9.5 | 125 | 0.025 | 0.021 | 0.033 | 1187.5 | 12.41 | 10 | 0.167 | 28.44 | 0.80 | 70 | 15 |
6 | C | 9.5 | 125 | 0.025 | 0.021 | 0.033 | 1187.5 | 12.41 | 10 | 0.167 | 28.44 | 1.20 | 70 | 15 |
7 | A | 11.2 | 125 | 0.025 | 0.021 | 0.033 | 1400 | 14.63 | 10 | 0.167 | 28.44 | 0.40 | 110 | 12 |
8 | A | 11.2 | 125 | 0.025 | 0.021 | 0.033 | 1400 | 14.63 | 10 | 0.167 | 28.44 | 0.80 | 110 | 12 |
9 | A | 11.2 | 125 | 0.025 | 0.021 | 0.033 | 1400 | 14.63 | 10 | 0.167 | 28.44 | 1.20 | 110 | 12 |
Road Type | ID′ | k | TXD [mm] | WFD [mm] | Vp [km/h] | Vl [km/h] | CH | CP | HCI |
---|---|---|---|---|---|---|---|---|---|
F | 1L | 1.3 | 0.4 | 3.4 | 80.7 | 50 | 2.04 | 10.00 | 80 |
1M | 1.3 | 0.4 | 3.4 | 80.7 | 50 | 2.04 | 20.00 | 59 | |
1H | 1.3 | 0.4 | 3.4 | 80.7 | 50 | 2.04 | 30.00 | 39 | |
2L | 1.3 | 0.8 | 3.3 | 81.2 | 50 | 0.82 | 10.00 | 92 | |
2M | 1.3 | 0.8 | 3.3 | 81.2 | 50 | 0.82 | 20.00 | 84 | |
2H | 1.3 | 0.8 | 3.3 | 81.2 | 50 | 0.82 | 30.00 | 75 | |
3L | 1.3 | 1.2 | 3.1 | 86.4 | 50 | 0.46 | 10.00 | 95 | |
3M | 1.3 | 1.2 | 3.1 | 86.4 | 50 | 0.46 | 20.00 | 91 | |
3H | 1.3 | 1.2 | 3.1 | 86.4 | 50 | 0.46 | 30.00 | 86 | |
C | 4L | 1.5 | 0.4 | 3.5 | 80.6 | 70 | 3.43 | 10.00 | 66 |
4M | 1.5 | 0.4 | 3.5 | 80.6 | 70 | 3.43 | 20.00 | 31 | |
4H | 1.5 | 0.4 | 3.5 | 80.6 | 70 | 3.43 | 30.00 | 0 | |
5L | 1.5 | 0.8 | 3.4 | 81.0 | 70 | 1.21 | 10.00 | 88 | |
5M | 1.5 | 0.8 | 3.4 | 81.0 | 70 | 1.21 | 20.00 | 76 | |
5H | 1.5 | 0.8 | 3.4 | 81.0 | 70 | 1.21 | 30.00 | 64 | |
6L | 1.5 | 1.2 | 3.2 | 86.2 | 70 | 0.62 | 10.00 | 94 | |
6M | 1.5 | 1.2 | 3.2 | 86.2 | 70 | 0.62 | 20.00 | 88 | |
6H | 1.5 | 1.2 | 3.2 | 86.2 | 70 | 0.62 | 30.00 | 81 | |
A | 7L | 1.7 | 0.4 | 3.8 | 80.3 | 110 | 6.50 | 10.00 | 35 |
7M | 1.7 | 0.4 | 3.8 | 80.3 | 110 | 6.50 | 20.00 | 0 | |
7H | 1.7 | 0.4 | 3.8 | 80.3 | 110 | 6.50 | 30.00 | 0 | |
8L | 1.7 | 0.8 | 3.7 | 80.5 | 110 | 2.00 | 10.00 | 80 | |
8M | 1.7 | 0.8 | 3.7 | 80.5 | 110 | 2.00 | 20.00 | 60 | |
8H | 1.7 | 0.8 | 3.7 | 80.5 | 110 | 2.00 | 30.00 | 40 | |
9L | 1.7 | 1.2 | 3.5 | 85.5 | 110 | 0.94 | 10.00 | 91 | |
9M | 1.7 | 1.2 | 3.5 | 85.5 | 110 | 0.94 | 20.00 | 81 | |
9H | 1.7 | 1.2 | 3.5 | 85.5 | 110 | 0.94 | 30.00 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosurgi, G.; Pellegrino, O.; Ruggeri, A.; Sollazzo, G. A Network-Level Methodology for Evaluating the Hydraulic Quality Index of Road Pavement Surfaces. Sustainability 2023, 15, 72. https://doi.org/10.3390/su15010072
Bosurgi G, Pellegrino O, Ruggeri A, Sollazzo G. A Network-Level Methodology for Evaluating the Hydraulic Quality Index of Road Pavement Surfaces. Sustainability. 2023; 15(1):72. https://doi.org/10.3390/su15010072
Chicago/Turabian StyleBosurgi, Gaetano, Orazio Pellegrino, Alessia Ruggeri, and Giuseppe Sollazzo. 2023. "A Network-Level Methodology for Evaluating the Hydraulic Quality Index of Road Pavement Surfaces" Sustainability 15, no. 1: 72. https://doi.org/10.3390/su15010072
APA StyleBosurgi, G., Pellegrino, O., Ruggeri, A., & Sollazzo, G. (2023). A Network-Level Methodology for Evaluating the Hydraulic Quality Index of Road Pavement Surfaces. Sustainability, 15(1), 72. https://doi.org/10.3390/su15010072