Blockchain Traceability in Trading Biomasses Obtained with an Integrated Multi-Trophic Aquaculture
Abstract
:1. Introduction
- RQ1: What actors, factors, and strategies are needed to implement a sustainability-friendly BT in the marine fishing and aquarium industries?
- RQ2: How can these actors, factors, and strategies be combined into a framework that can improve end-consumer perception and confidence in support of sustainability?
2. Literature Review
2.1. Implementation of BT in Marine Conservation Sector
2.2. The New Technologies for Aquaculture
3. Material and Methods
3.1. Integrated Multitrophic Aquaculture (IMTA): A Case Study in Taranto (Italy)
3.2. A Possible Framework Applied to IMTA
4. Results
4.1. Capabilities
4.2. Collaboration
4.3. Technological Readiness
4.4. Supply Chain Practices
4.5. Leadership
4.6. Governance of Traceability Effort
- (a)
- Council Directive 2002/99/EC, 16.12.2002 laying down animal health rules for the production, processing, distribution, and introduction of products of animal origin intended for human consumption;
- (b)
- The regulations of the European Parliament and of the Council, 29.04.2004, n. 852/2004/CE regarding the hygiene of food products; n. 853/2004/EC establishing specific hygiene rules for food of animal origin; n. 854/2004/EC concerning the organization of official controls on products of animal origin intended for human consumption; and n. 882/2004 relating to official controls aimed at verifying compliance with the legislation on feed and food and with the rules on the health and welfare of animals (so-called “hygiene package”).
4.7. Inter-Chain Synergy
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/documents/card/en/c/ca9229en/ (accessed on 18 November 2022).
- Altoukhov, A.V. Industrial product platforms and blockchain in aquaculture. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 042021. [Google Scholar] [CrossRef]
- Grandview Research. Reef Aquarium Market Size, Share & Trends Analysis Report by Product (Component, Natural), by End Use (Household, Zoo & Oceanarium), by Region (Europe, Asia Pacific), and Segment Forecasts, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/reef-aquarium-market-report (accessed on 9 November 2022).
- Kingpin Market Research. Global Ornamental Fish Market Report, History and Forecast 2015–2026. Available online: https://www.kingpinmarketresearch.com/global-ornamental-fish-market-16039545 (accessed on 16 November 2022).
- Rhyne, A.L.; Tlusty, M.F.; Schofield, P.J.; Kaufman, L.E.S.; Morris, J.A., Jr.; Bruckner, A.W. Revealing the appetite of the marine aquarium fish trade: The volume and biodiversity of fish imported into the United States. PLoS ONE 2012, 7, e35808. [Google Scholar] [CrossRef] [PubMed]
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future challenges on the use of blockchain for food traceability analysis. TrAC 2018, 107, 222–232. [Google Scholar] [CrossRef]
- Liu, W.; Shao, X.F.; Wu, C.H.; Qiao, P. A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development. J. Clean. Prod. 2021, 298, 126763. [Google Scholar] [CrossRef]
- Feng, Q.; He, D.; Zeadally, S.; Khan, M.K.; Kumar, N. A survey on privacy protection in blockchain system. J. Net. Com. Appl.s 2019, 126, 45–58. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput. Ind. 2019, 109, 83–99. [Google Scholar] [CrossRef]
- Ilbiz, E.; Durst, S. The appropriation of blockchain for small and medium-sized enterprises. J. Innov. Manag. 2019, 7, 26–45. [Google Scholar] [CrossRef]
- Caro, M.P.; Ali, M.S.; Vecchio, M.; Giaffreda, R. Blockchain-based traceability in Agri-Food supply chain management: A practical implementation. In Proceedings of the IoT Vertical and Topical Summit on Agriculture-Tuscany, Tuscany, Italy, 8–9 May 2018; pp. 1–4. [Google Scholar]
- Khan, S.; Singh, R.; Kirti, I. Critical factors for blockchain technology implementation: A supply chain perspective. J. Ind. Integr. Man. 2021, 7, 2150011. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Del Vecchio, P.; Oropallo, E.; Secundo, G. Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inf. Manag. 2022, 59, 103508. [Google Scholar] [CrossRef]
- Chiacchio, F.; D’Urso, D.; Oliveri, L.M.; Spitaleri, A.; Spampinato, C.; Giordano, D. A non-fungible token solution for the track and trace of pharmaceutical supply chain. Appl. Sci. 2022, 12, 4019. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Ellahham, S.; Omar, M. The role of blockchain technology in telehealth and telemedicine. Int. J. Med. Inform. 2021, 148, 104399. [Google Scholar] [CrossRef] [PubMed]
- Bierbaum, R.; Leonard, S.A.; Rejeski, D.; Whaley, C.; Barra, R.O.; Libre, C. Novel entities and technologies: Environmental benefits and risks. Environ. Sci. Policy 2020, 105, 134–143. [Google Scholar] [CrossRef]
- Zheng, X.R.; Lu, Y. Blockchain technology–recent research and future trend. Enterp. Inf. Syst. 2022, 16, 1939895. [Google Scholar] [CrossRef]
- Seebode, D.; Jeanrenaud, S.; Bessant, J. Managing innovation for sustainability. R&D Manag. 2012, 42, 195–206. [Google Scholar]
- Howson, P. Building trust and equity in marine conservation and fisheries supply chain management with blockchain. Mar. Policy 2020, 115, 103873. [Google Scholar] [CrossRef]
- Ezekiel, A. Review of Marine Wildlife Protection Legislation in ASEAN; TRAFFIC Southeast Asia: Petaling Jaya, Malaysia, 2018. [Google Scholar]
- Sully, S.; Burkepile, D.E.; Donovan, M.K.; Hodgson, G.; Van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 2019, 10, 1264. [Google Scholar] [CrossRef] [Green Version]
- LeBaron, G.; Rühmkorf, A. Steering CSR through home state regulation: A comparison of the impact of the UK bribery act and modern slavery act on global supply chain governance. Glob. Policy 2017, 8, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Barclay, P. Strategies for cooperation in biological markets, especially for humans. Evol. Hum. Behav. 2013, 34, 164–175. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Duarte, C.M. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef] [Green Version]
- FIS. Carrefour Launches Blockchain System for Fresh Fish Traceability. Available online: https://fis.com/fis/worldnews/worldnews.asp?l=e&id=102713&ndb=1 (accessed on 18 November 2022).
- Gui, J.F.; Tang, Q.; Li, Z.; Liu, J.; De Silva, S.S. Aquaculture in China: Success Stories and Modern Trends; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Conceição, L.E.; Yúfera, M.; Makridis, P.; Morais, S.; Dinis, M.T. Live feeds for early stages of fish rearing. Aquac. Res. 2010, 41, 613–640. [Google Scholar] [CrossRef]
- Tacon, A.G.; Metian, M. Feed matters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Calado, R.; Olivotto, I.; Oliver, M.P.; Holt, J. Marine Ornamental Species Aquaculture; Wiley Blackwell: Hoboken, NJ, USA, 2017; Volume 712. [Google Scholar]
- Rahman, M.M.; Islam, M.A.; Haque, S.M.; Wahab, A. Mud Crab Aquaculture and Fisheries in Coastal Bangladesh. Wor. Aquac. 2017, 48, 47–52. [Google Scholar]
- Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Robledo, D. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. Rev. Genet. 2020, 21, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Hastig, G.M.; Sodhi, M.S. Blockchain for supply chain traceability: Business requirements and critical success factors. Prod. Oper. Manag. 2020, 29, 935–954. [Google Scholar] [CrossRef]
- Giangrande, A.; Del Pasqua, M.; Pierri, C.; Licciano, M. Preliminary survey on the use of filter feeder biomass obtained as by product in IMTA systems: Annelida Polychaeta. Biol. Mar. Mediterr. 2018, 25, 102–103. [Google Scholar]
- Fang, J.; Zhang, J.; Xiao, T.; Huang, D.; Liu, S. Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquac. Environ. Interact. 2016, 8, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Pierri, C.; Colangelo, P.; Del Pasqua, M.; Longo, C.; Giangrande, A. Mediterranean Marine Science. Med. Mar. Sc. 2019, 20, 476–486. [Google Scholar] [CrossRef]
- Stabili, L.; Schirosi, R.; Licciano, M.; Mola, E.; Giangrande, A. Bioremediation of bacteria in aquaculture waste using the polychaete Sabella spallanzanii. New Biotechnol. 2010, 27, 774–781. [Google Scholar] [CrossRef]
- Lezzi, M.; Giangrande, A. Seasonal and bathymetric effects on macrofouling invertebrates’ primary succession in a mediterraenan non-indigenous species hotspot area. Mediterr. Mar. Sci. 2018, 19, 572–588. [Google Scholar] [CrossRef] [Green Version]
- Licciano, M.; Stabili, L.; Giangrande, A. Clearance rates of Sabella spallanzanii and Branchiomma luctuosum (Annelida: Polychaeta) on a pure culture of Vibrio alginolyticus. Water Res. 2005, 39, 4375–4384. [Google Scholar] [CrossRef] [PubMed]
- Giangrande, A.; Lezzi, M.; Del Pasqua, M.; Pierri, C.; Longo, C.; Gravina, M.F. Two cases study of fouling colonization patterns in the Mediterranean Sea in the perspective of integrated aquaculture systems. Aquac. Rep. 2020, 18, 100455. [Google Scholar] [CrossRef]
- Gong, Y.; Jiang, Y.; Jia, F. Multiple multi-tier sustainable supply chain management: A social system theory perspective. Int. J. Prod. Res. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Govindan, K.; Hasanagic, M. A systematic review on drivers, barriers, and practices towards circular economy: A supply chain perspective. Int. J. Prod. Res. 2018, 56, 278–311. [Google Scholar] [CrossRef]
- Batista, L.; Bourlakis, M.; Smart, P.; Maull, R. In search of a circular supply chain archetype—A content-analysis-based literature review. Prod. Plan. Control 2018, 29, 438–451. [Google Scholar] [CrossRef]
- Fehrer, J.A.; Wieland, H. A systemic logic for circular business models. J. Bus. Res. 2020, 125, 609–620. [Google Scholar] [CrossRef]
- Tseng, M.L.; Chiu, A.S.; Liu, G.; Jantaralolica, T. Circular economy enables sustainable consumption and production in multi-level supply chain system. Resour. Conserv. Recycl. 2020, 154, 104601. [Google Scholar] [CrossRef]
- Bressanelli, G.; Perona, M.; Saccani, N. Challenges in supply chain redesign for the Circular Economy: A literature review and a multiple case study. Int. J. Prod. Res. 2019, 57, 7395–7422. [Google Scholar] [CrossRef] [Green Version]
- Baruffaldi, G.; Sternberg, H. Chains in Chains—Logic and Challenges of Blockchains in Supply Chains. Available online: http://aisel.aisnet.org/hicss-51/in/digital_supply_chain/3 (accessed on 8 September 2022).
- Edmund, M. On the fast track? Qual. Prog. 2018, 51, 10–12. [Google Scholar]
- Chow, C. Blockchain for Good? Improving supply chain transparency and human rights management. Gov. Dir. 2018, 70, 39–40. [Google Scholar]
- Rostamzadeh, R.; Govindan, K.; Esmaeili, A.; Sabaghi, M. Application of fuzzy VIKOR for evaluation of green supply chain management practices. Ecol. Ind. 2015, 49, 188–203. [Google Scholar] [CrossRef]
- Ameknassi, L.; Aït-Kadi, D.; Rezg, N. Integration of logistics outsourcing decisions in a green supply chain design: A stochastic multi-objective multi-period multi-product programming model. Int. J. Prod. Econ. 2016, 182, 165–184. [Google Scholar] [CrossRef]
- Zhu, Q.; Feng, Y.; Choi, S.B. The role of customer relational governance in environmental and economic performance improvement through green supply chain management. J. Clean. Prod. 2017, 155, 46–53. [Google Scholar] [CrossRef]
- Tseng, M.L.; Lim, M.K.; Wong, W.P.; Chen, Y.C.; Zhan, Y. A framework for evaluating the performance of sustainable service supply chain management under uncertainty. Int. J. Prod. Econ. 2018, 195, 359–372. [Google Scholar] [CrossRef]
- Uslay, C.; Yeniyurt, S. Executive insights: An interview with Evren Ozkaya, Founder and Chief Executive Officer at supply chain wizard. Rutgers Bus. Rev. 2018, 3, 12–31. [Google Scholar]
- Debabrata, G.; Albert, T. A Framework for Implementing BlockChain Technologies to Improve Supply Chain Performance. Available online: http://hdl.handle.net/1721.1/113244 (accessed on 8 September 2022).
- Mattila, J.; Seppälä, T.; Naucler, C.; Stahl, R.; Tikkanen, M.; Bådenlid, A.; Seppälä, J. Industrial blockchain platforms: An exercise in use case development in the energy industry. In Proceedings of the 15th EBES Conference, Lisbon, Portugal, 8–10 January 2018. [Google Scholar]
- Tian, F.A. Supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In Proceedings of the International Conference on Service Systems and Service Management, Dalian, China, 16–18 June 2017. [Google Scholar]
- Biondo, M.V.; Burki, R.P. A systematic review of the ornamental fish trade with emphasis on coral reef fishes—An impossible task. Animals 2020, 10, 2014. [Google Scholar] [CrossRef] [PubMed]
- Cohen, F.P.; Valenti, W.C.; Calado, R. Traceability issues in the trade of marine ornamental species. Rev. Fish. Sci. 2013, 21, 98–111. [Google Scholar] [CrossRef]
- Hackius, N.; Petersen, M. Blockchain in logistics and supply chain: Trick or treat? In Proceedings of the Hamburg International Conference of Logistics (HICL), Berlin, Germany, 18 October 2017.
- Bateman, A.H. Tracking the value of traceability. Supply Chain Manag. Rev. 2015, 9, 8–10. [Google Scholar]
- Kshetri, N. Blockchain’s roles in meeting key supply chain management objectives. Int. J. Inf. Manag. 2018, 39, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Savorani, G. Il diritto all’informazione del consumatore di alimenti: Un complesso sistema di regole con indice di protezione incerto. Politica Dirit. 2015, 46, 575–598. [Google Scholar]
- McGeer, J.C.; Brix, K.V.; Skeaff, J.M.; DeForest, D.K.; Brigham, S.I.; Adams, W.J.; Green, A. Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem. Int. J. 2003, 22, 1017–1037. [Google Scholar] [CrossRef]
- Pujari, D. Eco-innovation and new product development: Understanding the influences on market performance. Technovation 2006, 26, 76–85. [Google Scholar] [CrossRef]
- Srivastava, S.K. Green supply-chain management: A state-of-the-art literature review. Int. J. Manag. Rev. 2007, 9, 53–80. [Google Scholar] [CrossRef]
- Ranjan, A.; Jha, J.K. Pricing and coordination strategies of a dual-channel supply chain considering green quality and sales effort. J. Clean. Prod. 2019, 218, 409–424. [Google Scholar] [CrossRef]
- Cohen, S.; Roussel, J. Strategic Supply Chain Management: The Five Disciplines for Top Performance; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Biswas, I.; Raj, A.; Srivastava, S.K. Supply chain channel coordination with triple bottom line approach. Transp. Res. 2018, 1, 213–226. [Google Scholar] [CrossRef]
- Zissis, D.; Saharidis, G.K.; Aktas, E.; Ioannou, G. Emission reduction via supply chain coordination. Transp. Res. 2018, 1, 36–46. [Google Scholar] [CrossRef]
CSF | Sub-Themes |
---|---|
Capabilities | Technical capability, organizational readiness, other capabilities for bringing about change |
Collaboration | Goal alignment with partners, partnership trust, stakeholder acceptance |
Technological readiness | Technology maturity, data security, technology feasibility |
Supply chain practices | Information capture, operations model |
Leadership | Internally within the firm, externally as leadership with stakeholders and others in supply chain |
Governance of traceability effort | Working within the legal framework, enforcing information stewardship |
Inter-Chain Synergy | Harmonization of supply/sales channels, enforcing communication of the benefits of the circular economy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mileti, A.; Arduini, D.; Watson, G.; Giangrande, A. Blockchain Traceability in Trading Biomasses Obtained with an Integrated Multi-Trophic Aquaculture. Sustainability 2023, 15, 767. https://doi.org/10.3390/su15010767
Mileti A, Arduini D, Watson G, Giangrande A. Blockchain Traceability in Trading Biomasses Obtained with an Integrated Multi-Trophic Aquaculture. Sustainability. 2023; 15(1):767. https://doi.org/10.3390/su15010767
Chicago/Turabian StyleMileti, Antonio, Daniele Arduini, Gordon Watson, and Adriana Giangrande. 2023. "Blockchain Traceability in Trading Biomasses Obtained with an Integrated Multi-Trophic Aquaculture" Sustainability 15, no. 1: 767. https://doi.org/10.3390/su15010767
APA StyleMileti, A., Arduini, D., Watson, G., & Giangrande, A. (2023). Blockchain Traceability in Trading Biomasses Obtained with an Integrated Multi-Trophic Aquaculture. Sustainability, 15(1), 767. https://doi.org/10.3390/su15010767