A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Characterization
2.3. Preparation of the CS
2.4. Preparation of the C−CGAS
2.5. Preparation of the Culture Medium and Bacterial Activation
2.6. Antimicrobial Ability Test
2.6.1. Antibacterial Ability Test
2.6.2. SEM Observations of the Bacteria
2.6.3. Antifungal Ability Test
2.7. Water Purification Test
2.7.1. Determination of Water Flux
2.7.2. Water Bacteria Disinfection Test
2.7.3. Recycling Test of C−CGAS
2.8. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characterization of CS
3.2. Characterization Analysis of CS and C−CGAS
3.3. Hydrophilicity and Physical Properties
3.4. Mechanical Property Tests
3.5. Antimicrobial Ability Test
3.5.1. Antibacterial Ability Test
3.5.2. Antifungal Ability Test
3.6. Water Disinfection Test of C−CGAS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, R.; Wang, H.; Wang, R.; Zhao, P.; Chen, Y.; Liu, G.; Liao, X. Polyphenol modified natural collagen fibrous network towards sustainable and antibacterial microfiltration membrane for efficient water disinfection. Water Res. 2022, 218, 118469. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Fan, Y.; Quan, X.; Yu, H.; Chen, S.; Zhang, S. Energy−transfer−mediated oxygen activation in carbonyl functionalized carbon nitride nanosheets for high−efficient photocatalytic water disinfection and organic pollutants degradation. Water Res. 2020, 177, 115798. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.B.; Hong, Y.M.; Liu, C.; Yang, J.; Wang, X.P.; Agarwal, S.; Xu, Z.K. Delignified wood with unprecedented anti−oil properties for the highly efficient separation of crude oil/water mixtures. J. Mater. Chem. A 2019, 7, 16735–16741. [Google Scholar] [CrossRef]
- Water, S.; World Health Organization. Emerging Issues in Water and Infectious Disease; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Liu, G.; Yu, R.; Jiang, J.; Ding, Z.; Ma, J.; Liang, R. Robust immobilization of anionic silver nanoparticles on cellulose filter paper toward a low−cost point−of−use water disinfection system with improved anti−biofouling properties. RSC Adv. 2021, 11, 4873–4882. [Google Scholar] [CrossRef] [PubMed]
- Parekh, S.A.; David, R.N.; Bannuru, K.K.; Krishnaswamy, L.; Baji, A. Electrospun silver coated polyacrylonitrile membranes for water filtration applications. Membranes 2018, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Viraka Nellore, B.P.; Kanchanapally, R.; Pedraza, F.; Sinha, S.S.; Pramanik, A.; Hamme, A.T.; Ray, P.C. Bio−conjugated CNT−bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl. Mater. Interfaces 2015, 7, 19210–19218. [Google Scholar] [CrossRef] [Green Version]
- Al−Abri, M.; Al−Ghafri, B.; Bora, T.; Dobretsov, S.; Dutta, J.; Castelletto, S.; Boretti, A. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water 2019, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Chu, W.; Krasner, S.W.; Yu, Y.; Fang, C.; Xu, B.; Gao, N. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water. Water Res. 2018, 142, 490–500. [Google Scholar] [CrossRef]
- Ni, L.; Zhu, Y.; Ma, J.; Wang, Y. Novel strategy for membrane biofouling control in MBR with CdS/MIL−101 modified PVDF membrane by in situ visible light irradiation. Water Res. 2021, 188, 116554. [Google Scholar] [CrossRef]
- Hou, J.; Sutrisna, P.D.; Zhang, Y.; Chen, V. Formation of ultrathin, continuous metal–organic framework membranes on flexible polymer substrates. Angew. Chem. Int. Ed. 2016, 55, 3947–3951. [Google Scholar] [CrossRef]
- Orooji, Y.; Faghih, M.; Razmjou, A.; Hou, J.; Moazzam, P.; Emami, N.; Jin, W. Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion. Carbon 2017, 111, 689–704. [Google Scholar] [CrossRef]
- Xiong, Z.C.; Zhu, Y.J.; Wang, Z.Y.; Chen, Y.Q.; Yu, H.P. Tree-Inspired Ultralong Hydroxyapatite Nanowires-Based Multifunctional Aerogel with Vertically Aligned Channels for Continuous Flow Catalysis, Water Disinfection, and Solar Energy-Driven Water Purification. Adv. Funct. Mater. 2022, 32, 2106978. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Robles, D.; Raza, B.; Van den Hengel, S.; Rutjes, S.A.; de Roda Husman, A.M.; Roesink, H.D.W. Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications. Colloids Surf. A Physicochem. Eng. Asp. 2018, 551, 33–41. [Google Scholar] [CrossRef]
- Blin, T.; Purohit, V.; Leprince, J.; Jouenne, T.; Glinel, K. Bactericidal microparticles decorated by an antimicrobial peptide for the easy disinfection of sensitive aqueous solutions. Biomacromolecules 2011, 12, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Zhang, D.; Qi, P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 2011, 360, 463–470. [Google Scholar] [CrossRef]
- Tartanson, M.A.; Soussan, L.; Rivallin, M.; Chis, C.; Penaranda, D.; Lapergue, R.; Calmels, P.; Faur, C. A new silver based composite material for SPA water disinfection. Water Res. 2014, 63, 135–146. [Google Scholar] [CrossRef]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef] [Green Version]
- Lavoine, N.; Bergström, L. Nanocellulose−based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A 2017, 5, 16105–16117. [Google Scholar] [CrossRef] [Green Version]
- Liebner, F.; Aigner, N.; Schimper, C.; Potthast, A.; Rosenau, T. Bacterial cellulose aerogels: From lightweight dietary food to functional materials. Functional materials from renewable sources. Am. Chem. Soc. 2012, 1107, 57–74. [Google Scholar]
- Budtova, T. Cellulose II aerogels: A review. Cellulose 2019, 26, 81–121. [Google Scholar] [CrossRef]
- Thakur, A.; Kaur, H. Synthetic chemistry of cellulose hydrogels−a review. Mater. Today Proc. 2021, 48, 1431–1438. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Guo, W.; Niu, H.; Song, L.; Hu, Y. Eco−friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability. J. Taiwan Inst. Chem. Eng. 2022, 131, 104159. [Google Scholar] [CrossRef]
- Oh, J.E.; Park, N.M. Hydrophilic, transparent, and stretchable film using unmodified cellulose fibers. Mater. Lett. 2022, 309, 131385. [Google Scholar] [CrossRef]
- Adeleye, O.A.; Bamiro, O.A.; Albalawi, D.A.; Alotaibi, A.S.; Iqbal, H.; Sanyaolu, S.; Femi−Oyewo, M.N.; Sodeinde, K.O.; Yahaya, Z.S.; Thiripuranathar, G.; et al. Characterizations of Alpha−Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Materials 2022, 15, 5992. [Google Scholar] [CrossRef]
- Hong, S.; Leroueil, P.R.; Janus, E.K.; Peters, J.L.; Kober, M.M.; Islam, M.T.; Banaszak Holl, M.M. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconj. Chem. 2006, 17, 728–734. [Google Scholar] [CrossRef]
- Rojas, O.J. Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Aoudi, B.; Boluk, Y.; El−Din, M.G. Recent advances and future perspective on nanocellulose−based materials in diverse water treatment applications. Sci. Total Environ. 2022, 843, 156903. [Google Scholar] [CrossRef]
- Bethke, K.; Palantöken, S.; Andrei, V.; Roß, M.; Raghuwanshi, V.S.; Kettemann, F.; Rademann, K. Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv. Funct. Mater. 2018, 28, 1800409. [Google Scholar] [CrossRef]
- Udoetok, I.A.; Dimmick, R.M.; Wilson, L.D.; Headley, J.V. Adsorption properties of cross−linked cellulose−epichlorohydrin polymers in aqueous solution. Carbohydr. Polym. 2016, 136, 329–340. [Google Scholar] [CrossRef]
- Zhou, J.; Chang, C.; Zhang, R.; Zhang, L. Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 2007, 7, 804–809. [Google Scholar] [CrossRef]
- Zaghloul, S.; Sharaf, S.; Ameduri, B.; Hebeish, A. Novel fluorinated compound for imparting sustainable functionalities to cellulose−containing substrates. Cellulose 2020, 27, 629–641. [Google Scholar] [CrossRef]
- De Lima, J.A.; Pinotti, C.A.; Felisberti, M.I.; Carmo Gonçalves, M. Blends and clay nanocomposites of cellulose acetate and poly (epichlorohydrin). Compos. Part B Eng. 2012, 43, 2375–2381. [Google Scholar] [CrossRef]
- Zhang, H.; Luan, Q.; Huang, Q.; Tang, H.; Huang, F.; Li, W.; Zhou, Q. A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation. Carbohydr. Polym. 2017, 157, 1830–1836. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, N.; Chang, S. Effect of precured degrees on morphology, thermal, and mechanical properties of BR/SBR/NR foams. Polym. Compos. 2013, 34, 849–859. [Google Scholar] [CrossRef]
- Yan, M.; Pan, Y.; Cheng, X.; Zhang, Z.; Deng, Y.; Lun, Z.; Zhang, H. “Robust–Soft” Anisotropic Nanofibrillated Cellulose Aerogels with Superior Mechanical, Flame−Retardant, and Thermal Insulating Properties. ACS Appl. Mater. Interfaces 2021, 13, 27458–27470. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Wang, Y.; Shan, Y.; Ye, C.; Lv, Z.; Yang, S.; Ling, S. Cytoskeleton−inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Mater. Horizons 2023, 10, 136–148. [Google Scholar] [CrossRef]
- Zhang, B.; Nan, T.G.; Zhan, Z.L.; Kang, L.P.; Yang, J.; Yuan, Y.; Huang, L.Q. A monoclonal antibody−based enzyme−linked immunosorbent assay for the determination of chlorogenic acid in honeysuckle. J. Pharm. Biomed. Anal. 2018, 148, 1–5. [Google Scholar] [CrossRef]
- Kundu, A.; Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. 2019, 21, 185–189. [Google Scholar] [CrossRef]
- Feng, R.; Lu, Y.; Bowman, L.L.; Qian, Y.; Castranova, V.; Ding, M. Inhibition of activator protein−1, NF−κB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J. Biol. Chem. 2005, 280, 27888–27895. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.F.; Shi, L.P.; Ren, Y.D.; Liu, Q.F.; Liu, H.F.; Zhang, R.J.; Zuo, J.P. Anti−hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir. Res. 2009, 83, 186–190. [Google Scholar] [CrossRef]
- Shu−Yuan, L.I.; Chang, C.Q.; Fu−Ying, M.A.; Chang−Long, Y.U. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator−activated receptor−α in golden hamsters fed on high fat diet. Biomed. Environ. Sci. 2009, 22, 122–129. [Google Scholar]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Holowinski, P.; Dawidowicz, A.L.; Typek, R. Chlorogenic acid−water complexes in chlorogenic acid containing food products. J. Food Compos. Anal. 2022, 109, 104509. [Google Scholar] [CrossRef]
- Hu, F.; Sun, T.; Xie, J.; Xue, B.; Li, X.; Gan, J.; Shao, Z. Functional properties and preservative effect on Penaeus vannamei of chitosan films with conjugated or incorporated chlorogenic acid. Int. J. Biol. Macromol. 2020, 159, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yao, X.; Yang, Y.; Cao, G.; Yi, G. In vitro digestibility and fermentability profiles of wheat starch modified by chlorogenic acid. Int. J. Biol. Macromol. 2022, 215, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, J.; Costa, R.; Rocha, F.; Estevinho, B.N.; Santos, L. Design of microparticles containing natural antioxidants: Preparation, characterization and controlled release studies. Powder Technol. 2017, 313, 287–292. [Google Scholar] [CrossRef]
- Si, Y.; Yu, J.; Tang, X.; Ge, J.; Ding, B. Ultralight nanofibre−assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802. [Google Scholar] [CrossRef] [Green Version]
- Qian, L.; Yang, M.; Chen, H.; Xu, Y.; Zhang, S.; Zhou, Q.; Song, W. Preparation of a poly (ionic liquid)−functionalized cellulose aerogel and its application in protein enrichment and separation. Carbohydr. Polym. 2019, 218, 154–162. [Google Scholar] [CrossRef]
- Fu, S.; Wu, C.; Wu, T.; Yu, H.; Yang, S.; Hu, Y. Preparation and characterisation of chlorogenic acid−gelatin: A type of biologically active film for coating preservation. Food Chem. 2017, 221, 657–663. [Google Scholar] [CrossRef]
- Meng, F.D.; Yu, Y.L.; Zhang, Y.M.; Yu, W.J.; Gao, J.M. Surface chemical composition analysis of heat−treated bamboo. Appl. Surf. Sci. 2016, 371, 383–390. [Google Scholar] [CrossRef]
- Lee, H.C.; Lee, S. Flame retardancy for cotton cellulose treated with H3PO3. J. Appl. Polym. Sci. 2018, 135, 46497. [Google Scholar] [CrossRef]
- Shao, Z.; Vollrath, F. Surprising strength of silkworm silk. Nature 2002, 418, 741. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, C.; Li, F.; Chen, L. Fatigue resistance, re−usable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal. Chem. Eng. J. 2021, 415, 129006. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Gao, K.; Li, Y.; Wang, S.; Xie, F.; Song, H. Biomimetic superelastic sodium alginate−based sponges with porous sandwich−like architectures. Carbohydr. Polym. 2021, 272, 118527. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Z.; Wang, X.; Gao, Y.; Zhang, J.; Fan, T.; Long, Y.Z. Superhydrophobic Nanofibrous Sponge with Hierarchically Layered Structure for Efficient Harsh Environmental Oil−Water Separation. J. Hazard. Mater. 2022, 440, 129790. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, S.; Gong, X.; Yang, M.; Liu, X.; Zhang, S.; Ding, B. Superelastic, ultralight, and washable electrospun fibrous sponges for effective warmth retention. Compos. Commun. 2022, 29, 101024. [Google Scholar] [CrossRef]
- Martínez, G.; Regente, M.; Jacobi, S.; Del Rio, M.; Pinedo, M.; de la Canal, L. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic. Biochem. Physiol. 2017, 140, 30–35. [Google Scholar] [CrossRef]
- Cai, R.; Miao, M.; Yue, T.; Zhang, Y.; Cui, L.; Wang, Z.; Yuan, Y. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid against Alicyclobacillus acidoterrestris vegetative cells in apple juice. Int. J. Food Sci. Technol. 2019, 54, 1697–1705. [Google Scholar] [CrossRef]
- Su, M.; Liu, F.; Luo, Z.; Wu, H.; Zhang, X.; Wang, D.; Miao, Y. The antibacterial activity and mechanism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa. Foodborne Pathog. Dis. 2019, 16, 823–830. [Google Scholar] [CrossRef]
- Moccia, F.; Martín, M.Á.; Ramos, S.; Goya, L.; Marzorati, S.; DellaGreca, M.; Napolitano, A. A new cyanine from oxidative coupling of chlorogenic acid with tryptophan: Assessment of the potential as red dye for food coloring. Food Chem. 2021, 348, 129152. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, C.; Wang, P.; Zhang, Y.; Zhang, H. Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid−loaded halloysite nanotube for active food packaging. Carbohydr. Polym. 2020, 247, 116711. [Google Scholar] [CrossRef]
- Najafpoor, A.; Norouzian−Ostad, R.; Alidadi, H.; Rohani−Bastami, T.; Davoudi, M.; Barjasteh−Askari, F.; Zanganeh, J. Effect of magnetic nanoparticles and silver−loaded magnetic nanoparticles on advanced wastewater treatment and disinfection. J. Mol. Liquids. 2020, 303, 112640. [Google Scholar] [CrossRef]
- Loo, S.L.; Fane, A.G.; Lim, T.T.; Krantz, W.B.; Liang, Y.N.; Liu, X.; Hu, X. Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point−of−use disinfection. Environ. Sci. Technol. 2013, 47, 9363–9371. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, T.; Bhuyan, M.; Hokajärvi, A.M.; Pitkänen, T.; Miettinen, I.T. Water disinfection with geopolymer–bentonite composite foam containing silver nanoparticles. Mater. Lett. 2022, 311, 131636. [Google Scholar] [CrossRef]
- Oliveira, I.M.; Gomes, I.B.; Simões, L.C.; Simões, M. Chlorinated cyanurates and potassium salt of peroxymonosulphate as antimicrobial and antibiofilm agents for drinking water disinfection. Sci. Total Environ. 2022, 811, 152355. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dai, J.; Huang, L.; Si, Y.; Yu, J.; Ding, B. Biomimetic and super−elastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 2020, 14, 8975–8984. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yi, J.; Pan, B.; Nitin, N.; Sun, G. Chlorine rechargeable biocidal N−halamine nanofibrous membranes incorporated with bifunctional zwitterionic polymers for efficient water disinfection applications. ACS Appl. Mater. Interfaces 2020, 12, 51057–51068. [Google Scholar] [CrossRef] [PubMed]
- Łojewski, T.; Zieba, K.; Łojewska, J. Size exclusion chromatography and viscometry in paper degradation studies. New Mark-Houwink coefficients for cellulose in cupri-ethylenediamine. J. Chromatogr. A 2010, 1217, 6462–6468. [Google Scholar] [CrossRef]
Samples | Specific Surface Area (m2/g) |
---|---|
AC sponge | 38.87 |
MCC sponge | 67.12 |
CS | 131.10 |
C−CGAS | 126.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, E.-J.; Huang, J.-X.; Hu, R.-Z.; Yao, X.-H.; Zhao, W.-G.; Zhang, D.-Y.; Chen, T. A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection. Sustainability 2023, 15, 773. https://doi.org/10.3390/su15010773
Liu E-J, Huang J-X, Hu R-Z, Yao X-H, Zhao W-G, Zhang D-Y, Chen T. A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection. Sustainability. 2023; 15(1):773. https://doi.org/10.3390/su15010773
Chicago/Turabian StyleLiu, En-Jiang, Jia-Xing Huang, Run-Ze Hu, Xiao-Hui Yao, Wei-Guo Zhao, Dong-Yang Zhang, and Tao Chen. 2023. "A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection" Sustainability 15, no. 1: 773. https://doi.org/10.3390/su15010773
APA StyleLiu, E. -J., Huang, J. -X., Hu, R. -Z., Yao, X. -H., Zhao, W. -G., Zhang, D. -Y., & Chen, T. (2023). A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection. Sustainability, 15(1), 773. https://doi.org/10.3390/su15010773