Quantifying the Competitiveness of Cultural Industry and Its Impacts on Chinese Economic Growth
Abstract
:1. Introduction
2. Literature Review
3. Data
4. Research Methodology
4.1. The Competitiveness Index Calculation Method
4.1.1. Porter’s Diamond Model
4.1.2. Principal Component Analysis
4.1.3. Factor Analysis
4.2. Panel Regression Models
5. Empirical Research
5.1. The Evaluation of the Competitiveness of China’s Cultural Industry
5.1.1. Data Pre-Processing
5.1.2. Principal Component Analysis
5.1.3. Factor Analysis
5.2. Analysis of the Impact of the Competitiveness Index of Cultural Industry on China’s Economic Growth
5.2.1. Results of Panel Unit Roots Test
5.2.2. Model Comparison and Results
5.3. Analysis of the Impact of Cultural Industry Factors on China’s Economic Growth
5.3.1. Results of Panel Unit Roots Test (Second Analysis)
5.3.2. Model Comparison and Results (Second Analysis)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Robustness Check | First Analysis | Second Analysis |
---|---|---|
Fixed effects (time) | AIC = 3.6930 | AIC = 3.1254 |
Fixed effects (country) | AIC = 3.8490 | AIC = 3.0192 |
Joint test for Normality on error term | = 2.9324 | = 1.6423 |
Modified Wald test for Heteroscedasticity | = 3.0024 | = 3.3001 |
Wooldridge Autocorrelation test | = 2.3849 | = 1.9384 |
References
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Re-Shaping Cultural Policies: Advancing Creativity for Development; UNESCO: Paris, France, 2017; Available online: http://uis.unesco.org/sites/default/files/documents/reshaping-cultural-policies-2018-en.pdf (accessed on 9 March 2022).
- United Nations Conference on Trade and Development (UNCTAD). Creative Economy Outlook: Trends in International Trade in Creative Industries; UNCTAD: Geneva, Switzerland, 2019; Available online: https://unctad.org/system/files/official-document/ditcted2018d3_en.pdf (accessed on 9 March 2022).
- Li, Q. Cultural Industries in China and their Importance in Asian Communities. CLCWeb Comp. Lit. Cult. 2018, 20, 4. [Google Scholar] [CrossRef]
- Xi, J. Xi Jinping: The Governance of China, 1st ed.; Foreign Languages Press: Beijing, China, 2014; ISBN 978-7-119-09057-3. [Google Scholar]
- Zheng, L. Research on the Influence of International Competitiveness of China’s Cultural Industry. Rev. Argent. Clínica Psicológica 2021, XXX, 97–105. Available online: https://www.revistaclinicapsicologica.com/data-cms/articles/20210918011704pmSSCI-697.pdf (accessed on 9 March 2022).
- Liu, Y.-Y.; Chiu, Y.-H. Evaluation of the Policy of the Creative Industry for Urban Development. Sustainability 2017, 9, 1009. [Google Scholar] [CrossRef] [Green Version]
- Power, D. The difference principle? Shaping competitive advantage in the cultural product industries. Geogr. Ann. Ser. B Hum. Geogr. 2010, 92, 145–158. [Google Scholar] [CrossRef]
- Fu, L.; Song, J.; He, Y. An Empirical Research of Cultural Industry Competitiveness of Tianjin Based on Gray-Fuzzy Comprehensive Assessment. In Proceedings of the 2011 IEEE 18th International Conference on Industrial Engineering and Engineering Management, Changchun, China, 3–5 September 2011; Volume 3, pp. 2022–2027. [Google Scholar] [CrossRef]
- Wu, N.; Xu, Y.; Chen, Q. Evaluation of Cultural Industry Competitiveness in Guifeng Village of Fujian and Its Promotion Strategy. Taiwan Agric. Res. 2021, 52–60. [Google Scholar] [CrossRef]
- Alhendi, O.; Tóth, J.; Lengyel, P.; Balogh, P. Tolerance, Cultural Diversity and Economic Growth: Evidence from Dynamic Panel Data Analysis. Economies 2021, 9, 20. [Google Scholar] [CrossRef]
- Chung, P. The Creative Industry of Singapore: Cultural Policy in the Age of Globalisation. Media Int. Aust. 2008, 128, 31–45. [Google Scholar] [CrossRef]
- Zemite, I.; Kunda, I.; Judrupa, I. The Role of the Cultural and Creative Industries in Sustainable Development of Small Cities in Latvia. Sustainability 2022, 14, 9009. [Google Scholar] [CrossRef]
- Kim, T.Y.; Jin, D.Y. Cultural Policy in the Korean Wave: An Analysis of Cultural Diplomacy Embedded in Presidential Speeches. Int. J. Commun. 2016, 10, 21. Available online: https://ijoc.org/index.php/ijoc/article/view/5128 (accessed on 9 March 2022).
- Shan, S. Chinese Cultural Policy and the Cultural Industries. City Cult. Soc. 2014, 5, 115–121. [Google Scholar] [CrossRef]
- Bujor, A.; Avsilcai, S. Modern Technologies and Business Performance in Creative Industries: A Framework of Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2016, 145, 062001. [Google Scholar] [CrossRef]
- Nathan, M.; O’Brien, D.; Kemeny, T. Creative Differences? In Measuring Creative Economy Employment in the US and UK Using Microdata; 2018; Available online: https://www.researchgate.net/publication/327894960_Creative_Differences_Measuring_Creative_Economy_Employment_in_the_US_and_UK_Using_Microdata (accessed on 9 March 2022).
- Harabi, N. Creative Industries: Case Studies from Arab Countries; MPRA Paper; University Library of Munich: Munich, Germany, 2009; Available online: https://www.researchgate.net/publication/46445774_Creative_Industries_Case_Studies_from_Arab_Countries (accessed on 9 March 2022).
- Chen, L.; He, J.; Bae, K.-H. Research on the Evaluation and Promotion Plan of Competitiveness of Chinese Cultural and Creative Industries—Taking Provinces and Cities Along the “Belt and Road” As an Example. Int. J. Contents 2020, 16, 66–86. [Google Scholar] [CrossRef]
- Einarsson, A. The Economic Impact of the Icelandic Music Industry—Structure and Management. In Proceedings of the 8th International Conference on Arts & Cultural Management, Montreal, QC, Canada, 3–6 July 2005; p. 8. Available online: https://www.bifrost.is/media/1/skra_0016983.pdf (accessed on 9 March 2022).
- Montalto, V.; Sacco, P.L.; Saisana, M. Cultural, Creative, and Sustainable Cities: Assessing Progress and Measurement Perspectives. Sustainability 2022, 14, 4246. [Google Scholar] [CrossRef]
- Piergiovanni, R.; Carree, M.; Santarelli, E. Creative Industries, New Business Formation and Regional Economic Growth. Small Bus. Econ. 2009, 39, 539–560. [Google Scholar] [CrossRef]
- Daubaraitė, U.; Startienė, G. Creative Industries Impact on National Economy in Regard to Sub-sectors. Procedia-Soc. Behav. Sci. 2015, 213, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Correa-Quezada, R.; Álvarez García, J.; Rama, D.; Maldonado-Erazo, C. Role of Creative Industries as a Regional Growth Factor. Sustainability 2018, 10, 1649. [Google Scholar] [CrossRef] [Green Version]
- Lu, L. The Dynamic Relationship between Cultural Industry and China’s Economic Growth. Stat. Decis. 2009, 25, 86–87. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=TJJC200920032&DbName=CJFQ2009 (accessed on 9 March 2022).
- Wang, L.; Gu, J. Cultural Industry Development and Regional Economic Growth: Empirical Evidence from 14 Cities in the Yangtze River Delta Region. J. Zhongnan Univ. Econ. Law 2009, 52, 84–88. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZLCJ200902019&DbName=CJFQ2009 (accessed on 9 March 2022).
- Li, Z.; Liu, W. An Empirical Study on the Impact of Cultural Industry on China’s Economic Growth. Ind. Econ. Rev. 2011, 28, 5–13. [Google Scholar] [CrossRef]
- Kao, C.; Wu, W.-Y.; Hsieh, W.-J.; Wang, T.-Y.; Lin, C.; Chen, L.-H. Measuring the national competitiveness of Southeast Asian countries. Eur. J. Oper. Res. 2008, 187, 613–628. [Google Scholar] [CrossRef]
- Benítez-Márquez, M.-D.; Sánchez-Teba, E.M.; Coronado-Maldonado, I. An alternative index to the global competitiveness index. PLoS ONE 2022, 17, e0265045. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. Available online: https://data.stats.gov.cn/english/easyquery.htm?cn=E0103 (accessed on 9 March 2022).
- China National Knowledge Infrastructure. CNKI Database. Available online: https://data.cnki.net/KeyIndicator/index?XjCode=xj35&&XjName=%E4%B8%AD%E5%9B%BD&&FullIndicateCode=YI0002&&FullIndicate=GDP%e5%a2%9e%e9%95%bf%e7%8e%87&&FiledCode=Z001&&Filed=%E7%BB%BC%E5%90%88&&Time=2019 (accessed on 9 March 2022).
- China Statistical Yearbook on Culture and Related Industries. Available online: https://navi.cnki.net/knavi/yearbooks/YZWXG/detail?uniplatform=NZKPT (accessed on 9 March 2022).
- China Statistical Yearbook of Cultural Relics and Tourism. Available online: https://navi.cnki.net/knavi/yearbooks/YMKOI/detail?uniplatform=NZKPT (accessed on 9 March 2022).
- China Statistical Yearbook of the Tertiary Industry. Available online: https://navi.cnki.net/knavi/yearbooks/YDSOH/detail?uniplatform=NZKPT (accessed on 9 March 2022).
- China Statistical Yearbook of Science and Technology. Available online: https://navi.cnki.net/knavi/yearbooks/YBVCX/detail?uniplatform=NZKPT (accessed on 9 March 2022).
- China’s Provincial Statistical Yearbooks. Available online: https://data.cnki.net/Yearbook (accessed on 9 March 2022).
- Porter, M.E. The Competitive Advantage of Nations. Harv. Bus. Rev. 1990, 73–91. Available online: https://economie.ens.psl.eu/IMG/pdf/porter_1990_-_the_competitive_advantage_of_nations.pdf (accessed on 9 March 2022).
- Niranjan, A. A Factor Analysis Methodology for Analyzing the Factors that Contribute to Economic Development in the state of Tennessee. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2004; 116p. Available online: https://trace.tennessee.edu/cgi/viewcontent.cgi?article=3734&context=utk_gradthes (accessed on 9 March 2022).
- Williams, B.; Brown, T.; Onsman, A. Education Exploratory factor analysis: A five-step guide for novices. Australas. J. Paramed. 2010, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, C. Panel Data Analysis—Advantages and Challenges. TEST 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit Root Tests in Panel Data: Asymptotic and Finite-sample Properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A Comparative Study of Unit Root Tests with Panel Data and A New Simple Test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics, 4th ed.; McGraw Hill: New York, NY, USA, 2004; pp. 638–641. ISBN 978-0-07-059793-8. [Google Scholar]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yu, Y.; Ma, W. Evaluation and Analysis of China’s Cultural Industry Competitiveness. J. Renmin Univ. China 2006, 20, 72–82. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZRDX200604011&DbName=CJFQ2006 (accessed on 9 March 2022).
- Cui, Z.; Qian, H.; Li, H. Provincial Regional Cultural Industry Competitiveness Study of China. Rev. Ind. Econ. 2014, 2, 46–54. [Google Scholar] [CrossRef]
- Hu, H. Research on Competitiveness Evaluation of China’s Regional Cultural Industry—An Empirical Analysis Based on Cross-sectional Data in 2013. Cult. Ind. Res. 2016, 9, 21–37. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCJD&dbname=CCJDLAST2&filename=WHCY201601004&uniplatform=NZKPT&v=8AGe7-YGZI0Tc8hjin-EZB4wwo98Bs4JM71owpahhN_bHrx6xzl7wZJaAUOEqO_w (accessed on 9 March 2022).
- Ye, L. Research on Regional Differences of China’s Cultural Industry Competitiveness. Master’s Thesis, Hunan University, Changsha, China, 2008. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=2009084089.nh&DbName=CMFD2009 (accessed on 9 March 2022).
- Yue, X. Research on the evaluation of regional cultural industry competitiveness in six central provinces of China: 2009–2011. Syst. Eng. 2013, 31, 52–58. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GCXT201303009&DbName=CJFQ2013 (accessed on 9 March 2022).
- Zhou, X. Research on the Development Competitiveness of Cultural Industry in Three Northeastern Provinces of China. Master’s Thesis, Liaoning University, Shenyang, China, 2016. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1016095797.nh&DbName=CMFD2017 (accessed on 9 March 2022).
- Hu, Y.; Ma, H. Development Analysis and Competitiveness Evaluation of Cultural Industry in Northwest China; Atlantis Press: Amsterdam, Netherlands, 2018; pp. 394–398. [Google Scholar] [CrossRef] [Green Version]
- Curwin, K.D.; Mahutga, M.C. Foreign direct investment and economic growth: New evidence from post-socialist transition countries. Soc. Forces 2014, 92, 1159–1187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yao, H. The Impact of Cultural and Creative Industries on Economic Growth: Based on Provincial Scale Data. Fujian Trib. 2014, 34, 71–76. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=FJLW201402013&DbName=CJFQ2014 (accessed on 9 March 2022).
- Chen, L. An Empirical Study on the Relationship between Cultural Capital and Economic Growth——Based on Provi-ncial Panel Data from 2000 to 2016. Zhejiang Financ. 2018, 37, 73–80. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZJJR201810011&DbName=CJFQ2018 (accessed on 9 March 2022).
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Ickes, B.W. Endogenous Growth Models; Department of Economics, Penn State University: University Park, PA, USA, 1996; Volume 16802, pp. 1–26. [Google Scholar]
- Jorgenson, D.W.; Griliches, Z. The explanation of productivity change. Rev. Econ. Stud. 1967, 34, 249–283. [Google Scholar] [CrossRef]
- Ager, P.; Brückner, M. Cultural diversity and economic growth: Evidence from the US during the age of mass migration. Eur. Econ. Rev. 2013, 64, 76–97. [Google Scholar] [CrossRef]
- Bălan, M.; Vasile, V. Cultural determinants of economic performance in Romania. Procedia-Soc. Behav. Sci. 2015, 188, 290–296. [Google Scholar] [CrossRef]
First Level Indicator | Second Level Indicator | Third Level Indicator | Unit | Source |
---|---|---|---|---|
Factor Conditions | Capital element | X1: Fixed Asset Investment in Culture, Sports and Entertainment Industry | 100 million yuan | The tertiary industry |
Labor element | X2: Labor in Cultural Enterprises | person | Culture and related industries | |
Cultural elements | X3: Number of Collections in Museums | piece/set | Culture and related industries | |
X4: Total Collections in Public Libraries | 10,000 copies | Culture and related industries | ||
Demand Conditions | Industrial structure | X5: Proportion of Tertiary Industry in Gross Regional Product | % | Culture and related industries |
Consumer behavior | X6: Per Capita Consumption and Expenditure on Culture and Recreation of Nationwide Households | yuan | Culture and related industries | |
Firm Strategy, Structure and Rivalry | Operations and management | X7: Number of Cultural Enterprises | number | Culture and related industries |
X8: Users of Cable Radios and TVs | 10,000 households | Culture and related industries | ||
X9: Total Assets of Cultural Market Operating Institutions | 1000 yuan | Cultural relics and tourism | ||
Innovation capacity | X10: Total Patent Applications Granted on Culture and Related Industries | piece | Culture and related industries | |
Profitability | X11: Total Revenue of Cultural Enterprises | 10,000 yuan | Culture and related industries | |
X12: Total Profit of Cultural Enterprises | 10,000 yuan | Culture and related industries | ||
Government Action, Opportunity and Advantage | Fiscal expenditure | X13: Expenditure for Culture, Sport and Media of Regional Government Revenue | 100 million yuan | Culture and related industries |
Related and Supporting Industries | Tourism | X14: Earnings from International Tourism | USD Million | Culture and related industries |
Information service industry | X15: Number of Regional Internet Broadband Users | 10,000 households | The tertiary industry |
Variables | Description | Unit | Source |
---|---|---|---|
GDP | The year-over-year change in a region’s economic output | % | CNKI |
CI | The competitiveness level of cultural industry in various regions | number | own calculation |
Inv | The purchase of newly produced fixed capital | 100 million yuan | National Bureau of Statistics of China |
EP | The number of people engaged in productive activities in an economy | 10,000 persons | China provincial statistical yearbooks |
RDE | R&D expenditure as a percentage of gross domestic product | % | China statistical yearbooks of science and technology |
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||
---|---|---|---|---|---|---|---|---|
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | 0.807 | 0.796 | 0.833 | 0.765 | 0.792 | 0.807 | 0.728 | |
Bartlett’s Test of Sphericity | Approx. Chi-Square | 722.965 | 724.527 | 748.146 | 726.322 | 727.374 | 707.013 | 746.092 |
p-Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Variance% | Cumulative % | Total | Variance% | Cumulative % | Total | Variance% | Cumulative % | ||
2013 | 1 | 9.883 | 65.884 | 65.884 | 9.883 | 65.884 | 65.884 | 6.880 | 45.868 | 45.868 |
2 | 1.976 | 13.171 | 79.054 | 1.976 | 13.171 | 79.054 | 3.869 | 25.793 | 71.661 | |
3 | 1.261 | 8.409 | 87.463 | 1.261 | 8.409 | 87.463 | 2.370 | 15.801 | 87.463 | |
2014 | 1 | 9.846 | 65.643 | 65.643 | 9.846 | 65.643 | 65.643 | 7.016 | 46.774 | 46.774 |
2 | 2.062 | 13.749 | 79.391 | 2.062 | 13.749 | 79.391 | 3.522 | 23.478 | 70.253 | |
3 | 1.166 | 7.770 | 87.162 | 1.166 | 7.770 | 87.162 | 2.536 | 16.909 | 87.162 | |
2015 | 1 | 9.746 | 64.973 | 64.973 | 9.746 | 64.973 | 64.973 | 7.484 | 49.896 | 49.896 |
2 | 2.560 | 17.064 | 82.037 | 2.560 | 17.064 | 82.037 | 3.376 | 22.506 | 72.402 | |
3 | 1.104 | 7.361 | 89.398 | 1.104 | 7.361 | 89.398 | 2.549 | 16.996 | 89.398 | |
2016 | 1 | 9.581 | 63.872 | 63.872 | 9.581 | 63.872 | 63.872 | 7.230 | 48.202 | 48.202 |
2 | 2.514 | 16.759 | 80.631 | 2.514 | 16.759 | 80.631 | 3.043 | 20.289 | 68.492 | |
3 | 1.163 | 7.755 | 88.386 | 1.163 | 7.755 | 88.386 | 2.984 | 19.894 | 88.386 | |
2017 | 1 | 9.592 | 63.949 | 63.949 | 9.592 | 63.949 | 63.949 | 7.529 | 50.191 | 50.191 |
2 | 2.622 | 17.483 | 81.432 | 2.622 | 17.483 | 81.432 | 3.050 | 20.334 | 70.524 | |
3 | 1.179 | 7.861 | 89.293 | 1.179 | 7.861 | 89.293 | 2.815 | 18.769 | 89.293 | |
2018 | 1 | 9.372 | 62.477 | 62.477 | 9.372 | 62.477 | 62.477 | 7.635 | 50.900 | 50.900 |
2 | 2.563 | 17.089 | 79.566 | 2.563 | 17.089 | 79.566 | 2.800 | 18.665 | 69.566 | |
3 | 1.250 | 8.336 | 87.902 | 1.250 | 8.336 | 87.902 | 2.750 | 18.336 | 87.902 | |
2019 | 1 | 9.158 | 61.056 | 61.056 | 9.158 | 61.056 | 61.056 | 7.555 | 50.368 | 50.368 |
2 | 2.440 | 16.270 | 77.326 | 2.440 | 16.270 | 77.326 | 2.758 | 18.384 | 68.752 | |
3 | 1.255 | 8.368 | 85.694 | 1.255 | 8.368 | 85.694 | 2.541 | 16.942 | 85.694 |
Variable | Component | Variable | Component | Variable | Component | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | ||||
2013 | X2 | 0.926 | 0.281 | 0.101 | X11 | 0.825 | 0.409 | 0.319 | X3 | 0.033 | 0.823 | 0.319 |
X4 | 0.612 | 0.611 | 0.276 | X12 | 0.789 | 0.454 | 0.337 | X8 | 0.625 | 0.753 | −0.115 | |
X7 | 0.832 | 0.427 | 0.260 | X14 | 0.866 | 0.064 | 0.278 | X13 | 0.456 | 0.745 | 0.253 | |
X9 | 0.848 | 0.172 | 0.189 | X15 | 0.769 | 0.575 | −0.173 | X5 | 0.185 | −0.067 | 0.903 | |
X10 | 0.870 | 0.291 | 0.086 | X1 | 0.353 | 0.738 | −0.309 | X6 | 0.280 | 0.255 | 0.873 | |
2014 | X2 | 0.932 | 0.271 | 0.102 | X11 | 0.830 | 0.379 | 0.337 | X3 | 0.041 | 0.824 | 0.346 |
X4 | 0.632 | 0.583 | 0.288 | X12 | 0.810 | 0.393 | 0.359 | X8 | 0.676 | 0.707 | −0.111 | |
X7 | 0.861 | 0.408 | 0.209 | X14 | 0.875 | 0.019 | 0.281 | X13 | 0.589 | 0.652 | 0.251 | |
X9 | 0.596 | 0.330 | 0.383 | X15 | 0.778 | 0.560 | −0.167 | X5 | 0.158 | −0.076 | 0.903 | |
X10 | 0.945 | 0.171 | 0.117 | X1 | 0.367 | 0.733 | −0.332 | X6 | 0.283 | 0.207 | 0.877 | |
2015 | X2 | 0.948 | 0.177 | 0.174 | X11 | 0.836 | 0.402 | 0.302 | X5 | 0.027 | 0.928 | −0.035 |
X4 | 0.740 | 0.287 | 0.438 | X12 | 0.808 | 0.451 | 0.279 | X6 | 0.260 | 0.900 | 0.174 | |
X7 | 0.895 | 0.225 | 0.325 | X13 | 0.695 | 0.358 | 0.518 | X9 | 0.357 | 0.864 | 0.064 | |
X8 | 0.778 | −0.069 | 0.595 | X14 | 0.838 | 0.331 | −0.074 | X1 | 0.519 | −0.285 | 0.653 | |
X10 | 0.950 | 0.167 | 0.072 | X15 | 0.847 | −0.132 | 0.481 | X3 | 0.086 | 0.244 | 0.853 | |
2016 | X2 | 0.943 | 0.146 | 0.239 | X11 | 0.831 | 0.360 | 0.358 | X5 | 0.022 | 0.944 | −0.033 |
X4 | 0.725 | 0.292 | 0.465 | X12 | 0.824 | 0.354 | 0.318 | X6 | 0.269 | 0.876 | 0.164 | |
X7 | 0.872 | 0.169 | 0.400 | X13 | 0.704 | 0.376 | 0.487 | X9 | 0.450 | 0.754 | −0.041 | |
X8 | 0.751 | −0.083 | 0.618 | X14 | 0.838 | 0.314 | −0.075 | X1 | 0.424 | −0.280 | 0.735 | |
X10 | 0.954 | 0.154 | 0.088 | X15 | 0.745 | −0.149 | 0.610 | X3 | 0.053 | 0.238 | 0.864 | |
2017 | X2 | 0.945 | 0.126 | 0.246 | X11 | 0.854 | 0.361 | 0.312 | X5 | 0.083 | 0.939 | −0.106 |
X4 | 0.766 | 0.257 | 0.431 | X12 | 0.850 | 0.364 | 0.250 | X6 | 0.275 | 0.877 | 0.122 | |
X7 | 0.870 | 0.138 | 0.410 | X13 | 0.743 | 0.456 | 0.388 | X9 | 0.619 | 0.688 | 0.006 | |
X8 | 0.704 | −0.094 | 0.658 | X14 | 0.862 | 0.253 | −0.067 | X1 | 0.317 | −0.371 | 0.771 | |
X10 | 0.961 | 0.110 | 0.066 | X15 | 0.747 | −0.182 | 0.587 | X3 | 0.037 | 0.314 | 0.826 | |
2018 | X2 | 0.947 | 0.258 | 0.069 | X10 | 0.971 | 0.030 | 0.048 | X15 | 0.699 | 0.618 | −0.207 |
X4 | 0.779 | 0.422 | 0.237 | X11 | 0.882 | 0.236 | 0.378 | X1 | 0.210 | 0.805 | −0.345 | |
X7 | 0.887 | 0.397 | 0.083 | X12 | 0.818 | 0.202 | 0.421 | X3 | 0.035 | 0.834 | 0.321 | |
X8 | 0.706 | 0.648 | −0.097 | X13 | 0.769 | 0.371 | 0.414 | X5 | 0.134 | −0.118 | 0.927 | |
X9 | 0.692 | −0.025 | 0.469 | X14 | 0.872 | 0.004 | 0.204 | X6 | 0.274 | 0.062 | 0.890 | |
2019 | X2 | 0.938 | 0.259 | 0.076 | X10 | 0.957 | 0.004 | 0.013 | X15 | 0.677 | 0.625 | −0.226 |
X4 | 0.809 | 0.401 | 0.201 | X11 | 0.864 | 0.228 | 0.410 | X1 | 0.135 | 0.795 | −0.268 | |
X7 | 0.896 | 0.330 | 0.162 | X12 | 0.892 | 0.115 | 0.355 | X3 | 0.061 | 0.835 | 0.271 | |
X8 | 0.701 | 0.635 | −0.114 | X13 | 0.754 | 0.458 | 0.321 | X5 | 0.095 | −0.128 | 0.925 | |
X9 | 0.617 | −0.002 | 0.440 | X14 | 0.854 | 0.044 | 0.184 | X6 | 0.318 | 0.069 | 0.883 |
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | ||
Eastern China | Beijing | 0.74 | 4 | 0.80 | 4 | 0.91 | 4 | 0.86 | 4 | 0.89 | 4 | 0.90 | 4 | 0.84 | 4 |
Tianjin | −0.20 | 15 | −0.17 | 15 | −0.16 | 15 | −0.16 | 15 | −0.21 | 16 | −0.23 | 16 | −0.25 | 17 | |
Hebei | −0.16 | 14 | −0.14 | 14 | −0.15 | 14 | −0.15 | 13 | −0.15 | 13 | −0.19 | 15 | −0.14 | 13 | |
Shanghai | 0.69 | 5 | 0.68 | 5 | 0.75 | 5 | 0.66 | 6 | 0.76 | 5 | 0.71 | 5 | 0.78 | 5 | |
Jiangsu | 1.41 | 2 | 1.39 | 2 | 1.43 | 2 | 1.37 | 2 | 1.27 | 2 | 1.17 | 2 | 1.09 | 3 | |
Zhejiang | 1.02 | 3 | 1.04 | 3 | 1.01 | 3 | 0.94 | 3 | 0.92 | 3 | 1.00 | 3 | 1.20 | 2 | |
Fujian | 0.11 | 7 | 0.12 | 7 | 0.16 | 7 | 0.14 | 8 | 0.15 | 9 | 0.21 | 7 | 0.13 | 10 | |
Shandong | 0.68 | 6 | 0.65 | 6 | 0.67 | 6 | 0.69 | 5 | 0.62 | 6 | 0.56 | 6 | 0.47 | 6 | |
Guangdong | 2.10 | 1 | 2.10 | 1 | 2.07 | 1 | 2.11 | 1 | 2.22 | 1 | 2.31 | 1 | 2.32 | 1 | |
Hainan | −0.47 | 27 | −0.54 | 28 | −0.55 | 28 | −0.56 | 28 | −0.53 | 28 | −0.53 | 28 | −0.53 | 28 | |
Central China | Shanxi | −0.38 | 23 | −0.37 | 23 | −0.36 | 21 | −0.37 | 21 | −0.40 | 23 | −0.38 | 21 | −0.38 | 21 |
Anhui | −0.09 | 13 | −0.06 | 12 | −0.12 | 12 | −0.10 | 12 | −0.11 | 12 | −0.10 | 13 | −0.07 | 12 | |
Jiangxi | −0.27 | 17 | −0.25 | 16 | −0.22 | 16 | −0.23 | 17 | −0.24 | 17 | −0.25 | 17 | −0.23 | 16 | |
Henan | 0.03 | 9 | 0.08 | 8 | 0.11 | 8 | 0.11 | 10 | 0.08 | 10 | 0.02 | 11 | 0.03 | 11 | |
Hubei | −0.03 | 12 | −0.04 | 11 | −0.06 | 11 | −0.04 | 11 | −0.02 | 11 | 0.12 | 10 | 0.19 | 8 | |
Hunan | 0.03 | 9 | 0.07 | 10 | 0.11 | 8 | 0.19 | 7 | 0.18 | 7 | 0.16 | 9 | 0.14 | 9 | |
Western China | Mongolia | −0.29 | 19 | −0.34 | 21 | −0.39 | 22 | −0.39 | 22 | −0.37 | 21 | −0.41 | 23 | −0.43 | 23 |
Guangxi | −0.29 | 19 | −0.28 | 19 | −0.29 | 18 | −0.30 | 19 | −0.31 | 19 | −0.33 | 20 | −0.29 | 20 | |
Chongqing | −0.31 | 21 | −0.31 | 20 | −0.30 | 19 | −0.31 | 20 | −0.33 | 20 | −0.26 | 18 | −0.27 | 18 | |
Sichuan | 0.10 | 8 | 0.08 | 8 | 0.03 | 10 | 0.12 | 9 | 0.17 | 8 | 0.21 | 7 | 0.21 | 7 | |
Guizhou | −0.43 | 25 | −0.36 | 22 | −0.42 | 25 | −0.42 | 25 | −0.42 | 24 | −0.43 | 24 | −0.42 | 22 | |
Yunnan | −0.27 | 17 | −0.27 | 17 | −0.32 | 20 | −0.29 | 18 | −0.30 | 18 | −0.29 | 19 | −0.28 | 19 | |
Tibet | −0.60 | 30 | −0.60 | 30 | −0.61 | 31 | −0.63 | 31 | −0.63 | 31 | −0.67 | 31 | −0.65 | 31 | |
Shaanxi | −0.26 | 16 | −0.27 | 17 | −0.27 | 17 | −0.16 | 15 | −0.16 | 14 | −0.14 | 14 | −0.14 | 13 | |
Gansu | −0.47 | 27 | −0.49 | 27 | −0.47 | 27 | −0.45 | 26 | −0.47 | 26 | −0.48 | 26 | −0.49 | 27 | |
Qinghai | −0.62 | 31 | −0.61 | 31 | −0.60 | 30 | −0.61 | 30 | −0.61 | 29 | −0.64 | 30 | −0.62 | 30 | |
Ningxia | −0.58 | 29 | −0.59 | 29 | −0.59 | 29 | −0.59 | 29 | −0.61 | 29 | −0.61 | 29 | −0.61 | 29 | |
Xinjiang | −0.45 | 26 | −0.44 | 26 | −0.45 | 26 | −0.46 | 27 | −0.47 | 26 | −0.50 | 27 | −0.48 | 26 | |
North- eastern China | Liaoning | 0.02 | 11 | −0.07 | 13 | −0.13 | 13 | −0.15 | 13 | −0.16 | 14 | −0.08 | 12 | −0.22 | 15 |
Jilin | −0.41 | 24 | −0.42 | 25 | −0.41 | 24 | −0.41 | 24 | −0.42 | 24 | −0.43 | 24 | −0.44 | 25 | |
Heilongjiang | −0.36 | 22 | −0.38 | 24 | −0.39 | 22 | −0.39 | 22 | −0.37 | 21 | −0.40 | 22 | −0.43 | 23 |
Variable | Method | |
---|---|---|
Levin, Lin & Chu | ADF—Fisher Chi-Square | |
lnGDP | −99.8470 *** | 95.3349 *** |
lnCI | −23.8080 *** | 129.591 *** |
lnInv | −12.9577 *** | 120.158 *** |
lnEP | −13.3925 *** | 74.4365 *** |
lnRDE | −32.4257 *** | 121.615 *** |
lnCI | lnInv | lnEP | lnRDE | |
---|---|---|---|---|
lnCI | 1.0000 | |||
lnInv | 0.6628 | 1.0000 | ||
lnEP | 0.6993 | 0.6201 | 1.0000 | |
lnRDE | 0.6489 | 0.4943 | 0.4472 | 1.0000 |
Pooled Regression | Fixed Effects | Random Effects | |
---|---|---|---|
Constant | 9.2499 *** (1.8809) | 52.1326 ** (22.2890) | 14.5776 *** (2.8251) |
lnCI | 0.9914 ** (0.4550) | 8.1024 *** (2.2233) | 1.2470 * (0.7095) |
lnInv | −0.0029 (0.3851) | −2.7108 *** (0.5059) | −1.4232 *** (0.3900) |
lnEP | −0.1141 (0.4154) | −2.3168 (3.1608) | 0.9626 * (0.5006) |
lnRDE | −1.2182 *** (0.3061) | 1.2232 (1.0602) | −0.9593 ** (0.4643) |
R-squared | 0.0791 | 0.5649 | 0.0893 |
Adjusted R-squared | 0.0617 | 0.4832 | 0.0721 |
Sum squared residuals | 706.0317 | 333.5361 | 448.2363 |
Log-likelihood | −434.4039 | −353.4138 | − |
Akaike info criterion | 4.0685 | 3.5964 | − |
Spec. Tests | Statistic | Tested | Selection |
---|---|---|---|
F-test | 6.7753 *** | pooled regression/fixed effects | fixed effects |
Breusch-Pagan | 359.7893 *** | pooled regression/random effects | random effects |
Hausman | 36.1481 *** | random effects/fixed effects | fixed effects |
Variable | Method | Variable | Method | ||
---|---|---|---|---|---|
Levin, Lin & Chu | ADF—Fisher Chi-Square | Levin, Lin & Chu | ADF—Fisher Chi-Square | ||
lnX1 | −54.3690 *** | 93.8035 *** | lnX8 | −608.241 *** | 117.162 *** |
lnX2 | −13.1298 *** | 100.978 *** | lnX9 | −34.6636 *** | 83.1386 ** |
lnX3 | −36.5545 *** | 98.4927 *** | lnX10 | −108.700 *** | 145.841 *** |
lnX4 | −30.8708 *** | 128.742 *** | lnX11 | −9.41097 *** | 95.0712 *** |
lnX5 | −10.6520 *** | 127.488 *** | lnX12 | −26.3860 *** | 133.158 *** |
lnX6 | −58.1632 *** | 101.275 *** | lnX13 | −13.7596 *** | 100.708 *** |
lnX7 | −3.48069 *** | 77.3883 * |
lnX1 | lnX2 | lnX3 | lnX4 | lnX5 | lnX6 | lnX7 | lnX8 | lnX9 | lnX10 | lnX11 | lnX12 | lnX13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
lnX1 | 1.000 | ||||||||||||
lnX2 | 0.684 | 1.000 | |||||||||||
lnX3 | 0.657 | 0.613 | 1.000 | ||||||||||
lnX4 | 0.577 | 0.705 | 0.678 | 1.000 | |||||||||
lnX5 | 0.665 | 0.617 | 0.659 | 0.597 | 1.000 | ||||||||
lnX6 | 0.707 | 0.624 | 0.578 | 0.659 | 0.558 | 1.000 | |||||||
lnX7 | 0.553 | 0.718 | 0.688 | 0.484 | 0.727 | 0.485 | 1.000 | ||||||
lnX8 | 0.665 | 0.591 | 0.556 | 0.647 | 0.507 | 0.578 | 0.565 | 1.000 | |||||
lnX9 | −0.132 | 0.218 | 0.202 | 0.143 | 0.266 | 0.118 | 0.162 | 0.155 | |||||
lnX10 | 0.209 | 0.637 | 0.586 | 0.478 | 0.570 | 0.615 | 0.529 | 0.673 | 0.577 | 1.000 | |||
lnX11 | 0.650 | 0.645 | 0.463 | 0.674 | 0.501 | 0.683 | 0.713 | 0.693 | 0.166 | 0.626 | 1.000 | ||
lnX12 | 0.671 | 0.560 | 0.631 | 0.662 | 0.637 | 0.682 | 0.726 | 0.699 | −0.077 | 0.467 | 0.693 | 1.000 | |
lnX13 | 0.460 | 0.786 | 0.670 | 0.627 | 0.639 | 0.739 | 0.558 | 0.745 | 0.472 | 0.694 | 0.566 | 0.623 | 1.000 |
Pooled Regression | Fixed Effects | Random Effects | |
---|---|---|---|
Constant | 34.5857 *** (4.2046) | 69.4778 *** (9.2848) | 39.2223 *** (5.1680) |
lnX1 | −0.6355 *** (0.2022) | 0.1633 *** (0.0452) | −0.4368 ** (0.1940) |
lnX2 | 0.2817 (0.5378) | 1.2162 * (0.7326) | 1.8169 *** (0.5486) |
lnX3 | 0.1448 (0.1512) | −0.1516 (0.2832) | 0.0426 (0.2010) |
lnX4 | −1.0142 *** (0.3753) | −2.0475 ** (0.9835) | −0.9249 * (0.5214) |
lnX5 | −4.8332 *** (0.9052) | −6.9455 *** (1.4336) | −5.9944 *** (1.0606) |
lnX6 | −1.5476 *** (0.3657) | −1.8289 ** (0.7387) | −1.6780 *** (0.4801) |
lnX7 | 0.5248 (0.5199) | −0.2798 (0.6546) | −0.3414 (0.5487) |
lnX8 | −1.0532 *** (0.3247) | −2.3706 *** (0.5443) | −1.3267 *** (0.3741) |
lnX9 | 0.0358 (0.1471) | −0.0265 (0.1319) | −0.0317 (0.1213) |
lnX10 | 0.1002 (0.1903) | 0.0804 (0.2133) | 0.0727 (0.1843) |
lnX11 | 0.5227 (0.3291) | −0.3869 (0.4760) | −0.0558 (0.3665) |
lnX12 | 0.0930 * (0.0526) | 0.0426 (0.0429) | 0.0902 * (0.0401) |
lnX13 | 0.0028 (0.3367) | 0.4323 (0.6071) | 0.1449 (0.4421) |
R-squared | 0.4966 | 0.7950 | 0.5556 |
Adjusted R-squared | 0.4644 | 0.7441 | 0.5272 |
Sum squared residuals | 385.9677 | 157.1525 | 210.6021 |
Log-likelihood | −370.3901 | −272.8988 | − |
Akaike info criterion | 3.5427 | 2.9207 | − |
Spec. Test | Statistic | Tested | Selection |
---|---|---|---|
F-test | 8.3963 *** | pooled regression/fixed effects | fixed effects |
Breusch-Pagan | 110.7982 *** | pooled regression/random effects | random effects |
Hausman | 41.8395 *** | random effects/fixed effects | fixed effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Maneejuk, P.; Yamaka, W.; Liu, J. Quantifying the Competitiveness of Cultural Industry and Its Impacts on Chinese Economic Growth. Sustainability 2023, 15, 79. https://doi.org/10.3390/su15010079
Yao L, Maneejuk P, Yamaka W, Liu J. Quantifying the Competitiveness of Cultural Industry and Its Impacts on Chinese Economic Growth. Sustainability. 2023; 15(1):79. https://doi.org/10.3390/su15010079
Chicago/Turabian StyleYao, Linlin, Paravee Maneejuk, Woraphon Yamaka, and Jianxu Liu. 2023. "Quantifying the Competitiveness of Cultural Industry and Its Impacts on Chinese Economic Growth" Sustainability 15, no. 1: 79. https://doi.org/10.3390/su15010079
APA StyleYao, L., Maneejuk, P., Yamaka, W., & Liu, J. (2023). Quantifying the Competitiveness of Cultural Industry and Its Impacts on Chinese Economic Growth. Sustainability, 15(1), 79. https://doi.org/10.3390/su15010079