Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Sample Preparation
2.3. Sample Characterization
3. Results and Discussion
4. Conclusions
- Glasses of discarded beverage bottles can be fully recycled as raw material for the production of foam glasses with excellent mechanical properties (0.7 to 2.5 MPa) and thermal conductivities (0.0026 W/mK to 0.0029 W/mK).
- The sintering temperature has a strong influence on the properties of the foam glass. The temperatures 750–800–850 °C are ideal for producing closed-pore vitreous foams with technological properties that serve the civil construction industry.
- The resulting microstructure is strongly influenced by rice house ash and glass, where CaCO3 has excellent performance as a foaming agent during firing (750–800–850 °C).
- The particle size of the glass powder and rice husk ash contribute to the formation of the new cell structure and ensures greater homogenization of the raw materials, causing the glass mass to incorporate the rice husk ash mass during the period in which the glass is softened.
- In terms of physical properties, the density, thermal conductivity and resistance to compression decrease with increasing temperature, meeting the requirements for commercial glass foams. Porosity has the opposite behavior.
- The morphology of the foam glass manufactured with the addition of sodocalcic glass (78%wt), rice husk ash (16%wt) and calcium carbonate (6%wt) as foaming agent sintered at 750–800–850 °C had most pores closed, with well-defined architecture and walls with good thickness, ensuring the enclosure of CO2 within the cell structure of the foam glass.
- The sodocalcic glass favored the viscosity, presenting a higher value (0.29 g/cm3) when sintered at 750 °C, and 0.26 g/cm3 at 850 °C. These results were made possible by the influence of the addition of rice husk ash in the foam glass matrix.
- Low density is one of the most important properties for the production of foam glasses, because it influences the thermal conductivity and resistance to compression.
- All ideal processing parameters for the production of foam glasses for thermal insulation were obtained in all foams produced in this study. The sintered glassy foam (750 °C) showed porosity (83%) below the standard for commercial foam glass (>85%), but presented the best result for compressive strength (2.72 MPa) and thermal conductivity within the limits (0.0029 W/mK) for the same temperature.
- Burning at lower temperatures could be investigated to identify the behavior of the properties investigated in this study.
- An investigation into the type of gas produced during the new burning at temperatures 750–800–850 °C could bring very important information about the type of gas produced in the burning.
- New residues could be added together with rice husk ash and glass powder to study the behavior of the material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abarca-Guerrero, L.; Lobo-Ugalde, S.; Méndez-Carpio, N.; Rodríguez-Leandro, R.; Rudin-Vega, V. Zero Waste Systems: Barriers and Measures to Recycling of Construction and Demolition Waste. Sustainability 2022, 14, 15265. [Google Scholar] [CrossRef]
- Pereira, P.M.; Vieira, C.S. A Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications. Sustainability 2022, 14, 13918. [Google Scholar] [CrossRef]
- da Silva Fernandes, F.A.; de Oliveira Costa, D.d.S.; Rossignolo, J.A. Influence of Sintering on Thermal, Mechanical and Technological Properties of Glass Foams Produced from Agro-Industrial Residues. Materials 2022, 15, 6669. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.; Weidlich, I.; Di Maio, E. Developing Insulating Polymeric Foams: Strategies and Research Needs from a Circular Economy Perspective. Materials 2022, 15, 6212. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban, E.M.; Stel’makh, S.A.; Meskhi, B.; Shilov, A.A.; Varavka, V.; Evtushenko, A.; Özkılıç, Y.O.; Aksoylu, C.; Karalar, M. Composition Component Influence on Concrete Properties with the Additive of Rubber Tree Seed Shells. Appl. Sci. 2022, 12, 11744. [Google Scholar] [CrossRef]
- Shcherban, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’nik, A.; Özkılıç, Y.O.; Aksoylu, C. Normal-Weight Concrete with Improved Stress–Strain Characteristics Reinforced with Dispersed Coconut Fibers. Appl. Sci. 2022, 12, 11734. [Google Scholar] [CrossRef]
- Karalar, M.; Özkılıç, Y.O.; Deifalla, A.F.; Aksoylu, C.; Arslan, M.H.; Ahmad, M.; Sabri, M.M.S. Improvement in Bending Performance of Reinforced Concrete Beams Produced with Waste Lathe Scraps. Sustainability 2022, 14, 12660. [Google Scholar] [CrossRef]
- Çelik, A.İ.; Özkılıç, Y.O.; Zeybek, Ö.; Özdöner, N.; Tayeh, B.A. Performance Assessment of Fiber-Reinforced Concrete Produced with Waste Lathe Fibers. Sustainability 2022, 14, 11817. [Google Scholar] [CrossRef]
- Zeybek, Ö.; Özkılıç, Y.O.; Çelik, A.İ.; Deifalla, A.F.; Ahmad, M.; Sabri Sabri, M.M. Performance Evaluation of Fiber-Reinforced Concrete Produced with Steel Fibers Extracted from Waste Tire. Front. Mater. 2022, 9, 692. [Google Scholar] [CrossRef]
- Karalar, M.; Bilir, T.; Çavuşlu, M.; Özkiliç, Y.O.; Sabri Sabri, M.M. Use of Recycled Coal Bottom Ash in Reinforced Concrete Beams as Replacement for Aggregate. Front. Mater. 2022, 9, 675. [Google Scholar] [CrossRef]
- Da Silva, S.R.; Andrade, J.J.d.O. A Review on the Effect of Mechanical Properties and Durability of Concrete with Construction and Demolition Waste (CDW) and Fly Ash in the Production of New Cement Concrete. Sustainability 2022, 14, 6740. [Google Scholar] [CrossRef]
- Zong, L.; Fei, Z.; Zhang, S. Permeability of Recycled Aggregate Concrete Containing Fly Ash and Clay Brick Waste. J. Clean. Prod. 2014, 70, 175–182. [Google Scholar] [CrossRef]
- Mirzahosseini, M.; Riding, K.A. Effect of Curing Temperature and Glass Type on the Pozzolanic Reactivity of Glass Powder. Cem. Concr. Res. 2014, 58, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Amaral, R.C.; Rohden, A.B.; Garcez, M.R.; Andrade, J.J.d.O. Reuse of Wood Ash from Biomass Combustion in Non-Structural Concrete: Mechanical Properties, Durability, and Eco-Efficiency. J. Mater. Cycles Waste Manag. 2022, 24, 2439–2454. [Google Scholar] [CrossRef]
- da Silva Fernandes, F.A.; Arcaro, S.; Tochtrop Junior, E.F.; Valdés Serra, J.C.; Bergmann, C.P. Glass Foams Produced from Soda-Lime Glass Waste and Rice Husk Ash Applied as Partial Substitutes for Concrete Aggregates. Process Saf. Environ. Prot. 2019, 128, 77–84. [Google Scholar] [CrossRef]
- Yang, D.; Hu, Z.; Chen, W.; Lu, J.; Chen, J.; Wang, H.; Wang, L.; Jiang, J.; Ma, A. Fabrication of Mg-Al Alloy Foam with Close-Cell Structure by Powder Metallurgy Approach and Its Mechanical Properties. J. Manuf. Process. 2016, 22, 290–296. [Google Scholar] [CrossRef]
- Xu, Z.G.; Fu, J.W.; Luo, T.J.; Yang, Y.S. Effects of Cell Size on Quasi-Static Compressive Properties of Mg Alloy Foams. Mater. Des. 2012, 34, 40–44. [Google Scholar] [CrossRef]
- Montanaro, L.; Jorand, Y.; Fantozzi, G.; Negro, A. Ceramic Foams by Powder Processing. J. Eur. Ceram. Soc. 1998, 18, 1339–1350. [Google Scholar] [CrossRef]
- Azimipour, B.; Marchand, F. Effect of Calcium Carbonate Particle Size on PVC Foam. J. Vinyl Addit. Technol. 2006, 12, 55–57. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Huang, H.; Meng, K.; Hu, K.; Hu, P.; Wang, X.; Zhang, Z.; Meng, X. Novel Glass Ceramic Foams Materials Based on Red Mud. Ceram. Int. 2014, 40, 6677–6683. [Google Scholar] [CrossRef]
- Low, N.M.P. Formation of Cellular-Structure Glass with Carbonate Compounds and Natural Mica Powders. J. Mater. Sci. 1981, 16, 800–808. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Yue, Y. Influence of the Glass–Calcium Carbonate Mixture’s Characteristics on the Foaming Process and the Properties of the Foam Glass. J. Eur. Ceram. Soc. 2014, 34, 1591–1598. [Google Scholar] [CrossRef]
- Pokorny, A.; Vicenzi, J.; Pérez Bergmann, C. Influence of Heating Rate on the Microstructure of Glass Foams. Waste Manag. Res. J. Sustain. Circ. Econ. 2011, 29, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar] [CrossRef]
- Larissa, L.C.; Marcos, M.A.; Maria, M.V.; de Souza, N.S.L.; de Farias, E.C. Effect of High Temperatures on Self-Compacting Concrete with High Levels of Sugarcane Bagasse Ash and Metakaolin. Constr. Build. Mater. 2020, 248, 118715. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, C.; Sun, Q.; Gu, Q. Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill. Materials 2022, 15, 4397. [Google Scholar] [CrossRef]
- Zeybek, Ö.; Özkılıç, Y.O.; Karalar, M.; Çelik, A.İ.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P. Influence of Replacing Cement with Waste Glass on Mechanical Properties of Concrete. Materials 2022, 15, 7513. [Google Scholar] [CrossRef]
- Qaidi, S.; Najm, H.M.; Abed, S.M.; Özkılıç, Y.O.; Al Dughaishi, H.; Alosta, M.; Sabri, M.M.S.; Alkhatib, F.; Milad, A. Concrete Containing Waste Glass as an Environmentally Friendly Aggregate: A Review on Fresh and Mechanical Characteristics. Materials 2022, 15, 6222. [Google Scholar] [CrossRef]
- Çelik, A.İ.; Özkılıç, Y.O.; Zeybek, Ö.; Karalar, M.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Bejinariu, C. Mechanical Behavior of Crushed Waste Glass as Replacement of Aggregates. Materials 2022, 15, 8093. [Google Scholar] [CrossRef]
- Susilawati, A.; Maftuah, E.; Fahmi, A. The Utilization of Agricultural Waste as Biochar for Optimizing Swampland: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 980, 012065. [Google Scholar] [CrossRef]
- Sedlačík, M.; Nguyen, M.; Opravil, T.; Sokolář, R. Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth. Materials 2022, 15, 1384. [Google Scholar] [CrossRef]
- Chandni, T.J.; Anand, K.B. Utilization of Recycled Waste as Filler in Foam Concrete. J. Build. Eng. 2018, 19, 154–160. [Google Scholar] [CrossRef]
- de Moraes, E.G.; Sangiacomo, L.; Stochero, N.P.; Arcaro, S.; Barbosa, L.R.; Lenzi, A.; Siligardi, C.; Novaes de Oliveira, A.P. Innovative Thermal and Acoustic Insulation Foam by Using Recycled Ceramic Shell and Expandable Styrofoam (EPS) Wastes. Waste Manag. 2019, 89, 336–344. [Google Scholar] [CrossRef] [PubMed]
- XU, J.; Yao, Z.; Yang, G.; Han, Q. Research on Crumb Rubber Concrete: From a Multi-Scale Review. Constr. Build. Mater. 2020, 232, 117282. [Google Scholar] [CrossRef]
- Xiao, J. Recycled Aggregate Concrete Structures; Springer Tracts in Civil Engineering: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-662-53985-9. [Google Scholar]
- Abdel-Hay, A.S. Properties of Recycled Concrete Aggregate under Different Curing Conditions. HBRC J. 2017, 13, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Ashish, D.K. Silica Fume and Waste Glass in Cement Concrete Production: A Review. J. Build. Eng. 2020, 29, 100888. [Google Scholar] [CrossRef]
- Karalar, M.; Özkılıç, Y.O.; Aksoylu, C.; Sabri Sabri, M.M.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M. Flexural Behavior of Reinforced Concrete Beams Using Waste Marble Powder towards Application of Sustainable Concrete. Front. Mater. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Hasanzadeh, R.; Mojaver, P.; Chitsaz, A.; Mojaver, M.; Jalili, M.; Rosen, M.A. Biomass and Low-Density Polyethylene Waste Composites Gasification: Orthogonal Array Design of Taguchi Technique for Analysis and Optimization. Int. J. Hydrogen Energy 2022, 47, 28819–28832. [Google Scholar] [CrossRef]
- Olutoge, F.A.; Adesina, P.A. Effects of Rice Husk Ash Prepared from Charcoal-Powered Incinerator on the Strength and Durability Properties of Concrete. Constr. Build. Mater. 2019, 196, 386–394. [Google Scholar] [CrossRef]
- Pode, R. Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant. Renew. Sustain. Energy Rev. 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Abolhasani, A.; Samali, B.; Aslani, F. Rice Husk Ash Incorporation in Calcium Aluminate Cement Concrete: Life Cycle Assessment, Hydration and Strength Development. Sustainability 2022, 14, 1012. [Google Scholar] [CrossRef]
- Sobrosa, F.Z.; Stochero, N.P.; Marangon, E.; Tier, M.D. Development of Refractory Ceramics from Residual Silica Derived from Rice Husk Ash. Ceram. Int. 2017, 43, 7142–7146. [Google Scholar] [CrossRef]
- Gonçalves, M.R.F.; Bergmann, C.P. Thermal Insulators Made with Rice Husk Ashes: Production and Correlation between Properties and Microstructure. Constr. Build. Mater. 2007, 21, 2059–2065. [Google Scholar] [CrossRef]
- Saparuddin, D.I.; Hisham, N.A.N.; Aziz, S.A.; Matori, K.A.; Honda, S.; Iwamoto, Y.; Zaid, M.H.M. Effect of Sintering Temperature on the Crystal Growth, Microstructure and Mechanical Strength of Foam Glass-Ceramic from Waste Materials. J. Mater. Res. Technol. 2020, 9, 5640–5647. [Google Scholar] [CrossRef]
- Francis, A.A.; Abdel Rahman, M.K. Formation of Cellular-Structure Material From Automotive Glass Waste and Sawdust. Mater. Manuf. Process. 2013, 28, 130122112644001. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Yue, Y. Fabrication of Highly Insulating Foam Glass Made from CRT Panel Glass. Ceram. Int. 2015, 41, 9793–9800. [Google Scholar] [CrossRef]
- Umamaheswaran, K.; Batra, V.S. Physico-Chemical Characterisation of Indian Biomass Ashes. Fuel 2008, 87, 628–638. [Google Scholar] [CrossRef]
- Della, V.P.; Hotza, D.; Junkes, J.A.; Oliveira, A.P.N. de Estudo Comparativo Entre Sílica Obtida Por Lixívia Ácida Da Casca de Arroz e Sílica Obtida Por Tratamento Térmico Da Cinza de Casca de Arroz. Quim. Nova 2006, 29, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, H.R.; Ferreira, D.D.; Andreola, F.; Lancellotti, I.; Barbieri, L.; Ferreira, J.M.F. Environmental Friendly Management of CRT Glass by Foaming with Waste Egg Shells, Calcite or Dolomite. Ceram. Int. 2014, 40, 13371–13379. [Google Scholar] [CrossRef]
- Geetha, D.; Ananthiand, A.; Ramesh, P. Preparation and Characterization of Silica Material from Rice Husk Ash- An Economically Viable Method. J. Pure Appl. Phys. 2016, 4, 20–26. [Google Scholar]
- Nascimento, G.C.; Dominguini, L.; Mello, J.M.M.; Dal Magro, J.; Riella, H.G.; Fiori, M.A. Caracterização Físico-Química Da Cinza de Casca de Arroz Oriunda Do Processo Termelétrico Do Sul de Santa Catarina—Brasil. Ciência e Nat. 2015, 37, 634. [Google Scholar] [CrossRef]
- Vieira, C.M.F.; Morais, A.S.C.; Monteiro, S.N.; Delaqua, G.C.G. Teste Industrial de Cerâmica Vermelha Incorporada Com Resíduo de Vidro de Lâmpada Fluorescente. Cerâmica 2016, 62, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Hu, A.; Li, M.; Mao, D. Controlled Crystallization of Glass–Ceramics with Two Nucleating Agents. Mater. Charact. 2009, 60, 1529–1533. [Google Scholar] [CrossRef]
- Karamberi, A.; Orkopoulos, K.; Moutsatsou, A. Synthesis of Glass-Ceramics Using Glass Cullet and Vitrified Industrial by-Products. J. Eur. Ceram. Soc. 2007, 27, 629–636. [Google Scholar] [CrossRef]
- Akai, T.; Fukumi, K.; Yamashita, M. Formation of Pale Foam Glass from Colored Glass Cullet. J. Ceram. Soc. Jpn. 2020, 128, 153–157. [Google Scholar] [CrossRef] [Green Version]
- König, J.; Petersen, R.R.; Iversen, N.; Yue, Y. Suppressing the Effect of Cullet Composition on the Formation and Properties of Foamed Glass. Ceram. Int. 2018, 44, 11143–11150. [Google Scholar] [CrossRef]
- Arcaro, S.; Maia, B.G.d.O.; Souza, M.T.; Cesconeto, F.R.; Granados, L.; de Oliveira, A.P.N. Thermal Insulating Foams Produced From Glass Waste and Banana Leaves. Mater. Res. 2016, 19, 1064–1069. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, H.R.R.; Tulyaganov, D.U.U.; Ferreira, J.M.F.M.F. Preparation and Characterization of Foams from Sheet Glass and Fly Ash Using Carbonates as Foaming Agents. Ceram. Int. 2009, 35, 229–235. [Google Scholar] [CrossRef]
- Bisht, A.; Gangil, B.; Patel, V.K. Selection of Blowing Agent for Metal Foam Production: A Review. J. Met. Mater. Miner. 2020, 30, 1–10. [Google Scholar] [CrossRef]
- Yang, D.-H.; Hur, B.-Y.; Yang, S.-R. Study on Fabrication and Foaming Mechanism of Mg Foam Using CaCO3 as Blowing Agent. J. Alloys Compd. 2008, 461, 221–227. [Google Scholar] [CrossRef]
- Owoeye, S.S.; Matthew, G.O.; Ovienmhanda, F.O.; Tunmilayo, S.O. Preparation and Characterization of Foam Glass from Waste Container Glasses and Water Glass for Application in Thermal Insulations. Ceram. Int. 2020, 46, 11770–11775. [Google Scholar] [CrossRef]
- Sandler, J.; Wöllecke, F.; Altstädt, V.; Wettstein, E.; Rakutt, D. Principal Correlation of PVC Melt Elongational Properties with Foam Cell Morphology. Cell. Polym. 2000, 19, 371–388. [Google Scholar]
- Jaman, H.; Chakraborty, D.; Saha, P. A Study of the Thermodynamics and Kinetics of Copper Adsorption Using Chemically Modified Rice Husk. Clean Soil Air Water 2009, 37, 704–711. [Google Scholar] [CrossRef]
- Ghosh, R. A Review Study on Precipitated Silica and Activated Carbon from Rice Husk. J. Chem. Eng. Process Technol. 2013, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- De La Pierre, M.; Carteret, C.; Maschio, L.; André, E.; Orlando, R.; Dovesi, R. The Raman Spectrum of CaCO3 Polymorphs Calcite and Aragonite: A Combined Experimental and Computational Study. J. Chem. Phys. 2014, 140, 164509. [Google Scholar] [CrossRef] [Green Version]
- Behara, S.; Ghatti, L.; Kanthamani, S.; Dumpala, M.; Thomas, T. Structural, Optical, and Raman Studies of Gd Doped Sodium Bismuth Titanate. Ceram. Int. 2018, 44, 12118–12124. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.; Li, X.; Liu, T.; Guan, L.; Wu, T.; Lu, A. Preparation and Characterization of Glass–Ceramic Foams with Waste Quartz Sand and Coal Gangue in Different Proportions. J. Porous Mater. 2016, 23, 231–238. [Google Scholar] [CrossRef]
- Samal, P.; Newkirk, J. Fundamentals of Sintering—Ceramics and Glasses Handbook; 1983; Volume 4, pp. 260–269. [Google Scholar]
- Morais, A.S.C.; da Costa Caldas, T.C.; Monteiro, S.N.; Vieira, C.M.F. Characterization of Fluorescent Lamp Glass Waste Powders. Mater. Sci. Forum 2012, 727–728, 1579–1584. [Google Scholar] [CrossRef]
- Gibson, L.; Ashby, M. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Cao, M.; Liu, Z.; Xie, C. Effect of Steel-PVA Hybrid Fibers on Compressive Behavior of CaCO3 Whiskers Reinforced Cement Mortar. J. Build. Eng. 2020, 31, 101314. [Google Scholar] [CrossRef]
- Manevich, V.E.; Subbotin, K.Y. Foam Glass and Problems of Energy Conservation. Glas. Ceram. 2008, 65, 105–108. [Google Scholar] [CrossRef]
- Sooksaen, P.; Sudyod, N.; Thongtha, N.; Simsomboonphol, R. Fabrication of Lightweight Foam Glasses for Thermal Insulation Applications. Mater. Today Proc. 2019, 17, 1823–1830. [Google Scholar] [CrossRef]
Material | Composition * | ||||||
---|---|---|---|---|---|---|---|
SiO2 | CaO | Na2O | Al2O3 | K2O | Fe2O3 | P2O5 | |
Glass | 72.00 | 21.00 | 12.70 | 1.47 | 0.90 | 0.80 | – |
RHA | 89.00 | 2.70 | 1.70 | 0.97 | 2.70 | 0.33 | 0.98 |
CaCO3 | 0.41 | 97.80 | – | 0.07 | – | 0.15 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, F.A.d.S.; Costa, D.d.S.d.O.; Martin, C.A.G.; Rossignolo, J.A. Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash. Sustainability 2023, 15, 796. https://doi.org/10.3390/su15010796
Fernandes FAdS, Costa DdSdO, Martin CAG, Rossignolo JA. Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash. Sustainability. 2023; 15(1):796. https://doi.org/10.3390/su15010796
Chicago/Turabian StyleFernandes, Fernando Antonio da Silva, Dayriane do Socorro de Oliveira Costa, Camilo Andrés Guerrero Martin, and João Adriano Rossignolo. 2023. "Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash" Sustainability 15, no. 1: 796. https://doi.org/10.3390/su15010796
APA StyleFernandes, F. A. d. S., Costa, D. d. S. d. O., Martin, C. A. G., & Rossignolo, J. A. (2023). Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash. Sustainability, 15(1), 796. https://doi.org/10.3390/su15010796