Enhancing the Biodiesel Production Potential of Synechococcus elongatus and Anabaena Cyanobacterial Strain Isolated from Saline Water Using Different Media Composition and Organic Carbon Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Screening of Cyanobacterial Strains
2.2. Mass Culturing of Isolated Cyanobacterial Strain
2.3. Influence of Organic Carbon Sources on Lipid and Biomass Production
2.4. Media Optimization and Analytical Characterization Studies
2.5. Extraction of Lipid from Microalgal Biomass
2.6. Evaluation of the Fatty Acid Profile and Fuel Properties
3. Results and Discussion
3.1. Impact of Organic Carbon Sources on Lipid and Biomass Productivity
3.2. Analytical Characterization of the Lipids and Biodiesel Obtained from the Isolated Cyanobacterial Strains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nigam, P.S. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 2013, 3, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Barbera, E.; Sforza, E.; Kumar, S.; Morosinotto, T.; Bertucco, A. Cultivation of Scenedesmusobliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling. Bioresour. Technol. 2016, 207, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Carvajal, L.; Gonza´lez-Delgado, A.; Barajas, A.; Urbina-Suarez, N. The effects of wavelength and salinity on biomass production from Haematococcuspluvialis. Contemp. Eng. Sci. 2017, 10, 1693–1700. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Buono, S.; Colucci, A.; Angelini, A.; Langellotti, A.L.; Massa, M.; Martello, A.; Fogliano, V.; Dibenedetto, A. Productivity and biochemical composition of Tetradesmusobliquus and Phaeodactylumtricornutum: Effects of different cultivation approaches. J. Appl. Phycol. 2016, 28, 3179–3192. [Google Scholar] [CrossRef]
- Adesanya, V.O.; Davey, M.P.; Scott, S.A.; Smith, A.G. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresour. Technol. 2014, 157, 293–304. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef]
- Zhan, J.; Rong, J.; Wang, Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int. J. Hydrogen Energy 2017, 42, 8505–8517. [Google Scholar] [CrossRef]
- Moon, M.; Kim, C.W.; Park, W.-K.; Yoo, G.; Choi, Y.-E.; Yang, J.-W. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res. 2013, 2, 352–357. [Google Scholar] [CrossRef]
- Shu, C.-H.; Tsai, C.-C. Enhancing oil accumulation of a mixed culture of Chlorella sp. and Saccharomyces cerevisiae using fish waste hydrolysate. J. Taiwan Inst. Chem. Eng. 2016, 67, 377–384. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnol. Adv. 2011, 29, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Go´mez-Serrano, C.; Morales-Amaral, M.D.M.; Aci_en, F.G.; Escudero, R.; Fernández-Sevilla, J.M.; Molina-Grima, E. Utilization of secondary-treated wastewater for the production of freshwater microalgae. Appl. Microbiol. Biotechnol. 2015, 99, 6931–6944. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Thomsen, L.; Pan, K.; Thomsen, C. Two-step process: Enhanced strategy for wastewater treatment using microalgae. Bioresour. Technol. 2018, 268, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Brown, R.C.; Homsy, S.; Martinez, L.; Sidhu, S.S. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour. Technol. 2013, 127, 494–499. [Google Scholar] [CrossRef]
- Hirano, A.; Ueda, R.; Hirayama, S.; Ogushi, Y. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 1997, 22, 137–142. [Google Scholar] [CrossRef]
- Ross, A.; Biller, P.; Kubacki, M.; Li, H.; Lea-Langton, A.; Jones, J. Hydrothermal processing of microalgae using alkali and organic acids. Fuel 2010, 89, 2234–2243. [Google Scholar] [CrossRef]
- Tsapekos, P.; Kougias, P.; Alvarado-Morales, M.; Kovalovszki, A.; Corbie`re, M.; Angelidaki, I. Energy recovery from wastewater microalgae through anaerobic digestion process: Methane potential, continuous reactor operation and modelling aspects. Biochem. Eng. J. 2018, 139, 1–7. [Google Scholar] [CrossRef]
- Becker, E.V. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Fernandes, B.; Dragone, G.; Abreu, A.P.; Geada, P.; Teixeira, J.; Vicente, A. Starch determination in Chlorella vulgaris—A comparison between acid and enzymatic methods. J. Appl. Phycol. 2012, 24, 1203–1208. [Google Scholar] [CrossRef] [Green Version]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Biotechnol. 2019, 10, 31–41. [Google Scholar] [CrossRef]
- Sampath-Wiley, P.; Neefus, C.D.; Jahnke, L.S. Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: Fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). J. Exp. Mar. Biol. Ecol. 2008, 83–91. [Google Scholar] [CrossRef]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Ilavarasi, A.; Mubarakali, D.; Praveenkumar, R.; Baldev, E.; Thajuddin, N. Optimization of various growth media to freshwater microalgae for biomass production. Biotechnology 2011, 10, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G. A simple method of isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Kumari, P.; Reddy, C.R.K.; Jha, B. Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal. Biochem. 2011, 415, 134–144. [Google Scholar] [CrossRef]
- Sinha, S.K.; Gupta, A.; Bharalee, R. Production of biodiesel from freshwater microalgae and evaluation of fuel properties based on fatty acid methyl ester profile. Biofuels 2016, 7, 69–78. [Google Scholar] [CrossRef]
- Li, Y.; Fei, X.; Deng, X. Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractiniumpusillum. Biomass Bioenergy 2012, 42, 199–211. [Google Scholar] [CrossRef]
- Gareth, G.; Abdul, K.H.; Vikas, S.; Ganesh, D. Key Targets for Improving Algal Biofuel Production. Clean Technol. 2021, 3, 711–742. [Google Scholar] [CrossRef]
- Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; Del Borghi, M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsisoculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif. 2009, 48, 1146–1151. [Google Scholar] [CrossRef]
- Feng, P.; Deng, Z.; Hu, Z.; Fan, L. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour. Technol. 2011, 102, 10577–10584. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.J.; Harrison, S.T.L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 2009, 21, 493–507. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sahoo, P.K.; Singhal, S. Comparative evolution of biomass production and lipid accumulation potential of Chlorella species grown in a bubble column photobioreactor. Biofuels 2016, 7, 389–399. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Xie, T.; Xiong, X.; Liu, W.; Liang, B.; Zhang, Y. Enhanced lipid accumulation by Chlorella vulgaris in a two-stage fed-batch culture with glycerol. Energy Fuels 2014, 28, 3172–3177. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Torpee, S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 2012, 110, 510–516. [Google Scholar] [CrossRef]
- Yang, C.; Hua, Q.; Shimizu, K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cycliclight-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 2000, 6, 87–102. [Google Scholar] [CrossRef]
- Lu, J.; Sheahan, C.; Fu, P. Metabolic engineering of algae for fourth generation biofuels production. Energy Environ. Sci. 2011, 4, 2451–2466. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, Z.; Wu, X.; Miao, X. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification. BioMed Res. Int. 2013, 2013, 930686. [Google Scholar] [CrossRef] [Green Version]
- Knothe, G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2009, 2, 759–766. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Francisco, E.C.; Neves, D.B.; Jacob-Lopes, E.; Franco, T.F. Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality. J. Chem. Technol. Biotechnol. 2010, 85, 395–403. [Google Scholar] [CrossRef]
Fatty Acid Composition (%) | Synechococcus elongatus | Anabaena |
---|---|---|
Polyunsaturated fatty acids | 36.1819 | 33.179 |
Saturated fatty acids | 33.1539 | 32.0591 |
Monounsaturated fatty acids | 37.1480 | 29.1870 |
Octadecanoic acid | 4.1937 | 3.7882 |
Tetradecanoic acid | 2.8932 | 2.1814 |
Palmitoleic acid | 2.6175 | 2.3389 |
Linolenic acid | 6.102 | 5.4918 |
Lauric acid | 1.3172 | 1.1028 |
Decanoic acid | 1.5241 | 0.8142 |
Fuel Properties | ASTM | Synechococcus elongatus | Anabaena |
---|---|---|---|
Pour point (°C) | −5 to 10 | 3.18 | 4.11 |
DU (%) | - | 89.91 | 83.11 |
Higher heating value (MJ/Kg) | 45.5 | 40.18 | 39.11 |
Cloud point (°C) | −3 to 15 | 10.81 | 5.7 |
LCSF (°C) | - | 4.99 | 4.77 |
CFPP (°C) | - | −1.47 | −1.11 |
Oxidation stability (h) | Min 8 h | 6.8 | 6.1 |
Cetane number | 47–65 | 57.42 | 53.51 |
Saponification value (mg KOH g−1 oil) | 218 | 182.10 | 179.21 |
Iodine value (g I2100 g−1 oil) | 120 | 93.04 | 88.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parthiban, J.; Jambulingam, R. Enhancing the Biodiesel Production Potential of Synechococcus elongatus and Anabaena Cyanobacterial Strain Isolated from Saline Water Using Different Media Composition and Organic Carbon Sources. Sustainability 2023, 15, 870. https://doi.org/10.3390/su15010870
Parthiban J, Jambulingam R. Enhancing the Biodiesel Production Potential of Synechococcus elongatus and Anabaena Cyanobacterial Strain Isolated from Saline Water Using Different Media Composition and Organic Carbon Sources. Sustainability. 2023; 15(1):870. https://doi.org/10.3390/su15010870
Chicago/Turabian StyleParthiban, Jeevitha, and Ranjitha Jambulingam. 2023. "Enhancing the Biodiesel Production Potential of Synechococcus elongatus and Anabaena Cyanobacterial Strain Isolated from Saline Water Using Different Media Composition and Organic Carbon Sources" Sustainability 15, no. 1: 870. https://doi.org/10.3390/su15010870
APA StyleParthiban, J., & Jambulingam, R. (2023). Enhancing the Biodiesel Production Potential of Synechococcus elongatus and Anabaena Cyanobacterial Strain Isolated from Saline Water Using Different Media Composition and Organic Carbon Sources. Sustainability, 15(1), 870. https://doi.org/10.3390/su15010870