Influence of Rock Structure on Migration of Radioactive Colloids from an Underground Repository of High-Level Radioactive Waste
Abstract
:1. Introduction
2. Colloid-Facilitated Transport of Radionuclides by Groundwater
3. Influence of Rock Fracturing
4. Characteristics of Fracturing of Nizhnekansky Massif Rocks (Eniseisky Site, Krasnoyarsk Region, Russia)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krauskopf, K.B. Geology of high-level nuclear waste disposal. Ann. Rev. Earth Planet. Sci. 1988, 16, 173–200. [Google Scholar] [CrossRef]
- National Research Council. End Points for Spent Nuclear Fuel and High-Level Radioactive Waste in Russia and the United States; Committee on End Points for Spent Nuclear Fuel and High-Level Radioactive Waste in Russia and the United States; National Academies Press: Washington, DC, USA, 2003; p. 137. [CrossRef]
- Laverov, N.P.; Yudintsev, S.V.; Kochkin, B.T.; Malkovsky, V.I. The Russian Strategy of using Crystalline Rock as a Repository for Nuclear Waste. Elements 2016, 12, 253–256. [Google Scholar] [CrossRef]
- Savage, D. The Scientific and Regulatory Basis for the Geological Disposal of Radioactive Waste; John Wiley&Sons: Chichester, UK, 1995; p. 437. [Google Scholar]
- Niemeyer, M.J.; Hugi, M.; Smith, P.; Zuidema, P. Kristallin-I performance assessment: First results from sensitivity studies. In Geological Disposal of Spent Fuel, High Level and Alpha Bearing Wastes; International Atomic Energy Agency: Vienna, Austria, 1993; pp. 297–308. [Google Scholar]
- Bear, J. Modeling flow and contaminant transport in fractured rocks. In Flow and Contaminant Transport in Fractured Rocks; Bear, J., Tsang, C.-F., De Marsily, G., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1993; pp. 1–38. [Google Scholar]
- Neretnieks, I. Solute transport in fractured rock–applications to radionuclide waste repositories. In Flow and Contaminant Transport in Fractured Rocks; Bear, J., Tsang, C.-F., De Marsily, G., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1993; pp. 39–128. [Google Scholar]
- Ewing, R.C.; Whittleston, R.A.; Yardley, B.W.D. Geological disposal of nuclear waste: A primer. Elements 2016, 12, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Petrov, V.A.; Lespinasse, M.; Poluektov, V.V.; Ustinov, S.A.; Minaev, V.A. Scale effect in a fluid-conducting fault network. Geol. Ore Depos. 2019, 61, 293–305. [Google Scholar] [CrossRef]
- Barenblatt, G.; Zheltov, I.; Kochina, I. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 1960, 24, 1286–1303. [Google Scholar] [CrossRef]
- Tsang, C.-F. Tracer transport in fracture systems. In Flow and Contaminant Transport in Fractured Rocks; Bear, J., Tsang, C.-F., De Marsily, G., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1993; pp. 237–266. [Google Scholar]
- Berre, I.; Doster, F.; Keilegavlen, E. Flow in fractured porous media: A review of conceptual models and discretization approaches. Transp. Porous Media 2019, 130, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.L.; Doster, F.; Geiger, S.; Francot, E.; Gouth, F. Fluid flow characterization framework for naturally fractured reservoirs using small-scale fully explicit models. Transp. Porous Media 2020, 134, 399–434. [Google Scholar] [CrossRef]
- De Marsily, G. Quantitative Hydrogeology; Academic Press: Orlando, FL, USA, 1986; p. 440. [Google Scholar]
- McKinley, I.G.; Alexander, W.R. Assessment of radionuclide retardation: Uses and abuses of natural analogue studies. J. Contam. Hydrol. 1993, 13, 249–259. [Google Scholar] [CrossRef]
- Malkovsky, V.I.; Pek, A.A. Effect of elevated velocity of particles in groundwater flow and its role in colloid-facilitated transport of radionuclides in underground medium. Transp. Porous Media 2009, 78, 277–294. [Google Scholar] [CrossRef]
- Penrose, W.R.; Polzer, W.L.; Essington, E.H.; Nelson, D.M.; Orlandini, K.A. Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environ. Sci. Technol. 1990, 24, 228–234. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Czerwinski, K.R.; Sanford, W.E.; Jardine, P.M.; Marsh, J.D. Mobilization of transuranic radionuclides from disposal trenches by natural organic matter. J. Contam. Hydrol. 1998, 30, 49–77. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Sanford, W.E.; Stafford, P.L. Lanthanide field tracers demonstrate enhanced transport of transuranic radionuclides by natural organic matter. Environ. Sci. Technol. 1998, 32, 3901–3906. [Google Scholar] [CrossRef]
- Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson, J.L. Migration of plutonium in ground water at the Nevada Test Site. Nature 1999, 397, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Wheeler, M.L.; Purtymun, W.D.; Trujillo, G.; Herrera, W.J.; Booth, J.W. Distribution of plutonium and americium beneath a 33-yr-old liquid waste disposal site. J. Environ. Qual. 1985, 14, 501–509. [Google Scholar] [CrossRef]
- Zachara, J.M.; Smith, S.C.; Liu Ch McKinley, J.P.; Serne, R.J.; Gassman, P.L. Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, U.S.A. Geochim. Cosmochim. Acta 2002, 66, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.K.; Finnegan, D.L.; Bowen, S.M. An inventory of long-lived radionuclides residual from underground nuclear testing at the Nevada test site, 1951–1992. J. Environ. Radioact. 2003, 67, 35–51. [Google Scholar] [CrossRef]
- Malkovsky, V.I.; Yudintsev, S.V.; Aleksandrova, E.V. Leaching of radioactive waste surrogates from a glassy matrix and migration of the leaching products in gneisses. Radiochemistry 2018, 60, 648–656. [Google Scholar] [CrossRef]
- Honeyman, B.D. Colloidal culprits in contamination. Nature 1999, 397, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, Y.; Sakata, H.; Furuya, H.; Idemitsu, K.; Arima, T.; Banba, T.; Maeda, T.; Matsumoto, S.; Tamura, Y.; Kikkawa, S. Effects of water redox conditions and presence of magnetite on leaching of Pu and Np from HLW glass. Mater. Res. Soc. Proc. 1998, 506, 177–184. [Google Scholar] [CrossRef]
- Buck, E.C.; Bates, J.K. Microanalysis of colloids and suspended particles from nuclear waste glass alteration. Appl. Geochem. 1999, 14, 635–659. [Google Scholar] [CrossRef]
- Ojovan, M.; Lee, W.E. Glassy wasteforms for nuclear waste immobilization. Metall. Mater. Trans. A 2011, 42, 837–851. [Google Scholar] [CrossRef] [Green Version]
- Ojovan, M.I.; Petrov, V.A.; Yudintsev, S.V. Glass crystalline materials as advanced nuclear wasteforms. Sustainability 2021, 13, 4117. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Pervukhina, A.M.; Mokhov, A.V.; Malkovsky, V.I.; Stefanovsky, S.V. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching. Dokl. Earth Sci. 2017, 473, 427–432. [Google Scholar] [CrossRef]
- Mal’kovskii, V.I.; Yudintsev, S.V.; Pervukhina, A.M. Leaching of degraded preservative matrices, based on sodium aluminophosphate glasses, for high-level wastes. At. Energy 2018, 123, 177–182. [Google Scholar] [CrossRef]
- Malkovsky, V.I.; Yudintsev, S.V.; Aleksandrova, E.V. Influence of Na-Al-Fe-P glass alteration in hot non-saturated vapor on leaching of vitrified radioactive wastes in water. J. Nucl. Mater. 2018, 508, 212–218. [Google Scholar] [CrossRef]
- Degueldre, C.; Benedicto, A. Colloid generation during water flow transients. Appl. Geochem. 2012, 27, 1220–1225. [Google Scholar] [CrossRef]
- Missana, T.; Alonso, U.; Fernández, A.M.; García-Gutiérrez, M. Analysis of the stability behaviour of colloids obtained from different smectite clays. Appl. Geochem. 2018, 92, 180–187. [Google Scholar] [CrossRef]
- Malkovsky, V.I.; Yudintsev, S.V.; Ojovan, M.I.; Petrov, V.A. The influence of radiation on confinement properties of nuclear waste glasses. Sci. Technol. Nucl. Install. 2020, 2020, 8875723. [Google Scholar] [CrossRef]
- Bredehoeft, J.D.; Norton, D.L. Mass and energy transport in a deforming Earth’s crust. In The Role of Fluids in Crustal Processes; Geophysics Study Committee, Comission on Geosciences, Environment and Resources, National Research Council; National Academy Press: Washington, DC, USA, 1990; pp. 27–41. [Google Scholar]
- Shmonov, V.M.; Mal’kovskii, V.I.; Zharikov, A.V. A Technique for measuring permeability of samples of anisotropic rocks for water and gas. Instrum. Exp. Tech. 2011, 54, 722–728. [Google Scholar] [CrossRef]
- Lobanov, N.F.; Beigul, V.P.; Lopatin, P.V.; Ozersky, A.Y. Selection and validation of area for underground research laboratory in Nizhnekansky Massif. Min. J. 2015, 10, 59–63. (In Russian) [Google Scholar] [CrossRef]
- Petrov, V.A.; Poluektov, V.V.; Hammer, J.; Zulauf, G. Analysis of mineralogical and deformation-induced transformations of Nizhnekansky Massif rocks to estimate their retention capacity in geological disposal and isolation of radioactive waste. Gorn. Zhurnal—Min. J. 2015, 10, 67–74. (In Russian) [Google Scholar] [CrossRef]
- Petrov, V.A.; Siitati-Kauppi, M.; Tikkanen, O.; Sardini, P.; Poluektov, V.V. Preliminary results of C14-PMMA impregnation of Krasnoyarsk rock samples for evaluating the porosity related properties. In Proceedings of the 21th International Conference “Physico-Chemical and Petrophysical Researches in Earth Sciences”, IGEM RAS, Moscow, Russia, 21–23 September 2020; pp. 310–315. [Google Scholar]
- Malkovsky, V.I.; Ozerskiy, A.Y. Stochastic model of filtration properties distribution for enclosing rocks of an underground repository of radioactive waste on the basis of pumping tests. In Proceedings of the 15th International Conference “Physico-Chemical and Petrophysical Researches in Earth Sciences”, IGEM RAS, Moscow, Russia, 29 September–1 October 2014; pp. 159–162. [Google Scholar]
Nos | Sample Index | Composition | Permeability, m2 |
---|---|---|---|
1 | K 560.8 | Granodiorite | 1.488 × 10−18 |
2 | K 613.1 | Porphyric adamellite | 2.307 × 10−18 |
3 | I 142.6 | Gneissic granite with metasomatic alterations | 3.712 × 10−20 |
4 | I 491.7 | Gneissic granite | 8.201 × 10−19 |
5 | I 357.2 | Quartz diorite | 3.092 × 10−19 |
6 | I 504.6 | Quartz diorite | 9.595 × 10−19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malkovsky, V.I.; Petrov, V.A.; Yudintsev, S.V.; Ojovan, M.I.; Poluektov, V.V. Influence of Rock Structure on Migration of Radioactive Colloids from an Underground Repository of High-Level Radioactive Waste. Sustainability 2023, 15, 882. https://doi.org/10.3390/su15010882
Malkovsky VI, Petrov VA, Yudintsev SV, Ojovan MI, Poluektov VV. Influence of Rock Structure on Migration of Radioactive Colloids from an Underground Repository of High-Level Radioactive Waste. Sustainability. 2023; 15(1):882. https://doi.org/10.3390/su15010882
Chicago/Turabian StyleMalkovsky, Victor I., Vladislav A. Petrov, Sergey V. Yudintsev, Michael I. Ojovan, and Valeri V. Poluektov. 2023. "Influence of Rock Structure on Migration of Radioactive Colloids from an Underground Repository of High-Level Radioactive Waste" Sustainability 15, no. 1: 882. https://doi.org/10.3390/su15010882
APA StyleMalkovsky, V. I., Petrov, V. A., Yudintsev, S. V., Ojovan, M. I., & Poluektov, V. V. (2023). Influence of Rock Structure on Migration of Radioactive Colloids from an Underground Repository of High-Level Radioactive Waste. Sustainability, 15(1), 882. https://doi.org/10.3390/su15010882