The Green Lung: National Parks and Air Quality in Italian Municipalities
Abstract
:1. Introduction
2. Data Description
3. Descriptive and Econometric Empirical Findings
4. Robustness Checks and Extensions of Our Findings
5. Discussion
5.1. The Health Impact of Natural Parks
5.2. Interpreting Correlation Links
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Pollutant | Authors | Study Period | % Change in Mortality Risk Associated with a 10 μg/m3 Increase |
---|---|---|---|
PM2.5 | |||
[31] | 1976–1989 | 13 (4, 23) | |
[32] | 1979–1998 | 16 (7, 26) | |
[33] | 1974–2009 | 14 (7, 22) | |
[34] | 1982–1989 | 26 (8, 47) | |
[35] | 1982–1998 | 6 (2, 11) | |
[36] | 1982–2000 | 17 (5, 30) | |
[37] | 1987–1996 | 6 (−3, 16) | |
[38] | 1992–2002 | 26 (2, 54) | |
[39] | 2000–2005 | 4 (3, 6) | |
[40] | 2002–2007 | 6 (−4, 16) | |
[41] | 1989–2003 | −14 (−28, 2) | |
[42] | 1985–2000 | 10 (3, 18) | |
[43] | 1991–2001 | 10 (5, 15) | |
[44] | 1997–2005 | 1 (−5, 9) | |
[45] | 2001–2010 | 4 (3, 5) | |
PM10 | |||
[46] | 1985–2003 | 12 (−9, 37) | |
[47] | 1985–2008 | 22 (6, 41) | |
[48] | 1992–2002 | 11 (1, 23) | |
[49] | 1998–2009 | 53 (50, 56) | |
[50] | 1996–1999 | 7 (3, 10) | |
[51] | 1980–2004 | −2 (−8, 4) | |
NO2 | |||
[37] | 1987–1996 | 8 (0, 16) | |
[46] | 1985–2003 | 11 (1, 21) | |
[47] | 1985–2008 | 11 (4,18) | |
[52] | 1974–1998 | 14 (3, 25) | |
[53] | 1993–2009 | 8 (2, 13) | |
[42] | 1985–2000 | 5 (3, 7) | |
[54] | 2001–2006 | 4 (3, 5) | |
[44] | 1997–2005 | −3 (−9, 4) | |
[55] | 1999–2006 | 2 (−4, 8) | |
[45] | 2001–2010 | 3 (2, 3) | |
SO2 | |||
[56] | 0.75 ( 0.47, 1.02) | ||
[57] | 1991–1994 | 0.6 (0.2, 0.4) | |
[58] | 1991–2000 | 3.2 (2.3, 4) | |
[59] | 1983–1985 | 1.26 (1.07, 1.48) | |
O3 | |||
[60] | 1985–1990 | 1.37 (0.78, 1.96) | |
[61] | 1985–1996 | 1.12 (0.32, 1.92) | |
[62] | 0.98 (0.59, 1.38) | ||
[63] | 1.11 (0.55, 1.67) | ||
[64] | 1987–2000 | 0.87 (0.55, 1.18) | |
CO | |||
[65] | 2013–2015 | 11.2 (4.2, 18.3) | |
[66] | 1990–1997 | 12 (6.3–17.7) | |
[67] | 2004–2008 | 28.9 (16.8, 41.1) | |
[68] | 2006–2008 | 60.8 (43.6, 78) per 10 ppb |
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- De Groot, R.; van der Perk, J.; Chiesura, A.; Marguliew, S. Ecological functions and socioeconomic values of critical natural capital as a measure for ecological integrity and environmental health. In Implementing Ecological Integrity; Springer: Dordrecht, The Netherlands, 2000; pp. 191–214. [Google Scholar]
- Vemuri, A.W.; Costanza, R. The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a National Well-Being Index (NWI). Ecol. Econ. 2006, 58, 119–133. [Google Scholar] [CrossRef]
- Humpel, N.; Owen, N.; Leslie, E. Environmental Factors Associated with Adults’ Participation in Physical Activity: A Review. Am. J. Prev. Med. 2002, 22, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.; Kerr, J. Physical Activity and the Built Environment. In President’s Council on Physical Fitness and Sports Research Digest; U.S. Senate: Washington, DC, USA, 2006; Volume 7, pp. 1–8. [Google Scholar]
- Gordon-Larsen, P.; Nelson, M.; Page, P.; Popkin, B.M. Inequality in the Built Environment Underlies Key Health Disparities in Physical Activity and Obesity. Pediatrics 2006, 117, 417–424. [Google Scholar] [CrossRef]
- Shoup, L.; Ewing, R. The Economic Benefits of Open Space, Recreation Facilities and Walkable Community Design; Active Living Research. Retrieved 16 February 2012; Robert Wood Johnson Foundation: Princeton, NJ, USA, 2010. [Google Scholar]
- Mowen, A. Parks, Playgrounds and Active Living. Act Living Res. 2010, 332012. Available online: https://www.google.com/url?sa=t&source=web&cd=&ved=2ahUKEwjNg6Xv9Nr-AhVI2TgGHfrmBKEQFnoECAoQAQ&url=https%3A%2F%2Factivelivingresearch.org%2Ffiles%2FSynthesis_Mowen_Feb2010_0.pdf&usg=AOvVaw0U99vwsmnLkPw59cle3DFs (accessed on 9 February 2023).
- Branas, C.C.; Cheney, R.A.; MacDonald, J.M.; Tam, V.W.; Jackson, T.D.; Ten Have, T.R. A difference-in-differences analysis of health, safety, and greening vacant urban space. Am. J. Epidemiol. 2011, 174, 1296–1306. [Google Scholar] [CrossRef]
- Olsthoorn, X.; Amann, M.; Bartonova, A.; Clench-Aas, J.; Cofala, J.; Dorland, K.; Guerreiro, C.D.B.B.; Henriksen, J.F.; Jansen, H.; Larssen, S. Cost Benefit Analysis of European Air Quality Targets for Sulphur Dioxide, Nitrogen Dioxide and Fine and Suspended Particulate Matter in Cities. Environ. Resour. Econ. 1999, 14, 333–351. [Google Scholar] [CrossRef]
- Söllner, F. Environmental Health Risks and Tradable Health Risk Permits. Environ. Resour. Econ. 1999, 14, 1–18. [Google Scholar] [CrossRef]
- Pelucchi, C.; Negri, E.; Gallus, S.; Boffetta, P.; Tramacere, I.; La Vecchia, C. Long-term particulate matter exposure and mortality: A review of European epidemiological studies. BMC Public Health 2009, 9, 453. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Y.; Di, Q.; Choirat, C.; Wang, Y.; Koutrakis, P.; Zanobetti, A.; Dominici, F.; Schwartz, J.D. Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: Time stratified, case crossover study. BMJ 2019, 367, l6258. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Beckerman, B.S.; Turner, M.C.; Krewski, D.; Thurston, G.; Martin, R.V.; van Donkelaar, A.; Hughes, E.; Shi, Y.; et al. Spatial analysis of air pollution and mortality in California. Am. J. Respir. Crit. Care Med. 2013, 188, 593–599. [Google Scholar] [CrossRef]
- Amini, H.; Trang Nhung, N.T.; Schindler, C.; Yunesian, M.; Hosseini, V.; Shamsipour, M.; Hassanvand, M.S.; Mohammadi, Y.; Farzadfar, F.; Vicedo-Cabrera, A.M.; et al. Short-term associations between daily mortality and ambient particulate matter, nitrogen dioxide, and the air quality index in a Middle Eastern megacity. Environ. Pollut. 2019, 254, 113121. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.L.; Conceição, G.M.; Pereira, L.A.; Kishi, H.S.; Pereira, J.C.; Andrade, M.F.; Gonçalves, F.L.T.; Saldiva, P.H.N.; Latorre, M.R. Air pollution and pediatric respiratory hospital admissions in São Paulo, Brazil. J. Environ. Med. 1999, 1, 95–102. [Google Scholar] [CrossRef]
- Braga, A.L.; Saldiva, P.H.; Pereira, L.A.; Menezes, J.J.; Conceição, G.M.; Lin, C.A.; Zanobetti, A.; Schwartz, J.; Dockery, D.W. Health effects of air pollution exposure on children and adolescents in São Paulo, Brazil. Pediatr. Pulmonol. 2001, 31, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Simoni, M.; Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Viegi, G. Adverse effects of outdoor pollution in the elderly. J. Thorac. Dis. 2015, 7, 34. [Google Scholar]
- Çapraz, Ö.; Deniz, A.; Doğan, N. Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015. Chemosphere 2017, 181, 544–550. [Google Scholar] [CrossRef]
- Blanco-Cerradelo, L.; Gueimonde-Canto, A.; Fraiz-Brea, J.A.; Diéguez-Castrillón, M.I. Dimensions of destination competitiveness: Analyses of protected areas in Spain. J. Clean. Prod. 2018, 177, 782–794. [Google Scholar] [CrossRef]
- Bigerna, S.; Micheli, S.; Polinori, P. Willingness to pay for electric boats in a protected area in Italy: A sustainable tourism perspective. J. Clean. Prod. 2019, 224, 603–613. [Google Scholar] [CrossRef]
- Keiser, D.; Lade, G.; Rudik, I. Air pollution and visitation at US national parks. Sci. Adv. 2018, 4, eaat1613. [Google Scholar] [CrossRef]
- Duan, H.J.; Cai, X.Q.; Ruan, X.L.; Tong, Z.Q.; Ma, J.H. Assessment of heavy metal pollution and its health risk of surface dusts from parks of Kaifeng, China. Huan Jing Ke Xue = Huanjing Kexue 2015, 36, 2972–2980. [Google Scholar]
- Buontempo, C.; Burgess, S.N.; Dee, D.; Pinty, B.; Thépaut, J.N.; Rixen, M.; Garcés de Marcilla, J. The Copernicus Climate Change Service: Climate Science in Action. Bull. Am. Meteorol. Soc. 2022, 103, E2669–E2687. [Google Scholar] [CrossRef]
- Stidworthy, A.; Jackson, M.; Johnson, K.; Carruthers, D.; Stocker, J. Evaluation of local and regional air quality forecasts for London. Int. J. Environ. Pollut. 2018, 64, 178–191. [Google Scholar] [CrossRef]
- Stortini, M.; Arvani, B.; Deserti, M. Operational forecast and daily assessment of the air quality in Italy: A copernicus-CAMS downstream service. Atmosphere 2020, 11, 447. [Google Scholar] [CrossRef]
- Wu, C.; Li, K.; Bai, K. Validation and calibration of CAMS PM2.5 forecasts using in situ PM2.5 measurements in China and United States. Remote Sens. 2020, 12, 3813. [Google Scholar] [CrossRef]
- Renzi, M.; Forastiere, F.; Calzolari, R.; Cernigliaro, A.; Madonia, G.; Michelozzi, P.; Davoli, M.; Scondotto, S.; Stafoggia, M. Short-term effects of desert and non-desert PM10 on mortality in Sicily, Italy. Environ. Int. 2018, 120, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Fitzky, A.C.; Sandén, H.; Karl, T.; Fares, S.; Calfapietra, C.; Grote, R.; Saunier, A.; Rewald, B. The interplay between ozone and urban vegetation—BVOC emissions, ozone deposition, and tree ecophysiology. Front. For. Glob. Change 2019, 2, 50. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Araminiene, V.; Carrari, E.; Hoshika, Y.; De Marco, A.; Paoletti, E. Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? Environ. Pollut. 2018, 243, 163–176. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef]
- Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in fine particulate Air pollution and mortality: Extended follow-up of the Harvard Six cities study. Am. J. Respir. Crit. Care Med. 2006, 173, 667–672. [Google Scholar] [CrossRef]
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard six cities study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965–970. [Google Scholar] [CrossRef]
- Pope, C.A.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Jr, H.C. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 1995, 151, 669–674. [Google Scholar] [CrossRef]
- Pope, C.A.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Burnett, R.T.; Ma, R.; Pope, C.A.; Krewski, D.; Newbold, K.B.; Thurston, G.; Shi, Y.; Finkelstein, N.; Calle, E.E.; et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005, 16, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Puett, R.C.; Hart, J.E.; Yanosky, J.D.; Paciorek, C.; Schwartz, J.; Suh, H.; Speizer, F.E.; Laden, F. Chronic fine and coarse particulate exposure, mortality, and coronary heart disease in the Nurses’ Health Study. Environ. Health Perspect. 2009, 117, 1697–1701. [Google Scholar] [CrossRef]
- Zeger, S.L.; Dominici, F.; McDermott, A.; Samet, J.M. Mortality in the Medicare population and chronic exposure to fine particulate air pollution in urban centers (2000–2005). Environ. Health Perspect. 2008, 116, 1614–1619. [Google Scholar] [CrossRef]
- Ostro, B.; Lipsett, M.; Reynolds, P.; Goldberg, D.; Hertz, A.; Garcia, C.; Henderson, K.D.; Bernstein, L. Long-term exposure to constituents of fine particulate air pollution and mortality: Results from the California teachers study. Environ. Health Perspect. 2010, 118, 363–369. [Google Scholar] [CrossRef]
- Puett, R.C.; Hart, J.E.; Suh, H.; Mittleman, M.; Laden, F. Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up study. Environ. Health Perspect. 2011, 119, 1130–1135. [Google Scholar] [CrossRef]
- Hart, J.E.; Garshick, E.; Dockery, D.W.; Smith, T.J.; Ryan, L.; Laden, F. Long-term ambient multipollutant exposures and mortality. Am. J. Respir. Crit. Care Med. 2011, 183, 73–78. [Google Scholar] [CrossRef]
- Crouse, D.L.; Peters, P.A.; van Donkelaar, A.; Goldberg, M.S.; Villeneuve, P.J.; Brion, O.; Khan, S.; Atari, D.O.; Jerrett, M.; Pope, C.A.; et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: A Canadian national-level cohort study. Environ. Health Perspect. 2012, 120, 708–714. [Google Scholar] [CrossRef]
- Lipsett, M.J.; Ostro, B.D.; Reynolds, P.; Goldberg, D.; Hertz, A.; Jerrett, M.; Smith, D.F.; Garcia, C.; Chang, E.T.; Bernstein, L. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am. J. Respir. Crit. Care Med. 2011, 184, 828–835. [Google Scholar] [CrossRef]
- Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; Forastiere, F. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ. Health Perspect. 2013, 121, 324–331. [Google Scholar] [CrossRef]
- Gehring, U.; Heinrich, J.; Kramer, U.; Grote, V.; Hochadel, M.; Sugiri, D.; Kraft, M.; Rauchfuss, K.; Eberwein, H.G.; Wichmann, H.E. Long-term exposure to ambient air pollution and cardiopulmonary mortality in women. Epidemiology 2006, 17, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, J.; Thiering, E.; Rzehak, P.; Krämer, U.; Hochadel, M.; Rauchfuss, K.M.; Gehring, U.; Wichmann, H. Long-term exposure to NO2 and PM10 and all-cause and cause-specific mortality in a prospective cohort of women. Occup. Environ. Med. 2013, 70, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Puett, R.C.; Schwartz, J.; Hart, J.E.; Yanosky, J.D.; Speizer, F.E.; Suh, H.; Paciorek, C.J.; Neas, L.M.; Laden, F. Chronic particulate exposure, mortality, and coronary heart disease in the Nurses’ Health Study. Am. J. Epidemiol. 2008, 168, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Dong, G.; Sun, B.; Zhang, L.; Chen, X.; Ma, N.; Yu, F.; Guo, H.; Huang, H.; Lee, Y.L.; et al. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China. PLoS ONE 2011, 6, e20827. [Google Scholar] [CrossRef]
- Hales, S.; Blakely, T.; Woodward, A. Air pollution and mortality in New Zealand: Cohort study. J. Epidemiol. Community Health 2012, 66, 468–473. [Google Scholar] [CrossRef]
- Ueda, K.; Nagasawa, S.Y.; Nitta, H.; Miura, K.; Ueshima, H. NIPPON DATA80 Research Group: Exposure to particulate matter and long-term risk of cardiovascular mortality in Japan: NIPPON DATA80. J. Atheroscler. Thromb. 2012, 19, 246–254. [Google Scholar] [CrossRef]
- Filleul, L.; Rondeau, V.; Vandentorren, S.; Le Moual, N.; Cantagrel, A.; Annesi-Maesano, I.; Charpin, D.; Declercq, C.; Neukirch, F.; Paris, C.; et al. Twenty five year mortality and air pollution: Results from the French PAARC survey. Occup. Environ. Med. 2005, 62, 453–460. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Jensen, S.S.; Ketzel, M.; Sorensen, M.; Hansen, J.; Loft, S.; Tjonneland, A.; Overvad, K. Traffic air pollution and mortality from cardiovascular disease and all causes: A Danish cohort study. Environ. Health 2012, 11, 60. [Google Scholar] [CrossRef]
- Cesaroni, G.; Porta, D.; Badaloni, C.; Stafoggia, M.; Eeftens, M.; Meliefste, K.; Forastiere, F. Nitrogen dioxide levels estimated from land use regression models several years apart and association with mortality in a large cohort study. Environ. Health 2012, 11, 48. [Google Scholar] [CrossRef]
- Yorifuji, T.; Kashima, S.; Tsuda, T.; Takao, S.; Suzuki, E.; Doi, H.; Sugiyama, M.; Ishikawa-Takata, K.; Ohta, T. Long-term exposure to traffic-related air pollution and mortality in Shizuoka, Japan. Occup. Environ. Med. 2010, 67, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Huang, W.; Wong, C.M.; Wang, Z.; Thach, T.Q.; Chen, B.; Kan, H.; CAPES Collaborative Group. Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: The China air pollution and health effects study (CAPES). Environ. Res. 2012, 118, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Katsouyanni, K.; Touloumi, G.; Spix, C.; Schwartz, J.; Balducci, F.; Medina, S.; Rossi, G.; Wojtyniak, B.; Sunyer, J.; Bacharova, L.; et al. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: Results from time series data from the APHEA project. BMJ 1997, 314, 1658. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, C.; Li, J.; Chen, R.; Chen, B.; Gu, D.; Kan, H. Association between long-term exposure to outdoor air pollution and mortality in China: A cohort study. J. Hazard. Mater. 2011, 186, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Katanoda, K.; Sobue, T.; Satoh, H.; Tajima, K.; Suzuki, T.; Nakatsuka, H.; Takezaki, T.; Nakayama, T.; Nitta, H.; Tanabe, K.; et al. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. J. Epidemiol. 2011, 21, 132–143. [Google Scholar] [CrossRef]
- Thurston, G.D.; Ito, K. Epidemiological studies of acute ozone exposures and mortality. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 286–294. [Google Scholar] [CrossRef]
- Stieb, D.M.; Judek, S.; Burnett, R.T. Meta-analysis of time-series studies of air pollution and mortality: Update in relation to the use of generalized additive models. J. Air Waste Manag. Assoc. 2003, 53, 258–261. [Google Scholar] [CrossRef]
- Levy, J.I.; Carrothers, T.J.; Tuomisto, J.T.; Hammitt, J.K.; Evans, J.S. Assessing the public health benefits of reduced ozone concentrations. Environ. Health Perspect. 2001, 109(12), 1215–1226. [Google Scholar] [CrossRef]
- Anderson, H.R.; Atkinson, R.W.; Peacock, J.; Marston, L.; Konstantinou, K.; World Health Organization. Meta-Analysis of Time-Series Studies and Panel Studies of Particulate Matter (PM) and Ozone (O3): Report of a WHO Task Group (No. EUR/04/5046026); WHO Regional Office for Europe: Copenhagen, Denmark, 2004. [Google Scholar]
- Bell, M.L.; Dominici, F.; Samet, J.M. A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study. Epidemiology 2005, 16, 436. [Google Scholar] [CrossRef]
- Liu, C.; Yin, P.; Chen, R.; Meng, X.; Wang, L.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J.; et al. Ambient carbon monoxide and cardiovascular mortality: A nationwide time-series analysis in 272 cities in China. Lancet Planet. Health 2018, 2, e12–e18. [Google Scholar] [CrossRef]
- Samoli, E.; Touloumi, G.; Schwartz, J.; Anderson, H.R.; Schindler, C.; Forsberg, B.; Vigotti, M.A.; Vonk, J.; Kosnik, M.; Skorkovsky, J.; et al. Short-term effects of carbon monoxide on mortality: An analysis within the APHEA project. Environ. Health Perspect. 2007, 115, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Pan, G.; Zhang, Y.; Xu, Q.; Zeng, G.; Xu, X.; Chen, B.; Kan, H. Ambient carbon monoxide and daily mortality in three Chinese cities: The China Air Pollution and Health Effects Study (CAPES). Sci. Total Environ. 2011, 409, 4923–4928. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhong, L.; Huang, X.; Lu, S.E.; Li, Y.; Dai, L.; Zhang, Y.; Zhu, T.; Huang, W. Acute mortality effects of carbon monoxide in the Pearl River Delta of China. Sci. Total Environ. 2011, 410, 34–40. [Google Scholar] [CrossRef]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
Variable | Description | Source |
---|---|---|
PM2.5 | Particulate matter with diameter < 2.5 µm (µg/m3). | Copernicus Atmospheric Monitoring Service |
PM10 | Particulate matter with diameter < 10 µm (µg/m3). | Copernicus Atmospheric Monitoring Service |
Nitrogen dioxide (NO2) | µg/m3 | Copernicus Atmospheric Monitoring Service |
Sulphur dioxide (SO2) | µg/m3 | Copernicus Atmospheric Monitoring Service |
Carbon monoxide (CO) | µg/m3 | Copernicus Atmospheric Monitoring Service |
Ozone (O3) | µg/m3 | Copernicus Atmospheric Monitoring Service |
Population | Number of residents in 2011 at the municipality level. | Italian National Statistical Institute |
Employees | Number of employees operating in all economic sectors at the municipality level. | Italian National Statistical Institute |
Density | Population per municipality area. | Italian National Statistical Institute |
Over 65 | Share of people aged 65 or above. | Italian National Statistical Institute |
Income | Total municipality gross income (million euros). | Italian National Statistical Institute |
Precipitation | 11-day (from t−10 to t) moving average of total precipitation in mm at the municipality level. | Copernicus Climate Change Service |
Wind | Wind intensity at 10 m from the ground (km/h). | Copernicus Climate Change Service |
Radiation | Daily solar radiation (W/m2). | Copernicus Climate Change Service |
Temperature | Air temperature measure at the height of 2 m above ground, at the municipality level. | Copernicus Climate Change Service |
Park age | Distance from the year of park creation in years. | |
Distance from park municipality | Distance between the given non-park municipality and the closest park municipality centroid. | |
Region | Italian regions. | |
Days since lockdown | Days since the start of the national lockdown, officially began on 10 March 2020. |
Park Municipalities | Non-Park Municipalities | |||||
---|---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | |||
PM2.5 # (µg/m3) | 8.709 | 8.692 | 8.727 | 12.818 | 12.811 | 12.825 |
PM10 # (µg/m3) | 12.808 | 12.777 | 12.839 | 16.677 | 16.668 | 16.686 |
NO2 # (µg/m3) | 3.252 | 3.243 | 3.262 | 9.788 | 9.780 | 9.795 |
SO2 # (µg/m3) | 0.718 | 0.716 | 0.720 | 1.092 | 1.091 | 1.093 |
CO # (µg/m3) | 145.898 | 145.798 | 145.997 | 196.962 | 196.894 | 197.031 |
O3 # (µg/m3) | 68.423 | 68.381 | 68.465 | 62.277 | 62.260 | 62.294 |
Population | 5514.589 | 5469.919 | 5559.259 | 7704.919 | 7672.863 | 7736.976 |
Employees | 1065.349 | 1054.894 | 1075.805 | 2249.260 | 2235.537 | 2262.982 |
Density | 112.518 | 111.557 | 113.479 | 316.219 | 315.710 | 316.728 |
Days since lockdown | 3.952 | 3.910 | 3.995 | 3.952 | 3.941 | 3.963 |
Precipitation * | 3.252 | 3.233 | 3.272 | 3.305 | 3.299 | 3.310 |
Wind * | 6.291 | 6.277 | 6.304 | 6.300 | 6.297 | 6.303 |
Radiation * | 178.413 | 5.14 | 359.985 | 168.404 | 2.985 | 369.60 |
Park age | 34.44 | 11 | 98 | |||
Distance from park municipality | 0.00719 | 0.00013 | 0.02341 | 0.00101 | 0.00012 | 0.01784 |
Temperature * | 11.888 | 11.864 | 11.911 | 12.720 | 12.714 | 12.726 |
Income | 57.444 | 56.899 | 57.989 | 108.921 | 108.319 | 109.523 |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | Population | Empl. | Density | Days | N.Park | Prec. | Wind | Temper. | Radiation | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | 1 | ||||||||||||||
PM10 | 0.9193 | 1 | |||||||||||||
NO2 | 0.6247 | 0.4639 | 1 | ||||||||||||
O3 | −0.2547 | −0.1486 | −0.6405 | 1 | |||||||||||
CO | 0.6926 | 0.5133 | 0.8966 | −0.5828 | 1 | ||||||||||
SO2 | 0.5353 | 0.4563 | 0.5882 | −0.2470 | 0.5605 | 1 | |||||||||
Population | 0.0295 | 0.0330 | 0.0749 | −0.0216 | 0.0463 | 0.0794 | 1 | ||||||||
Employees | 0.0343 | 0.0311 | 0.0823 | −0.0280 | 0.0560 | 0.0705 | 0.9514 | 1 | |||||||
Density | 0.1629 | 0.1418 | 0.3475 | −0.1026 | 0.2625 | 0.2914 | 0.2848 | 0.2449 | 1 | ||||||
Days since lockdown | −0.0378 | 0.0010 | −0.1088 | 0.1643 | −0.0325 | −0.0243 | −0.0000 | −0.0000 | −0.0000 | 1 | |||||
National Park | −0.1145 | −0.0831 | −0.1676 | 0.0694 | −0.1436 | −0.0956 | −0.0133 | −0.0168 | −0.0772 | −0.0000 | 1 | ||||
Precipitation | −0.2174 | −0.2216 | −0.0583 | −0.0633 | −0.0827 | −0.1347 | −0.0074 | −0.0037 | 0.0018 | −0.0156 | −0.0017 | 1 | |||
Wind | −0.2072 | −0.0909 | −0.1865 | 0.1400 | −0.1743 | 0.0335 | 0.0494 | 0.0227 | 0.0441 | 0.0122 | −0.0005 | 0.0437 | 1 | ||
Temperature | 0.0624 | 0.1707 | −0.2554 | 0.4913 | −0.3544 | 0.0042 | 0.0347 | 0.0189 | 0.0637 | 0.0684 | −0.0258 | −0.0686 | 0.0569 | 1 | |
Radiation | 0.0853 | 0.1603 | −0.3202 | 0.6707 | −0.3208 | −0.0301 | 0.0057 | −0.0009 | −0.0082 | 0.2209 | 0.0280 | −0.3118 | −0.0656 | 0.6754 | 1 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Population | −8.45 × 10−6 *** | −8.62 × 10−6 *** | −2.22 × 10−5 *** | 4.33 × 10−6 | −0.000205 *** | −1.91 × 10−6 *** |
(2.71 × 10−6) | (2.45 × 10−6) | (4.77 × 10−6) | (1.14 × 10−5) | (4.12 × 10−5) | (6.26 × 10−7) | |
Employees | −3.88 × 10−5 ** | −3.40 × 10−5 ** | −0.000115 *** | 7.29 × 10−5 * | −0.000866 *** | −1.28 × 10−5 ** |
(1.62 × 10−5) | (1.55 × 10−5) | (3.17 × 10−5) | (4.43 × 10−5) | (0.000253) | (5.59 × 10−6) | |
Density | 0.00113 *** | 0.00115 *** | 0.00387 *** | −0.00265 *** | 0.0258 *** | 0.000340 *** |
(0.000109) | (0.000108) | (0.000289) | (0.000223) | (0.00219) | (2.76 × 10−5) | |
Day since lockdown | −0.0508 *** | −0.0406 *** | −0.0388 *** | 0.0137 *** | 0.0249 *** | −0.00139 *** |
(0.000456) | (0.000553) | (0.000557) | (0.00143) | (0.00578) | (0.000105) | |
Park municipality | −1.009 *** | −0.671 *** | −1.807 *** | 3.255 *** | −17.54 *** | −0.0918 *** |
(0.133) | (0.137) | (0.182) | (0.234) | (1.614) | (0.0183) | |
Rain | −0.154 *** | −0.192 *** | −0.0989 *** | 0.191 *** | −1.016 *** | −0.0103 *** |
(0.00144) | (0.00189) | (0.00145) | (0.00234) | (0.0139) | (0.000129) | |
Wind | −0.477 *** | −0.400 *** | −0.312 *** | 0.877 *** | −3.430 *** | −0.000917 |
(0.00894) | (0.0107) | (0.00879) | (0.0114) | (0.0889) | (0.000968) | |
Temperature | 0.699 *** | 1.021 *** | 0.399 *** | 0.0429 * | 2.494 *** | 0.0397 *** |
(0.0108) | (0.0104) | (0.0176) | (0.0248) | (0.174) | (0.00167) | |
Radiation | 0.0143 *** | 0.0181 *** | −0.0103 *** | 0.0848 *** | −0.0821 *** | 0.00129 *** |
(0.000239) | (0.000222) | (0.000348) | (0.000730) | (0.00378) | (3.83 × 10−5) | |
Income | 0.00136 *** | 0.00126 *** | 0.00391 *** | −0.00214 | 0.0308 *** | 0.000408 ** |
(0.000474) | (0.000433) | (0.000905) | (0.00148) | (0.00729) | (0.000159) | |
Valle d’Aosta | −2.264 *** | −0.957 *** | −3.472 *** | 4.803 *** | −56.31 *** | −0.387 *** |
(0.218) | (0.247) | (0.305) | (0.546) | (2.838) | (0.0267) | |
Lombardia | 3.399 *** | 3.559 *** | 5.734 *** | −4.112 *** | 50.23 *** | 0.435 *** |
(0.214) | (0.214) | (0.347) | (0.401) | (2.909) | (0.0377) | |
Trentino Alto-Adige | −2.651 *** | −1.980 *** | −3.580 *** | 6.584 *** | −38.37 *** | −0.500 *** |
3 | (0.160) | (0.196) | (0.236) | (0.422) | (2.286) | (0.0201) |
Veneto | 2.870 *** | 3.089 *** | 2.540 *** | −4.272 *** | 24.92 *** | 0.0488 ** |
(0.206) | (0.210) | (0.305) | (0.458) | (2.507) | (0.0248) | |
Friuli-Venezia Giulia | −1.550 *** | −1.955 *** | −2.162 *** | −2.083 *** | −20.20 *** | −0.0619 * |
(0.164) | (0.143) | (0.285) | (0.624) | (2.361) | (0.0346) | |
Liguria | −3.654 *** | −4.159 *** | −4.660 *** | 12.09 *** | −34.19 *** | −0.0913 * |
(0.211) | (0.232) | (0.278) | (0.294) | (2.172) | (0.0515) | |
Emilia-Romagna | −0.194 | 0.00534 | −0.208 | −1.937 *** | −5.215 * | −0.0775 *** |
(0.242) | (0.233) | (0.394) | (0.751) | (2.980) | (0.0263) | |
Toscana | −4.207 *** | −3.961 *** | −4.988 *** | 7.318 *** | −35.48 *** | −0.264 *** |
(0.130) | (0.138) | (0.244) | (0.361) | (1.933) | (0.0265) | |
Umbria | −4.160 *** | −3.781 *** | −5.037 *** | 6.192 *** | −41.81 *** | −0.417 *** |
(0.136) | (0.134) | (0.244) | (0.442) | (1.911) | (0.0216) | |
Marche | −3.324 *** | −3.132 *** | −5.234 *** | 7.030 *** | −36.56 *** | −0.239 *** |
(0.155) | (0.159) | (0.217) | (0.379) | (1.782) | (0.0226) | |
Lazio | −4.670 *** | −4.322 *** | −4.427 *** | 4.525 *** | −37.12 *** | −0.550 *** |
(0.113) | (0.107) | (0.226) | (0.327) | (1.759) | (0.0192) | |
Abruzzo | −4.746 *** | −4.382 *** | −5.715 *** | 4.561 *** | −45.65 *** | −0.436 *** |
(0.121) | (0.118) | (0.204) | (0.302) | (1.783) | (0.0202) | |
Molise | −4.401 *** | −4.082 *** | −6.717 *** | 4.753 *** | −47.74 *** | −0.496 *** |
(0.114) | (0.114) | (0.195) | (0.474) | (1.666) | (0.0187) | |
Campania | −3.952 *** | −3.214 *** | −5.193 *** | 3.676 *** | −38.41 *** | −0.458 *** |
(0.131) | (0.129) | (0.249) | (0.304) | (1.925) | (0.0231) | |
Puglia | −4.162 *** | −4.209 *** | −6.561 *** | −8.733 *** | −32.08 *** | −0.154 *** |
(0.143) | (0.153) | (0.226) | (0.486) | (1.911) | (0.0293) | |
Basilicata | −5.259 *** | −4.987 *** | −7.374 *** | −0.979 ** | −50.04 *** | −0.418 *** |
(0.153) | (0.187) | (0.217) | (0.450) | (1.742) | (0.0250) | |
Calabria | −5.228 *** | −4.300 *** | −7.969 *** | 6.286 *** | −52.65 *** | 0.138 *** |
(0.125) | (0.133) | (0.206) | (0.355) | (1.631) | (0.0402) | |
Sicilia | −5.326 *** | −3.451 *** | −8.634 *** | 9.605 *** | −67.86 *** | 0.117 * |
(0.128) | (0.132) | (0.241) | (0.342) | (1.883) | (0.0700) | |
Sardegna | −6.386 *** | −5.359 *** | −7.848 *** | 6.401 *** | −60.45 *** | −0.521 *** |
(0.121) | (0.123) | (0.207) | (0.301) | (1.672) | (0.0272) | |
Monday | −0.0745 *** | 0.146 *** | 0.790 *** | −1.545 *** | 2.630 *** | 0.0165 *** |
(0.0124) | (0.0168) | (0.0120) | (0.0161) | (0.0840) | (0.00134) | |
Tuesday | −0.219 *** | −0.0389 ** | 1.030 *** | −1.929 *** | 2.782 *** | 0.0588 *** |
(0.0142) | (0.0168) | (0.0139) | (0.0244) | (0.0895) | (0.00156) | |
Wednesday | −0.119 *** | −0.0999 *** | 1.449 *** | −1.614 *** | 4.337 *** | 0.0777 *** |
(0.0106) | (0.0126) | (0.0182) | (0.0212) | (0.0851) | (0.00174) | |
Thursday | 0.227 *** | 0.349 *** | 1.826 *** | −1.777 *** | 6.640 *** | 0.109 *** |
(0.00909) | (0.0114) | (0.0258) | (0.0238) | (0.123) | (0.00216) | |
Friday | 0.542 *** | 0.747 *** | 1.992 *** | −1.992 *** | 8.526 *** | 0.114 *** |
(0.00994) | (0.0131) | (0.0290) | (0.0234) | (0.155) | (0.00225) | |
Saturday | 0.209 *** | 0.224 *** | 0.970 *** | −1.276 *** | 3.068 *** | 0.0496 *** |
(0.00637) | (0.00742) | (0.0161) | (0.0190) | (0.0785) | (0.000962) | |
February | 0.692 *** | −0.0135 | −1.868 *** | 6.206 *** | 4.793 *** | −0.0903 *** |
(0.0182) | (0.0222) | (0.0359) | (0.0548) | (0.304) | (0.00190) | |
March | −2.391 *** | −3.308 *** | −5.408 *** | 11.46 *** | −23.09 *** | −0.395 *** |
(0.0590) | (0.0605) | (0.0804) | (0.0903) | (0.741) | (0.00645) | |
April | −3.600 *** | −4.898 *** | −9.075 *** | 18.51 *** | −59.50 *** | −0.569 *** |
(0.101) | (0.108) | (0.140) | (0.151) | (1.235) | (0.0113) | |
May | −11.43 *** | −14.89 *** | −10.89 *** | 14.24 *** | −91.93 *** | −1.023 *** |
(0.140) | (0.144) | (0.179) | (0.192) | (1.581) | (0.0142) | |
June | −14.83 *** | −18.42 *** | −13.96 *** | 17.46 *** | −129.0 *** | −1.213 *** |
(0.189) | (0.183) | (0.259) | (0.325) | (2.339) | (0.0241) | |
July | −17.79 *** | −23.02 *** | −15.44 *** | 23.74 *** | −144.7 *** | −1.428 *** |
(0.215) | (0.210) | (0.297) | (0.378) | (2.694) | (0.0282) | |
August | −17.70 *** | −23.21 *** | −15.87 *** | 17.04 *** | −137.0 *** | −1.354 *** |
(0.213) | (0.204) | (0.304) | (0.356) | (2.797) | (0.0275) | |
September | −13.49 *** | −17.69 *** | −13.24 *** | 9.692 *** | −106.6 *** | −1.009 *** |
(0.157) | (0.147) | (0.245) | (0.278) | (2.245) | (0.0218) | |
October | −8.668 *** | −11.48 *** | −9.739 *** | −0.357 * | −96.37 *** | −0.592 *** |
(0.119) | (0.111) | (0.187) | (0.205) | (1.745) | (0.0171) | |
November | −5.894 *** | −7.680 *** | −5.459 *** | −5.441 *** | −65.13 *** | −0.402 *** |
(0.0737) | (0.0706) | (0.107) | (0.121) | (0.980) | (0.00881) | |
December | −0.989 *** | −1.060 *** | −0.950 *** | −6.117 *** | −14.83 *** | −0.132 *** |
(0.0227) | (0.0264) | (0.0367) | (0.0529) | (0.337) | (0.00561) | |
Constant | 13.43 *** | 13.95 *** | 16.24 *** | 33.10 *** | 269.2 *** | 0.947 *** |
(0.169) | (0.177) | (0.236) | (0.352) | (2.243) | (0.0180) | |
Observations | 6,899,886 | 6,899,886 | 6,899,886 | 6,899,886 | 6,899,886 | 6,899,886 |
R-squared | 0.351 | 0.280 | 0.550 | 0.620 | 0.509 | 0.276 |
Panel A. National parks and air quality—monitoring points with distance from municipality centroid < 5 km. | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Park Municipality | −1.059 *** | −0.722 *** | −1.858 *** | 3.359 *** | −18.15 *** | −0.0965 *** |
(0.149) | (0.153) | (0.201) | (0.259) | (1.792) | (0.0202) | |
Observations | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 |
R-squared | 0.353 | 0.283 | 0.551 | 0.621 | 0.510 | 0.281 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request. | ||||||
Panel B. National parks and air quality, controlling for time trend. | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Park Municipality | −0.428 *** | −0.0195 | −2.063 *** | 2.638 *** | −12.44 *** | −0.223 *** |
(0.145) | (0.153) | (0.183) | (0.244) | (1.678) | (0.0216) | |
Park Age | −0.0013 *** | −0.0015 *** | 0.00059 *** | 0.00143 *** | −0.0116 *** | 0.000300 *** |
(6.41 × 10−5) | (8.11 × 10−5) | (6.61 × 10−5) | (0.00034) | (0.000629) | (1.78 × 10−5) | |
Time | 0.00158 *** | 0.00306 *** | −0.000999 *** | −0.00367 *** | 0.0101 *** | −0.000311 *** |
(3.61 × 10−5) | (4.63 × 10−5) | (5.43 × 10−5) | (0.000124) | (0.000472) | (9.97 × 10−6) | |
Observations | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 |
R-squared | 0.354 | 0.287 | 0.552 | 0.623 | 0.510 | 0.286 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request. | ||||||
Panel C. National parks and air quality, controlling for time trend—monitoring posts with distance from municipality centroid < 5 km | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Park Municipality | −0.467 *** | −0.0588 | −2.109 *** | 2.723 *** | −12.91 *** | −0.228 *** |
(0.161) | (0.171) | (0.203) | (0.270) | (1.863) | (0.0238) | |
Park Age | −0.0014 *** | −0.0015 *** | 0.000576 *** | 0.00147 *** | −0.0120 *** | 0.000301 *** |
(7.12 × 10−5) | (8.99 × 10−5) | (7.29 × 10−5) | (0.000376) | (0.000699) | (1.95 × 10−5) | |
Time | 0.00160 *** | 0.00309 *** | −0.00101 *** | −0.00369 *** | 0.0102 *** | −0.000314 *** |
(4.02 × 10−5) | (5.14 × 10−5) | (6.04 × 10−5) | (0.000139) | (0.000526) | (1.11 × 10−5) | |
Observations | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 | 5,275,242 |
R-squared | 0.354 | 0.287 | 0.552 | 0.623 | 0.510 | 0.286 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request. | ||||||
Panel D. National parks and air quality—excluding the lockdown period | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Park Municipality | −1.023 *** | −0.756 *** | −1.864 *** | 3.373 *** | −17.96 *** | −0.0905 *** |
(0.137) | (0.142) | (0.189) | (0.239) | (1.679) | (0.0187) | |
Observations | 6,250,577 | 6,250,577 | 6,250,577 | 6,250,577 | 6,250,577 | 6,250,577 |
R-squared | 0.343 | 0.289 | 0.551 | 0.624 | 0.505 | 0.275 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request. | ||||||
Panel E. National parks and air quality—excluding the lockdown period, monitoring posts with distance from municipality centroid < 5 km | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Park Municipality | −1.075 *** | −0.808 *** | −1.918 *** | 3.478 *** | −18.60 *** | −0.0955 *** |
(0.153) | (0.159) | (0.209) | (0.264) | (1.864) | (0.0206) | |
Observations | 4,778,819 | 4,778,819 | 4,778,819 | 4,778,819 | 4,778,819 | 4,778,819 |
R-squared | 0.345 | 0.292 | 0.553 | 0.624 | 0.506 | 0.280 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request. | ||||||
Panel F. National parks and air quality, controlling for the distance from park municipality—excluding park municipalities | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Distance from Park Municipality | −449.4 *** | −422.8 *** | −645.1 *** | 614.6 *** | −6051 *** | −41.28 *** |
(37.23) | (37.05) | (64.57) | (85.22) | (545.5) | (6.253) | |
Observations | 6,458,004 | 6,458,004 | 6,458,004 | 6,458,004 | 6,458,004 | 6,458,004 |
R-squared | 0.351 | 0.281 | 0.550 | 0.632 | 0.512 | 0.273 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request | ||||||
Panel G. National parks and air quality, controlling for the distance from park municipality—excluding park municipalities, monitoring posts with distance from municipality centroid < 5 km | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Distance from Park Municipality | −470.6 *** | −445.7 *** | −681.1 *** | 626.8 *** | −6369 *** | −45.38 *** |
(43.52) | (43.41) | (75.37) | (97.71) | (636.7) | (7.211) | |
Observations | 4,940,964 | 4,940,964 | 4,940,964 | 4,940,964 | 4,940,964 | 4,940,964 |
R-squared | 0.353 | 0.284 | 0.553 | 0.632 | 0.513 | 0.279 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request | ||||||
Panel H. National parks and air quality, controlling for time trend and the distance from park municipality—excluding park municipalities | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Distance from Park Municipality | −317.5 *** | −277.1 *** | −732.1 *** | 480.6 *** | −4242 *** | −83.40 *** |
(33.64) | (32.90) | (68.78) | (79.76) | (484.2) | (7.723) | |
Distance × Time | −0.303 *** | −0.337 *** | 0.200 *** | 0.312 *** | −4.130 *** | 0.0963 *** |
(0.0233) | (0.0265) | (0.0253) | (0.0807) | (0.358) | (0.00784) | |
Time | 0.00189 *** | 0.00345 *** | −0.00118 *** | −0.00394 *** | 0.0141 *** | −0.000409 *** |
(4.84 × 10−5) | (5.97 × 10−5) | (6.91 × 10−5) | (0.000160) | (0.000684) | (1.19 × 10−5) | |
Observations | 6,458,004 | 6,458,004 | 6,458,004 | 6,458,004 | 6,458,004 | 6,458,004 |
R-squared | 0.353 | 0.284 | 0.551 | 0.633 | 0.513 | 0.279 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request | ||||||
Panel I. National parks and air quality, controlling for time trend and the distance from park municipality—excluding park municipalities, monitoring points with distance from municipality centroid < 5 km | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Distance from Park Municipality | −336.3 *** | −295.3 *** | −769.5 *** | 490.8 *** | −4525 *** | −87.61 *** |
(39.29) | (38.40) | (80.18) | (91.41) | (563.4) | (8.915) | |
Distance × Park Municipality × Time | −0.309 *** | −0.348 *** | 0.203 *** | 0.317 *** | −4.211 *** | 0.0966 *** |
(0.0263) | (0.0301) | (0.0286) | (0.0916) | (0.407) | (0.00883) | |
Time | 0.00192 *** | 0.00349 *** | −0.00119 *** | −0.00396 *** | 0.0143 *** | −0.000412 *** |
(5.40 × 10−5) | (6.65 × 10−5) | (7.70 × 10−5) | (0.000178) | (0.000765) | (1.32 × 10−5) | |
Observations | 4,940,964 | 4,940,964 | 4,940,964 | 4,940,964 | 4,940,964 | 4,940,964 |
R-squared | 0.355 | 0.288 | 0.553 | 0.634 | 0.514 | 0.285 |
*** p < 0.01. Full estimate results are omitted for reasons of space and available upon request | ||||||
Panel J. National parks and air quality, controlling for time trend and the distance from park municipality—excluding park municipalities and distances above the 40th centile | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
PM2.5 | PM10 | NO2 | O3 | CO | SO2 | |
Distance from Park Municipality | −123.1 *** | −73.82 *** | −73.82 *** | 259.5 *** | −2622 *** | −20.03 *** |
(17.25) | (20.23) | (20.23) | (56.45) | (257.1) | (5.883) | |
Distance × Time | −0.0365 ** | −0.0551 *** | −0.0551 *** | −0.113 | 0.717 *** | 0.0236 *** |
(0.0149) | (0.0186) | (0.0186) | (0.0790) | (0.156) | (0.00716) | |
Time | 0.000996 *** | 0.00219 *** | 0.00219 *** | −0.00166 *** | −0.000876 * | −4.17 × 10−5 ** |
(5.53 × 10−5) | (7.09 × 10−5) | (7.09 × 10−5) | (0.000206) | (0.000504) | (1.81 × 10−5) | |
Observations | 2,205,000 | 2,205,000 | 2,205,000 | 2,205,000 | 2,205,000 | 2,205,000 |
R-squared | 0.343 | 0.283 | 0.283 | 0.588 | 0.510 | 0.327 |
*** p < 0.01, ** p < 0.05, * p < 0.1. Full estimate results are omitted for reasons of space and available upon request |
Pollutant | % Change in Risk (95% CI) in Mortality Associated with a 10 μg/m3 Increase | |
---|---|---|
(1) | (2) | |
Mean of the Appendix Studies | Mean of the Appendix Studies (Excluding the Minimum and Maximum Value) | |
PM2.5 | 9.67 (0.6, 20) | 10.23 (2.7, 18.8) |
PM10 | 17.17 (7.1, 28.5) | 13 (0.2, 27.7) |
NO2 | 6.30 (0.5, 12) | 6.5 (1.3, 11.3) |
SO2 | 1.45 (1, 1.73) | 1.01 (0.7, 1.2) |
O3 | 1.09 (0.5, 1.6) | 1.07 (0.5, 1.7) |
CM | 28.23 (17.7, 38.7) | 20.45 (11.5, 29.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becchetti, L.; Beccari, G.; Conzo, G.; De Santis, D.; Conzo, P.; Salustri, F. The Green Lung: National Parks and Air Quality in Italian Municipalities. Sustainability 2023, 15, 7802. https://doi.org/10.3390/su15107802
Becchetti L, Beccari G, Conzo G, De Santis D, Conzo P, Salustri F. The Green Lung: National Parks and Air Quality in Italian Municipalities. Sustainability. 2023; 15(10):7802. https://doi.org/10.3390/su15107802
Chicago/Turabian StyleBecchetti, Leonardo, Gabriele Beccari, Gianluigi Conzo, Davide De Santis, Pierluigi Conzo, and Francesco Salustri. 2023. "The Green Lung: National Parks and Air Quality in Italian Municipalities" Sustainability 15, no. 10: 7802. https://doi.org/10.3390/su15107802
APA StyleBecchetti, L., Beccari, G., Conzo, G., De Santis, D., Conzo, P., & Salustri, F. (2023). The Green Lung: National Parks and Air Quality in Italian Municipalities. Sustainability, 15(10), 7802. https://doi.org/10.3390/su15107802