Water Use Efficiency and Productivity of Irrigated Rice Cultivation in Nigeria: An Application of the Stochastic Frontier Approach
Abstract
:1. Introduction
2. Conceptual Framework
3. Methodology
3.1. Study Area
Sampling Procedure and Sample Size
3.2. Analytical Tools
- = Approximate amount of water applied for the cropping season in
- = Discharge rate liter per second
- = Farmer daily hours of water application
- = Frequency of water application
- = Discharge rate litres per second
- = volume of the container in liters
- = time taken in seconds to fill the container
- = Vector representing produced quantities by the production unit
- Input used
- Vector of co-efficient
- = quantity of irrigation water used (i = … … … N)
- = is the amount of output produced by the farms
- = is the other production input used
- = is the unknown coefficient to be an estimate
- = is the composite error term,
3.2.1. The Inefficiency Model
3.2.2. Physical Water Productivity
3.3. Validity and Reliability of the Instrument
4. Results
4.1. Cost and Return Analysis of Rice Production in KRIP
4.2. Estimation of Physical and Economic Water Productivity
4.3. Scattered Plot between Canal Users and Tube Well Users
4.4. Score Distribution of Irrigation Water Use Efficiency (IWUE)
4.5. Determinants of Irrigation Water Use Efficiency (Canal Water Users)
5. Discussion of Major Findings
6. Conclusions and Policy Recommendations
7. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christiaensen, L.; Zachariah, R.; Edward Taylor, J. The Future of Work in Agriculture: Some Reflections; World Bank Policy Research Working Paper 9193; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Zikos, D.; Hagedorn, K. Competition for Water Resources from the European Perspective. In Competition for Water Resources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 19–35. [Google Scholar]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, K.A.; Gebrewahid, M.G. The Need for Agricultural Water Management in Sub-Saharan Africa. J. Water Resour. Prot. 2016, 8, 835–843. [Google Scholar] [CrossRef] [Green Version]
- AGRA. Irrigation Doubles African Food Production. 2019. Available online: https://agra.org/irrigation-doubles-african-food-production/ (accessed on 30 March 2023).
- You, L.; Ringler, C.; Wood-Sichra, U.; Robertson, R.; Wood, S.; Zhu, T.; Sun, Y. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 2011, 36, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Kadigi, R.M.; Tesfay, G.; Bizoza, A.; Zinabou, G.; Zilberman, D. Irrigation and water use efficiency in Sub-Saharan Africa. Gates Open Res. 2019, 3, 587. [Google Scholar] [CrossRef]
- Spiertz, H. Challenges for Crop Production Research in Improving Land Use, Productivity and Sustainability. Sustainability 2013, 5, 1632–1644. [Google Scholar] [CrossRef] [Green Version]
- Takeshima, H.; Bakare, O.S. Chapter 3. Production Systems: Biophysical and Economic Environment and Constraints. In The Nigerian Rice Economy; University of Pennsylvania Press: Philadelphia, PA, USA, 2016. [Google Scholar] [CrossRef]
- Delvaux, P.A.G.; Paloma, S.G.Y. Access to common resources and food security: Evidence from National Surveys in Nigeria. Food Secur. 2018, 10, 121–140. [Google Scholar] [CrossRef] [Green Version]
- Philip, D.; Jayeoba, O.O.; Ndripaya, Y.D.; Fatunbi, A.O. Innovation opportunities in the rice value chain in Nigeria. FARA Res. Rep. 2018, 2, 1–48. [Google Scholar]
- Nigatu, G.; Hansen, J.; Childs, N.; Seeley, R. Sub-Saharan Africa Is Projected to Be the Leader in Global Rice Imports. Amber Waves 2017. [Google Scholar] [CrossRef]
- Abbas, A.M.; Agada, I.G.; Kolade, O. Impacts of rice importation on Nigeria’s economy. J. Sci. Agric. 2018, 2, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Okeke, A.M.; Mbanasor, J.A.; Nto, P.O. Comparative Analysis of the Technical Efficiency of Beneficiary and Non-Beneficiary Rice Farmers of the Anchor Borrowers’ Programme in Benue State, Nigeria. Greener J. Agric. Sci. 2019, 9, 155–162. [Google Scholar] [CrossRef]
- Kamai, N.; Omoigui, O.L.; Kamara, A.Y.; Ekeleme, F. Guide to rice production in Northern Nigeria; IITA: Ibadan, Nigeria, 2020; p. 27. [Google Scholar]
- Osabuohien, E.S.; Okorie, U.E.; Osabohien, R.A. Rice Production and Processing in Ogun State, Nigeria: Qualitative Insights from Farmers’ Association. In Food Systems Sustainability and Environmental Policies in Modern Economies; IGI Global: Hershey, PA, USA, 2018; pp. 188–215. [Google Scholar]
- Ndikumana, L.; Verick, S. The Linkages Between FDI and Domestic Investment: Unravelling the Developmental Impact of Foreign Investment in Sub-Saharan Africa. Dev. Policy Rev. 2008, 26, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Birendra, K.; Schultz, B.; Prasad, K. Impact of irrigation management practices on land and its productivity in addressing hunger and poverty. J. Develop. Innov. 2017, 1, 15–28. [Google Scholar]
- Terwase, I.T.; Madu, A.Y. The impact of rice production, consumption and importation in Nigeria: The political economy perspectives. Int. J. Sustain. Dev. World Policy 2014, 3, 90. [Google Scholar]
- Obayelu, A.E.; Wintola, A.O.; Oluwalana, E.O.A. Households’ Rice Demand Response to Changes in Price, Income and Coping Strategies during Food Inflation in Nigeria: Evidence from Oyo State. Ital. Rev. Agric. Econ. 2022, 77, 61–75. [Google Scholar]
- Yusuf, B.L.; Mustapha, A.; Yusuf, M.A.; Ahmed, M. Soil salinity assessment using geostatistical models in some parts of Kano River Irrigation Project Phase I (KRPI). Model. Earth Syst. Environ. 2020, 6, 2225–2234. [Google Scholar] [CrossRef]
- Ekundayo, B.P. Rice Production, Imports And Economic Growth In Nigeria: An Application Of Autoregressive Distributed Lag. Int. J. Adv. Econ. 2023, 5, 48–56. [Google Scholar] [CrossRef]
- Johnson, M.E.; Takeshima, H.; Gyimah-Brempong, K.; Kuku-Shittu, O.X. Policy Options for Accelerated Growth and Competitiveness of the Domestic Rice Economy in Nigeria; International Food Policy Research Institute(IFPRI): Washington, DC, USA, 2013. [Google Scholar]
- Adekoyeni, O.O.; Fagbemi, S.A.; Ismaila, A.R. Ofada Rice Identity, Physical Qualities and Processing Technology Options for Upgrading: A Review. Annu. Res. Rev. Biol. 2018, 23, 1–9. [Google Scholar] [CrossRef]
- Briggs, L.J.; Shantz, H.L. The Water Requirement of Plants. Plant World 1913, 17, 76–78. [Google Scholar]
- Karagiannis, G.; Tzouvelekas, V.; Xepapadeas, A. Measuring Irrigation Water Efficiency with a Stochastic Production Frontier. Environ. Resour. Econ. 2003, 26, 57–72. [Google Scholar] [CrossRef]
- Dhehibi, B.; Lachaal, L.; Elloumi, M.; Messaoud, E.B. Measuring irrigation water use efficiency using stochastic production frontier: An application on citrus producing farms in Tunisia. Afr. J. Agric. Resour. Econom. 2007, 1, 1–15. [Google Scholar]
- Lilienfeld, A.; Asmild, M. Estimation of excess water use in irrigated agriculture: A Data Envelopment Analysis approach. Agric. Water Manag. 2007, 94, 73–82. [Google Scholar] [CrossRef]
- Speelman, S.; D’haese, M.; Buysse, J.; D’haese, L. A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa. Agric. Syst. 2008, 98, 31–39. [Google Scholar] [CrossRef]
- Frija, A.; Chebil, A.; Speelman, S.; Buysse, J.; Van Huylenbroeck, G. Water use and technical efficiencies in horticultural greenhouses in Tunisia. Agric. Water Manag. 2009, 96, 1509–1516. [Google Scholar] [CrossRef]
- Chemak, F.; Boussemart, J.-P.; Jacquet, F. Farming system performance and water use efficiency in the Tunisian semi-arid region: Data envelopment analysis approach. Int. Trans. Oper. Res. 2010, 17, 381–396. [Google Scholar] [CrossRef]
- Watto, M.A.; Mugera, A.W. Measuring groundwater irrigation efficiency in Pakistan: A DEA approach using the sub-vector and slack-based models. In Proceedings of the Australian Agricultural and Resource Economics Society, Sydney, Australia, 5–8 February 2013. [Google Scholar]
- Clemmens, A.J.; Molden, D.J. Water uses and productivity of irrigation systems. Irrig. Sci. 2007, 25, 247–261. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Steduto, P.; Fereres, E. A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig. Sci. 2007, 25, 209–231. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, A.; Sun, J.; Li, F.; Liu, Z.; Liu, H.; Liu, Z. Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crops Res. 2009, 111, 65–73. [Google Scholar] [CrossRef]
- Ali, S.; Li, D.; Congbin, F.; Khan, F. Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan. Environ. Res. Lett. 2015, 10, 014007. [Google Scholar] [CrossRef]
- Tomar, S.S.; Singh, Y.P.; Naresh, R.K.; Mrunalin, K.; Gurjar, R.S.; Yadav, R.; Sharma, D. Water-use Efficiency and the Effect of Water Deficits under Different Planting Techniques on Productivity and Profitability of Chickpea (Cicer arietinum L.) in Typic Ustochrept Soil of Morena Region of M.P. Int. J. Curr. Microbiol. Appl. Sci. 2020, 1, 709–719. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Steduto, P. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Sci. Total Environ. 2017, 575, 595–611. [Google Scholar] [CrossRef]
- Nwahia, O.C. Analysis of The Cost and Economic Returns in Rice Production in Ebonyi State, Nigeria. Indones. J. Agric. Res. 2020, 3, 205–214. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Gonçalves, J.; Dong, B.; Mao, Z.; Fang, S. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China. Agric. Water Manag. 2007, 93, 109–122. [Google Scholar] [CrossRef]
- Çetin, O.; Kara, A. Assesment of water productivity using different drip irrigation systems for cotton. Agric. Water Manag. 2019, 223, 105693. [Google Scholar] [CrossRef]
- Cetin, O.; Akinci, C. Water and economic productivity using different planting and irrigation methods under dry and wet seasons for wheat. Int. J. Agric. Sust. 2022, 20, 844–856. [Google Scholar] [CrossRef]
- Nangia, V.; Yadava, N.D. Improving water productivity in dry areas. Ann. Arid. Zone 2016, 55, 63–66. [Google Scholar]
- Silva, J.V.; Reidsma, P.; Velasco, M.L.; Laborte, A.G.; van Ittersum, M.K. Intensification of rice-based farming systems in Central Luzon, Philippines: Constraints at field, farm and regional levels. Agric. Syst. 2018, 165, 55–70. [Google Scholar] [CrossRef]
- Yapa, L.G.D.S.; Rainis, R.; Abdullah, A.L.; Hemakumara, G.P.T.S. Head-tail disparity in irrigation management in Sri Lanka: A review of empirical evidence. Malays. J. Soc. Space 2020, 16, 45–55. [Google Scholar]
- Maikasuwa, M.A.; Ala, A.L. Determination of profitability and resource-use efficiency of yam production by women in Bosso local government area of Niger State, Nigeria. Eur. Sci. J. 2013, 9, 196–205. [Google Scholar]
- Adekola, P.O.; Allen, A.A.; Olawole-Isaac, A.; Akanbi, M.A.; Adewumi, O. Unemployment in Nigeria; A Challenge of Demographic Change? Int. J. Sci. Res. Multidiscip. Stud. 2016, 2, 1–9. [Google Scholar]
- Adelowokan, O.A.; Maku, O.E.; Babasanya, A.O.; Adesola, B. Unemployment, poverty and economic growth in Nigeria. J. Econ. Manag. 2019, 35, 5–17. [Google Scholar] [CrossRef]
- Adebayo, P.F.; Ojo, E.O. Food security in Nigeria: An overview. Eur. J. Sustain. Dev. 2012, 1, 199. [Google Scholar] [CrossRef] [Green Version]
- McGuire, S. WHO, World Food Programme, and International Fund for Agricultural Development. 2012. The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Adv. Nutr. Int. Rev. J. 2013, 4, 126–127. [Google Scholar] [CrossRef] [Green Version]
- Otaha, I. Food Insecurity in Nigeria: Way Forward. Afr. Res. Rev. 2013, 7, 26. [Google Scholar] [CrossRef]
- Mohammed, M.U.; Abdulhamid, A.; Badamasi, M.M.; Ahmed, M. Rainfall dynamics and climate change in Kano, Nigeria. J. Sci. Res. Rep. 2015, 7, 386–395. [Google Scholar] [CrossRef]
- Maina, M.M.; Amin, M.S.M.; Aimrun, W.; Sani, I. Soil salinity assessment of Kadawa irrigation of the Kano River Irrigation Project (KRIP). J. Food Agric. Environ. 2012, 10, 1028–1034. [Google Scholar]
- Sangari, D. An Evaluation of Water and Land Uses in the Kano River Project, Phase I, Kano State. J. Appl. Sci. Environ. Manag. 2010, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Michael, A.M. Irrigation Theory and Practice; Vikas Publishing House: New Delhi, India, 1981. [Google Scholar]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Cai, X.; Hejazi, M.I.; Wang, D. Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling. J. Water Resour. Plan. Manag. 2011, 137, 391–403. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, L.; Li, W.; van der Werf, W.; Sun, J.; Spiertz, J.H.J.; Li, L. Yield advantage and water saving in maize/pea intercrop. Field Crops Res. 2012, 138, 11–20. [Google Scholar] [CrossRef]
- Brauman, K.; Siebert, S.; Foley, J.A. Improvements in crop water productivity increase water sustainability and food security—A global analysis. Environ. Res. Lett. 2013, 8, 024030. [Google Scholar] [CrossRef]
- Wallace, J. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Tantawy, M.M.; Ouda, S.A.; Khalil, F.A. Irrigation optimization for different sesame varieties grown under water stress conditions. J. Appl. Sci. Res. 2007, 3, 7–12. [Google Scholar]
- Ronald, L.; Marlow, P. Agriculture Water Use Efficiency in The United States. National Water Management Engineer; Natural Resources Conservation Service USDA: Washington, DC, USA, 1999.
- Batchelor, C. Improving water use efficiency as part of integrated catchment management. Agric. Water Manag. 1999, 40, 249–263. [Google Scholar] [CrossRef]
- Chan, L.L.; Idris, N. Validity and reliability of the instrument using exploratory factor analysis and Cronbach’s alpha. Int. J. Acad. Res. Bus. Soc. Sci. 2017, 7, 400–410. [Google Scholar]
- Shah, M.A.; Farooq, M.; Hussain, M. Productivity and profitability of cotton–wheat system as influenced by relay intercropping of insect resistant transgenic cotton in bed planted wheat. Eur. J. Agron. 2016, 75, 33–41. [Google Scholar] [CrossRef]
- Ben-Chendo, G.; Lawal, N.; Osuji, M. Cost and returns of paddy rice production in Kaduna State. Eur. J. Agric. For. Res. 2017, 5, 41–48. [Google Scholar]
- Kijne, J.W.; Barker, R.; Molden, D.J. Water Productivity in Agriculture: Limits and Opportunities for Improvement; International Water Management Institute: Colombo, Sri Lanka, 2003. [Google Scholar]
- Cook, S.; Gichuki, F.; Turral, H. Agricultural Water Productivity: Issues, Concepts and Approaches; CGIAR: Montpellier, France, 2006. [Google Scholar]
- Cai, X.; McKinney, D.C.; Rosegrant, M.W. Sustainability analysis for irrigation water management in the Aral Sea region. Agric. Syst. 2003, 76, 1043–1066. [Google Scholar] [CrossRef] [Green Version]
- Akanni, K.A.; Dada, A.O. Analysis of labour-use patterns among small-holder cocoa farmers in South Western Nigeria. J. Agric. Sci. Technol. B 2012, 2, 107–113. [Google Scholar]
- Anyiro, C.O.; Emerole, C.O.; Osondu, C.K.; Udah, S.C.; Ugorji, S.E. Labour-use efficiency by small-holder yam farmers in Abia State Nigeria: A labour-use requirement frontier approach. Int. J. Food Agric. Econ. 2013, 1, 151–163. [Google Scholar]
- Veettil, P.C.; Speelman, S.; van Huylenbroeck, G. Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis. Water Resour. Manag. 2012, 27, 55–73. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Gichuki, F. Investments in agricultural water management for poverty reduction in Africa: Case studies of Limpopo, Nile, and Volta river basins. Nat. Resour. Forum 2008, 32, 185–202. [Google Scholar] [CrossRef]
- Sharma, B.; Molden, D.; Cook, S. Water Use Efficiency in Agriculture: Measurement, Current Situation and Trends. In Managing Water and Fertiliser for Sustainable Agricultural Intensification; International Fertiliser Association: Paris, France, 2015; pp. 39–64. [Google Scholar]
- Prihar, S.; Ghildyal, B.; Painuli, D.; Sur, H. Physical properties of mineral soils affecting rice-based cropping systems. Soil Phys. Rice 1985, 1, 57–70. [Google Scholar]
- Heitholt, J.J. Water use efficiency and dry matter distribution in nitrogen-and water-stressed winter wheat. Agron. J. 1989, 81, 464–469. [Google Scholar] [CrossRef]
- Schmidhalter, U.; Studer, C. Water use efficiency as influenced by plant mineral nutrition. In Proceedings of the 1st Sino-German Workshop “Impact of Plant Nutrition on Sustainable Agricultural Production”, Kiel, Germany, 22–23 January 1998. [Google Scholar]
- Chidiebere-Mark, N.; Ohajianya, D.; Obasi, P.; Onyeagocha, S. Profitability of rice production in different production systems in Ebonyi State, Nigeria. Open Agric. 2019, 4, 237–246. [Google Scholar] [CrossRef]
- Bwala, M.A.; John, A.U. Profitability analysis of paddy production: A case of agricultural zone 1, Niger State Nigeria. J. Bangladesh Agric. Univ. 2018, 16, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Arun, G.; Singh, D.R.; Kumar, S.; Kumar, A. Canal irrigation management through water users associations and its impact on efficiency, equity and reliability in water use in Tamil Nadu. Agric. Econ. Res. Rev. 2012, 25, 409–419. [Google Scholar]
- Darko, R.O.; Shouqi, Y.; Junping, L.; Haofang, Y.; Xingye, Z. Overview of advances in improving uniformity and water use efficiency of sprinkler irrigation. Int. J. Agric. Biol. Eng. 2017, 10, 1–15. [Google Scholar]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M. Agricultural productivity current scenario, constraints and future prospects in Pakistan. Sarhad J. Agric. 2016, 32, 289–303. [Google Scholar] [CrossRef]
- Kaneko, S.; Tanaka, K.; Toyota, T.; Managi, S. Water efficiency of agricultural production in China: Regional comparison from 1999 to 2002. Int. J. Agric. Resour. Gov. Ecol. 2004, 3, 231. [Google Scholar] [CrossRef]
- Yao, X.; Feng, W.; Zhang, X.; Wang, W.; Zhang, C.; You, S. Measurement and decomposition of industrial green total factor water efficiency in China. J. Clean. Prod. 2018, 198, 1144–1156. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Nielsen, D.C.; Trout, T.J.; Ahuja, L. Quantifying Corn Yield and Water Use Efficiency under Growth Stage-Based Deficit Irrigation Conditions. Pract. Appl. Agric. Syst. Model. Optim. Use Ltd. Water 2015, 1, 1–24. [Google Scholar] [CrossRef]
- Obianefo, C.A.; Nwigwe, C.A.; Meludu, T.N.; Anyasie, I.C. Technical efficiency of rice farmers in Anambra State value chain development programme. J. Dev. Agric. Econ. 2020, 12, 67–74. [Google Scholar] [CrossRef]
- Kifle, M.; Gebretsadikan, T.G. Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia. Agric. Water Manag. 2016, 170, 133–139. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, X.; Gao, X.; Siddique, K.H. Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agric. Water Manag. 2020, 228, 105906. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Yang, J.; Zhao, X.; Ye, X. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields. Sci. Total Environ. 2016, 565, 420–426. [Google Scholar] [CrossRef]
- Djaman, K.; Mel, V.C.; Diop, L.; Sow, A.; El-Namaky, R.; Manneh, B.; Irmak, S. Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water 2018, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Vandamme, E.; Johnson, J.M.; Tanaka, A.; Senthilkumar, K.; Dieng, I.; Wopereis, M.C. Yield-limiting macronutrients for rice in sub-Saharan Africa. Geoderma 2019, 338, 546–554. [Google Scholar] [CrossRef]
- Ng’ombe, J.N. Technical efficiency of smallholder maize production in Zambia: A stochastic meta-frontier approach. Agrekon 2017, 56, 347–365. [Google Scholar] [CrossRef]
- Obianefo, C.A.; Ng’ombe, J.N.; Mzyece, A.; Masasi, B.; Obiekwe, N.J.; Anumudu, O.O. Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria. Agriculture 2021, 11, 1240. [Google Scholar] [CrossRef]
- Umar, W.; Ayub, M.A.; Rehman, M.Z.U.; Ahmad, H.R.; Farooqi, Z.U.R.; Shahzad, A.; Rehman, U.; Mustafa, A.; Nadeem, M. Nitrogen and phosphorus use efficiency in agroecosystems. Resour. Use Effic. Agric. 2020, 213–257. [Google Scholar] [CrossRef]
- Latif, M.S.; Khan, N.; Khan, F.U. Analyzing The Gap Between Recommended And Adopted Practices Of Potato Production Technology In District Okara, Punjab. Gomal Univ. J. Res. 2017, 33, 36–46. [Google Scholar]
Variables | Canal Water Users | Tube Well Farmers | ||
---|---|---|---|---|
* Cost ($/acre) | % to TC | Cost ($) | % to TC | |
Seed | 9.08 | 2% | 9.63 | 2% |
NPK | 44.02 | 9% | 28.64 | 5% |
Urea | 51.11 | 11% | 73.19 | 13% |
Herbicide | 10.53 | 2% | 11.43 | 2% |
Pesticide | 9.99 | 2% | 4.35 | 1% |
Cost of fuel (acre) | 0.00 | 0% | 66.32 | 12% |
Water charges | 5.26 | 1% | 0.00 | 0% |
Cost of bags (acre) | 8.30 | 2% | 8.72 | 2% |
Labor cost | ||||
Land clearing | 9.53 | 2% | 9.92 | 2% |
Ploughing/Ridging | 24.17 | 5% | 19.14 | 3% |
Seedbed | 18.79 | 4% | 16.87 | 3% |
Planting | 27.20 | 6% | 14.24 | 3% |
1st and 2nd weeding | 54.34 | 11% | 47.12 | 9% |
1st and 2nd fertilization | 8.03 | 2% | 5.95 | 1% |
Agro-chemical spraying | 4.26 | 1% | 5.23 | 1% |
Harvesting/threshing | 48.21 | 10% | 60.26 | 11% |
Winnowing/bagging | 10.69 | 2% | 11.04 | 2% |
Irrigation labor cost | 39.64 | 8% | 41.28 | 8% |
Transportation cost | 16.17 | 3% | 16.58 | 3% |
TVC | 399.32 | 82% | 449.91 | 82% |
Depreciation | 8.17 | 2% | 38.69 | 7% |
Rent on land | 78.95 | 16% | 59.21 | 11% |
Total cost | 486.44 | 100 | 547.81 | 100 |
Revenue | ||||
Average yield (kg/acre) | 1970.12 | 2084.11 | ||
Average price/kg of paddy ($) | 0.46 | 0.44 | ||
Total farm income ($/acre) | 902.14 | 912.64 | ||
Gross margin (TR-TVC) | 502.68 | 462.73 | ||
Net farm income (GM-FC) | 415.56 | 364.83 | ||
BCR (TFI/TC) | 1.85 | 1.67 |
Indicator | Unit | Canal Water Users | Tube Well Users |
---|---|---|---|
Yield | (Kg acre−1) | 1970.19 | 2084.11 |
Net farm income | (Dollar acre−1) | 415.56 | 364.83 |
Water applied | (M3 acre−1) | 3830.61 | 3554.92 |
Water cost | (Dollar acre−1) | 5.26 | 66.32 |
PWP | (Kg−1M3 | 0.514 | 0.586 |
EWP | (Dollar m−3) | 0.11 | 0.10 |
Return per m3 water cost | 79 | 5.50 |
Range | Canal Water Users | Tube Well Water Users | ||
---|---|---|---|---|
Frequency | Percentage | Frequency | Percentage | |
>30 | 0 | 0 | 7 | 4.6 |
0.30–0.39 | 3 | 2.0 | 3 | 2.0 |
0.40–0.49 | 2 | 1.3 | 6 | 3.9 |
0.50–0.59 | 7 | 4.6 | 15 | 9.9 |
0.60–0.69 | 16 | 10.5 | 25 | 16.4 |
0.70–0.80 | 46 | 30.3 | 46 | 30.3 |
0.80–0.89 | 71 | 46.7 | 48 | 31.6 |
0.90–0.99 | 7 | 4.6 | 2 | 1.3 |
Mean | 0.76 | 0.70 | ||
Minimum | 0.30 | 0.07 | ||
Maximum | 0.91 | 0.90 | ||
Standard Deviation | 0.141 | 0.17 |
Canal Water Users | Tube Well Water Users | |||||
---|---|---|---|---|---|---|
Variables | Β | Standard Error | t-Ratio | Β | Std. Error | t-Ratio |
Constant | −0.4681 | 1.1088 | −0.4222 | −1.1184 | 1.7303 | −0.6464 |
Output produced(kg) | −6.0261 | 0.0718 | −83.887 *** | 0.5212 | 0.1799 | 0.2897 |
Seed (kg) | 1.7716 | 0.1387 | 12.7714 *** | −0.0141 | 0.0786 | −0.1799 |
NPK (kg) | −0.0323 | 0.0986 | −0.3279 | 1.6157 | 0.1905 | 8.4813 *** |
Urea (kg) | −0.0299 | 0.1072 | −0.2793 | −0.9081 | 0.1089 | −8.3377 *** |
Herbicide (liter) | 1.5243 | 0.0978 | 15.5865 *** | −0.0573 | 0.0977 | −0.5867 |
Pesticide (liter) | −3.4143 | 0.1208 | −2.8255 *** | −0.2936 | 0.1800 | −1.6315 |
Labor (man-days) | 0.0148 | 0.0981 | 0.1508 | 0.4178 | 0.4156 | 1.0051 |
Depreciation | 1.8443 | 0.2278 | 8.0978 *** | 0.7844 | 0.2012 | 3.8986 *** |
Farm size (acre) | −0.0079 | 0.0696 | −0.1133 | −0.6042 | 0.2674 | −2.2597 ** |
Inefficiency Model | ||||||
Constant | −0.2520 | 2.4897 | −1.0123 | 4.7390 | 4.2080 | 1.1262 |
Age (years) | −0.0782 | 0.0347 | −2.3009 ** | −1.7966 | 0.1606 | −11.185 *** |
Education | 0.0030 | 0.0260 | 0.1144 | −0.1503 | 0.1800 | −0.8350 |
Farming experience | 0.1398 | 0.0695 | 2.0118 ** | −0.1186 | 0.0276 | −4.3028 *** |
Family size | 0.1056 | 0.0518 | −2.0408 ** | −0.1718 | 0.1532 | −1.1216 |
Marital status | −0.3941 | 0.9001 | −0.4379 | 2.7372 | 0.2583 | 10.5964 *** |
Gender of the Household head | 0.9062 | 1.1592 | 0.7817 | 0.7474 | 0.1053 | 7.1011 *** |
Extension visit | −2.1686 | 1.0835 | −2.002 ** | −7.2871 | 0.7904 | −9.2200 *** |
Access to credit | 0.6615 | 0.4042 | 1.6364 | −0.7618 | 0.1065 | −7.1508 *** |
Annual income (N) | 0.1747 | 0.1850 | 0.9446 | −2.5793 | 0.3119 | −8.2702 *** |
Sigma square | 1.1443 | 0.3792 | 3.0180 *** | 2.2176 | 0.1817 | 12.2040 *** |
Gamma | 0.8886 | 0.0429 | 20.729 *** | 0.8734 | 0.0973 | 8.9780 *** |
Likelihood function | −193.57 | −191.05 | ||||
LR test | 331.01 | 31.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wudil, A.H.; Ali, A.; Mushtaq, K.; Baig, S.A.; Radulescu, M.; Prus, P.; Usman, M.; Vasa, L. Water Use Efficiency and Productivity of Irrigated Rice Cultivation in Nigeria: An Application of the Stochastic Frontier Approach. Sustainability 2023, 15, 7824. https://doi.org/10.3390/su15107824
Wudil AH, Ali A, Mushtaq K, Baig SA, Radulescu M, Prus P, Usman M, Vasa L. Water Use Efficiency and Productivity of Irrigated Rice Cultivation in Nigeria: An Application of the Stochastic Frontier Approach. Sustainability. 2023; 15(10):7824. https://doi.org/10.3390/su15107824
Chicago/Turabian StyleWudil, Abdulazeez Hudu, Asghar Ali, Khalid Mushtaq, Sajjad Ahmad Baig, Magdalena Radulescu, Piotr Prus, Muhammad Usman, and László Vasa. 2023. "Water Use Efficiency and Productivity of Irrigated Rice Cultivation in Nigeria: An Application of the Stochastic Frontier Approach" Sustainability 15, no. 10: 7824. https://doi.org/10.3390/su15107824
APA StyleWudil, A. H., Ali, A., Mushtaq, K., Baig, S. A., Radulescu, M., Prus, P., Usman, M., & Vasa, L. (2023). Water Use Efficiency and Productivity of Irrigated Rice Cultivation in Nigeria: An Application of the Stochastic Frontier Approach. Sustainability, 15(10), 7824. https://doi.org/10.3390/su15107824