A Study on The Carriers Compound Multi-Stage MBBR Biological Treatment Process for Domestic Sewage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Configuration
2.2. Experimental Device and Start-Up
2.2.1. Lab-Scale Aerobic Reactors System
2.2.2. Reactors Start-Up
2.3. Analytical Methods
3. Results and Discussion
3.1. Finding the Best OLR of the System
3.2. Secondary Start-Up and Stable Operation
3.3. Characterization of Biocarriers
3.4. Analysis of Microbial Diversity and Functional Microorganisms
3.4.1. The Diversity
3.4.2. The Classification
- (1)
- Archaea
- (2)
- Bacteria
- (3)
- Eubacteria
Name | Phylum | Activated Sludge (%) | Sludge on Carrier (%) | Suspended Sludge (%) |
---|---|---|---|---|
Archaea | Euryarchaeota | 78.46 | 90.73 | 85.06 |
Woesearchaeota | 9.02 | 2.45 | 6.87 | |
Crenarchaeota | 6.9 | 1.88 | 4.2 | |
Pacearchaeota | 5.3 | 0.48 | 1.49 | |
Verrucomicrobia | 0.02 | 1.64 | 1.12 | |
Thaumarchaeota | 0.09 | 1.8 | 0.09 | |
Bacteria | Proteobacteria | 53.06 | 80.46 | 75.32 |
Bacteroidetes | 12.01 | 8 | 15.92 | |
Firmicutes | 10.95 | 2.03 | 3.29 | |
Planctomycetes | 3.08 | 2.32 | 1.06 | |
Nitrospirae | 1.35 | 2.3 | 0.99 | |
Actinobacteria | 1.79 | 1.81 | 0.35 | |
Eubacteria | unclassified | 74.62 | 47.24 | 59.81 |
Cryptomonadales | 2.6 | 42.43 | 17.36 | |
Nematoda | 16.45 | 1.51 | 15.86 | |
Apicomplexa | 0.16 | 5.14 | 4.67 | |
Ascomycota | 1.83 | 1.67 | 1.34 | |
Mucoromycota | 2.39 | 0.77 | 0.54 |
3.5. Sludge Reduction Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2014, 86, 2813–2848. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The ability of biologically based wastewater treatment systems to remove emerging organic contaminants-a review. Environ. Sci. Pollut. Res. 2014, 21, 11708–11728. [Google Scholar] [CrossRef] [PubMed]
- Mehinto, A.C.; Hill, E.M.; Tyler, C.R. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2010, 44, 2176–2182. [Google Scholar] [CrossRef]
- Hu, R.; Chang, H.; Zou, Y.; Feng, H.; Wu, H. Enhanced reverse osmosis concentrate disposal and nutrients conversion to microalgae bioenergy with a gradient-fed strategy. ACS Sustain. Chem. Eng. 2021, 9, 874–882. [Google Scholar] [CrossRef]
- Young, B.; Delatolla, R.; Ren, B.; Kennedy, K.; Laflamme, E. Pilot-scale tertiary MBBR nitrification at 1 C: Characterization of ammonia removal rate, solids settleability and biofilm characteristics. Environ. Technol. 2016, 37, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Young, B.; Delatolla, R.; Kennedy, K.; LaFlamme, E.; Stintzi, A. Post carbon removal nitrifying MBBR operation at high loading and exposure to starvation conditions. Bioresour. Technol. 2017, 239, 318–325. [Google Scholar] [CrossRef]
- Young, B.; Delatolla, R.; Kennedy, K.; Laflamme, E.; Stintzi, A. Low temperature MBBR nitrification: Microbiome analysis. Water Res. 2017, 111, 224–233. [Google Scholar] [CrossRef]
- Plattes, M.; Henry, E.; Schosseler, P.M.; Weidenhaupt, A. Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater. Biochem. Eng. J. 2006, 32, 61–68. [Google Scholar] [CrossRef]
- Pal, S.R.; SV, D.D.; Arti, N.P. Study the efficiency of moving bed bio-film reactor (MBBR) for dairy wastewater treatment. IJARIIE 2016, 2, 2395–4396. [Google Scholar]
- Kermani, M.; Bina, B.; Movahedian, H.; Amin, M.M.; Nikaein, M. Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater. Am. J. Environ. Sci. 2008, 4, 675. [Google Scholar]
- De Oliveira, D.V.M.; Rabelo, M.D.; Nariyoshi, Y.N. Evaluation of a MBBR (moving bed biofilm reactor) pilot plant for treatment of pulp and paper mill wastewater. Int. J. Environ. Monit. Anal. 2014, 2, 220–225. [Google Scholar] [CrossRef]
- di Biase, A.; Kowalski, M.S.; Devlin, T.R.; Oleszkiewicz, J.A. Moving bed biofilm reactor technology in municipal wastewater treatment: A review. J. Environ. Manag. 2019, 247, 849–866. [Google Scholar] [CrossRef]
- Ashkanani, A.; Almomani, F.; Khraisheh, M.; Bhosale, R.; Tawalbeh, M. Bio-carrier and operating temperature effect on ammonia removal from secondary wastewater effluents using moving bed biofilm reactor (MBBR). Sci. Total Environ. 2019, 693, 133425. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, B.; Zhao, R.; Zhang, J.; Lin, L. Performance and bacterial community of moving bed biofilm reactors with various biocarriers treating primary wastewater effluent with a low organic strength and low C/N ratio. Bioresour. Technol. 2019, 287, 121424. [Google Scholar] [CrossRef]
- Massoompour, A.R.; Borghei, S.M.; Raie, M. Enhancement of biological nitrogen removal performance using novel carriers based on the recycling of waste materials. Water Res. 2020, 170, 115340. [Google Scholar] [CrossRef]
- Shore, J.L.; M’Coy, W.S.; Gunsch, C.K.; Deshusses, M.A. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater. Bioresour. Technol. 2012, 112, 51–60. [Google Scholar] [CrossRef]
- Di Trapani, D.; Mannina, G.; Torregrossa, M.; Viviani, G. Hybrid moving bed biofilm reactors: A pilot plant experiment. Water Sci. Technol. 2008, 57, 1539–1545. [Google Scholar] [CrossRef]
- Phanwilai, S.; Kangwannarakul, N.; Noophan, P.L.; Kasahara, T.; Terada, A. Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD: N ratio. Front. Environ. Sci. Eng. 2020, 14, 115. [Google Scholar] [CrossRef]
- Di Trapani, D.; Christensson, M.; Torregrossa, M.; Viviani, G.; Ødegaard, H. Performance of a hybrid activated sludge/biofilm process for wastewater treatment in a cold climate region: Influence of operating conditions. Biochem. Eng. J. 2013, 77, 214–219. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, L.; Zhao, J. The performance of biocarrier containing zinc nanoparticles in biofilm reactor for treating textile wastewater. Process Biochem. 2018, 74, 125–131. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Guo, W.; Lu, Y.; Qi, L. Behavior of nitrogen removal in an aerobic sponge based moving bed biofilm reactor. Bioresour. Technol. 2017, 245, 1282–1285. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Guo, W.; Ngo, H.H.; Zhang, X.; Wang, X.C. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor–membrane bioreactor system. Bioresour. Technol. 2016, 208, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Jia, G.; Xu, J.; He, X.; Quan, X. Simultaneous nitrification and denitrification in continuous flow MBBR with novel surface-modified carriers. Environ. Technol. 2021, 42, 3607–3617. [Google Scholar] [CrossRef]
- Kinyage, J.P.H.; Pedersen, P.B.; Pedersen, L.F. Effects of abrupt salinity increase on nitrification processes in a freshwater moving bed biofilter. Aquac. Eng. 2019, 84, 91–98. [Google Scholar] [CrossRef]
- Abtahi, S.M.; Petermann, M.; Flambard, A.J.; Beaufort, S.; Terrisse, F. Micropollutants removal in tertiary moving bed biofilm reactors (MBBRs): Contribution of the biofilm and suspended biomass. Sci. Total Environ. 2018, 643, 1464–1480. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; Li, J.; Lee, C.T.; Ong, P.Y. Effect of aquaculture salinity on nitrification and microbial community in moving bed bioreactors with immobilized microbial granules. Bioresour. Technol. 2020, 297, 122427. [Google Scholar] [CrossRef]
- Kleerebezem, R.; Beckers, J.; Hulshoff Pol, L.W.; Lettinga, G. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor. Biotechnol. Bioeng. 2005, 91, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, N.; Wei, Y.; Dang, K.; Li, M. Pilot study on the upgrading configuration of UASB-MBBR with two carriers: Treatment effect, sludge reduction and functional microbial identification. Process Biochem. 2020, 99, 211–221. [Google Scholar] [CrossRef]
- Dong, Z.; Lu, M.; Huang, W.; Xu, X. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. J. Hazard. Mater. 2011, 196, 123–130. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Xu, N.; He, A.; Xin, F. Performance evaluation of a lab-scale moving bed biofilm reactor (MBBR) using polyethylene as support material in the treatment of wastewater contaminated with terephthalic acid. Chemosphere 2019, 227, 117–123. [Google Scholar] [CrossRef]
- Du, R.; Cao, S.; Li, B.; Wang, S.; Peng, Y. Simultaneous domestic wastewater and nitrate sewage treatment by Denitrifying Ammonium Oxidation (DEAMOX) in sequencing batch reactor. Chemosphere 2017, 174, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Zafarzadeh, A.; Bina, B.; Nikaeen, M.; Movahedian, A.H.; Hajian, N.M. Performance of moving bed biofilm reactors for biological nitrogen compounds removal from wastewater by partial nitrification-denitrification process. Iran. J. Environ. Health. Sci. Eng. 2010, 7, 353–364. [Google Scholar]
- Rong, Y.; Liu, X.C.; He, Y.X.; Zhang, W.S.; Jin, P.K. Enhanced Nutrient Removal and Microbial Community Structure in a Step-feed A2/O Process Treating Low-C/N Municipal Wastewater. Huan Jing Ke Xue = Huanjing Kexue 2019, 40, 4113–4120. [Google Scholar] [PubMed]
- Puigagut, J.; García, J.; Salvadó, H. Microfauna community as an indicator of effluent quality and operational parameters in an activated sludge system for treating piggery wastewater. Water Air Soil Pollut. 2009, 203, 207–216. [Google Scholar] [CrossRef]
- Liu, J.; Yang, M.; Qi, R.; An, W.; Zhou, J. Comparative study of protozoan communities in full-scale MWTPs in Beijing related to treatment processes. Water Res. 2008, 42, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Ehara, M.; Tseng, I.C.; Yamaguchi, T.; Bräuer, S.L. Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int. J. Syst. Evol. Microbiol. 2012, 62(Pt. 6), 1389–1395. [Google Scholar] [CrossRef]
- Ghosh, P.; Kumar, M.; Kapoor, R.; Kumar, S.S.; Singh, L. Enhanced biogas production from municipal solid waste via co-digestion with sewage sludge and metabolic pathway analysis. Bioresour. Technol. 2020, 296, 122275. [Google Scholar] [CrossRef]
- Ghyoot, W.; Verstraete, W. Reduced sludge production in a two-stage membrane-assisted bioreactor. Water Res. 2000, 34, 205–215. [Google Scholar] [CrossRef]
- Henze, M.; Harremoes, P.; Arvin, E.; la Cour Jansen, J. Wastewater Treatment: Biological and Chemical Processes; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Guo, Y.; Li, Z.H.; Yang, C.J.; Wang, H.J.; Li, Y.M. Effects of the Physical Structure of Activated Sludge on Respiration Processes. Huan Jing Ke Xue = Huanjing Kexue 2019, 40, 2813–2820. [Google Scholar]
- Xu, L.J.; Pan, Y.; Zhang, H.; Feng, X.; Wei, P.L. Effects of Aerobic Carbon Sources on Biofilm with Simultaneous Phosphate Removal and Enrichment. Huan Jing Ke Xue = Huanjing Kexue 2019, 40, 3179–3185. [Google Scholar]
Kind | pH | COD [mg/L] | NH4+-N [mg/L] | BOD5 [mg/L] | Turbidity [NTU] | SS [mg/L] |
---|---|---|---|---|---|---|
Basic data | 7.5–8.0 | 100–470 | 18–67 | 120–250 | 50–220 | 100–400 |
Items | AMC | PBG |
---|---|---|
Photo of carriers | ||
SEM of carriers | ||
Shapes | Cylinder | Cube |
Size | 6–8 ± 1 mm | 10 ± 1 mm |
Bulk density | 400 kg/m3 | 12.5 ± 0.75 kg/m3 |
Specific gravity | Slightly more than 1 | Close to 1 |
Surface shape | Convex concave | Spongy |
Interior structure | 5–10 μm porous | Porous |
Porosity | / | 98% |
Specific surface area | / | >4000 m2/m3 |
Application | AMC Reactor | PBG Reactor |
Filling ratio | 40% | 40% |
Name | Samples | Seq Num | Shannon | Simpson |
---|---|---|---|---|
Archaea | Activated sludge | 60,151 | 3.31 | 0.09 |
Sludge on carrier | 52,658 | 2.75 | 0.16 | |
Suspended sludge | 42,749 | 3.29 | 0.09 | |
Bacteria | Activated sludge | 57,189 | 5.23 | 0.03 |
Sludge on carrier | 78,116 | 4.27 | 0.08 | |
Suspended sludge | 49,601 | 3.86 | 0.13 | |
Eubacteria | Activated sludge | 72,319 | 2.55 | 0.15 |
Sludge on carrier | 72,078 | 1.89 | 0.30 | |
Suspended sludge | 44,510 | 2.47 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liu, Y.; Zhou, X.; Wang, N.; Yuan, B. A Study on The Carriers Compound Multi-Stage MBBR Biological Treatment Process for Domestic Sewage. Sustainability 2023, 15, 7922. https://doi.org/10.3390/su15107922
Li M, Liu Y, Zhou X, Wang N, Yuan B. A Study on The Carriers Compound Multi-Stage MBBR Biological Treatment Process for Domestic Sewage. Sustainability. 2023; 15(10):7922. https://doi.org/10.3390/su15107922
Chicago/Turabian StyleLi, Miaojie, Yonghong Liu, Xiaode Zhou, Ning Wang, and Bo Yuan. 2023. "A Study on The Carriers Compound Multi-Stage MBBR Biological Treatment Process for Domestic Sewage" Sustainability 15, no. 10: 7922. https://doi.org/10.3390/su15107922
APA StyleLi, M., Liu, Y., Zhou, X., Wang, N., & Yuan, B. (2023). A Study on The Carriers Compound Multi-Stage MBBR Biological Treatment Process for Domestic Sewage. Sustainability, 15(10), 7922. https://doi.org/10.3390/su15107922