How Mobile Health Livingstreaming Engages the Consumer-Insights from a Dual-Process Model
Abstract
:1. Introduction
2. Literature Review and Theoretical Basis
2.1. Mobile Health Livestreaming and Functional Features
2.2. Dual-Process Theory
2.3. Mobile Health Livestreaming Engagement
2.4. Cognitive Mechanism and Mobile Health Livestreaming Engagement
2.5. Affective Mechanism and Mobile Health Livestreaming Engagement
3. Methodology
3.1. Overview of Research Design
3.2. Construct Measures
3.3. Sample and Procedures
3.4. Analysis Methods
4. Results
4.1. Measurement Model
4.2. Structural Model
4.3. Moderation Effects
4.4. Mediation Effects
5. Discussion
6. Conclusions
6.1. Implications
6.2. Limitations and Future Research Agenda
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Construct | Measurement Items | Reference |
---|---|---|
Perceived vicariousness (PV) | PV1: During a live stream, I can feel what the streamer is trying to say about the recommended health solutions and their guidance experience. PV2: During a live stream, I can imagine what the streamer is trying to say about the recommended health solutions and their guidance experience. PV3: During a live stream, I can envision what the streamer is trying to say about the recommended health solutions and their guidance experience. | Li et al. [46] |
Perceived synchronicity (PS) | PS1: During a live stream, the platform processes my comments inputs very quickly. PS2: During a live stream, seeing comments sent by other viewers is very fast. PS3: During a live stream, I am able to see others’ comments without any delay. PS4: During a live stream, the platform rapidly responds to my comments and inputs. | Li et al. [46] |
Perceived Intelligence (PI) | PI1: During a live stream, the streamer had the ability to identify and respond to viewers’ health needs. PI2: During a live stream, the streamer had the ability to deal with different mobile health scenarios. PI3: During a live stream, the streamer had the ability to gather information from different functions within health interaction (for example, comments, voice calls, video calls, and so on). PI4: During a live stream, the streamer had the capability to gather information from outside the health interaction (for example, game, tips paid by viewers, raffle, and so on). | McLean et al. [49] |
Arousal (AR) | AR1: The mobile health livestreaming room excites me. AR2: The mobile health livestreaming room arouses me. AR3: The mobile health livestreaming room stimulates me. | Tong et al. [61] |
Affinity (AF) | AF1: If there is no live broadcast, I would miss it. AF2: If there is no live broadcast, I would feel nervous and confused. AF3: It is difficult for me to reduce the usage frequency of a mobile health livestreaming. | Franke et al. [64] |
Concentration (CC) | CC1: I do not think of anything other than interacting with streamers. CC2: I do not hear anything when interacting with streamers. CC3: I concentrate fully when interacting with streamers. | Eldenfria and Samarraie [67] |
Engagement (EG) | EG1: I spend more time on mobile health livestreaming. EG2: I would become a fan and a follower of mobile health livestreaming. EG3: I would be likely to try and keep track of the activities of a streamer that uses mobile health livestreaming. EG4: I am likely to revisit the streamers to watch their new live videos in the near future. EG5: I am likely to recommend streamers that use mobile health livestreaming to my friends. EG6: I encourage friends and relatives to seek health support from a streamer that uses mobile health livestreaming. EG7: In the near future, I will definitely experience paid health consultations from a streamer that uses mobile health livestreaming. EG8: I consider a streamer that uses mobile health livestreaming to be my first choice when experiencing this kind of service. | Wongkitrungrueng and Assarut [8] |
Construct | Indicator | Substantive Factor Loading (R1) | R12 | Method Factor Loading (R2) | R22 |
---|---|---|---|---|---|
Perceived vicariousness (PV) | PV1 | 0.714 | 0.510 | 0.012 | 0.000 |
PV2 | 0.851 | 0.724 | −0.001 | 0.000 | |
PV3 | 0.857 | 0.734 | 0.013 | 0.000 | |
Perceived synchronicity (PS) | PS1 | 0.797 | 0.635 | 0.044 | 0.002 |
PS2 | 0.752 | 0.566 | 0.045 | 0.002 | |
PS3 | 0.691 | 0.477 | 0.039 | 0.002 | |
PS4 | 0.781 | 0.610 | 0.042 | 0.002 | |
Perceived intelligence (PI) | PI1 | 0.786 | 0.618 | 0.044 | 0.002 |
PI2 | 0.758 | 0.575 | 0.042 | 0.002 | |
PI3 | 0.761 | 0.579 | 0.043 | 0.002 | |
PI4 | 0.727 | 0.529 | 0.040 | 0.002 | |
Arousal (AR) | AR1 | 0.619 | 0.383 | 0.047 | 0.002 |
AR2 | 0.656 | 0.430 | 0.050 | 0.003 | |
AR3 | 0.576 | 0.332 | 0.044 | 0.002 | |
Affinity (AF) | AF1 | 0.743 | 0.552 | 0.056 | 0.003 |
AF2 | 0.657 | 0.432 | 0.050 | 0.003 | |
AF3 | 0.755 | 0.570 | 0.057 | 0.003 | |
Concentration (CC) | CC1 | 0.874 | 0.764 | 0.044 | 0.002 |
CC2 | 0.871 | 0.759 | 0.043 | 0.002 | |
CC3 | 0.805 | 0.648 | 0.038 | 0.001 | |
EG1 | 0.941 | 0.885 | 0.071 | 0.005 | |
Engagement (EG) | EG2 | 0.936 | 0.876 | 0.071 | 0.005 |
EG3 | 0.938 | 0.880 | 0.071 | 0.005 | |
EG4 | 0.934 | 0.872 | 0.071 | 0.005 | |
EG5 | 0.945 | 0.893 | 0.072 | 0.005 | |
EG6 | 0.928 | 0.861 | 0.070 | 0.005 | |
EG7 | 0.864 | 0.746 | 0.071 | 0.005 | |
EG8 | 0.939 | 0.882 | 0.071 | 0.005 | |
Average | N. A. | 0.802 | 0.643204 | 0.049 | 0.002 |
References
- Balapour, A.; Reychav, I.; Sabherwal, R.; Azuri, J. Mobile technology identity and self-efficacy: Implications for the adoption of clinically supported mobile health apps. Int. J. Inf. Manag. 2019, 49, 58–68. [Google Scholar] [CrossRef]
- Hilty, D.; Chan, S.; Torous, J.; Luo, J.; Boland, R. A Framework for Competencies for the Use of Mobile Technologies in Psychiatry and Medicine: Scoping Review. JMIR MHealth UHealth 2020, 8, e12229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Huang, J.; Wu, K.; Huang, X.; Kong, N.; Campy, K.S. Characterizing Chinese consumers’ intention to use live e-commerce shopping. Technol. Soc. 2021, 67, 101767. [Google Scholar] [CrossRef]
- Song, S.; Xue, X.; Zhao, Y.C.; Li, J.; Zhu, Q.; Zhao, M. Short-Video Apps as a Health Information Source for Chronic Obstructive Pulmonary Disease: Information Quality Assessment of TikTok Videos. J. Med. Internet Res. 2021, 23, e28318. [Google Scholar] [CrossRef]
- Gopalsamy, R.; Semenov, A.; Pasiliao, E.; McIntosh, S.; Nikolaev, A. Engagement as a Driver of Growth of Online Health Forums: Observational Study. J. Med. Internet Res. 2017, 19, e304. [Google Scholar] [CrossRef]
- Iimedia. 2022–2023 China Live Streaming E-Commerce Industry Operation Big Data Analysis and Trends Research Report. Available online: https://www.iimedia.cn/c400/86233.html (accessed on 20 February 2023).
- IResearch. 2022 China Online Medical and Health Services Consumption White Paper. Available online: https://www.iresearch.com.cn/Detail/report?id=4057&isfree=0 (accessed on 20 February 2023).
- Wongkitrungrueng, A.; Assarut, N. The role of live streaming in building consumer trust and engagement with social commerce sellers. J. Bus. Res. 2020, 117, 543–556. [Google Scholar] [CrossRef]
- Dolan, R.; Conduit, J.; Frethey-Bentham, C.; Fahy, J.; Goodman, S. Social media engagement behavior: A framework for engaging customers through social media content. Eur. J. Mark. 2019, 53, 2213–2243. [Google Scholar] [CrossRef]
- Tarute, A.; Nikou, S.; Gatautis, R. Mobile application driven consumer engagement. Telemat. Inform. 2017, 34, 145–156. [Google Scholar] [CrossRef]
- Jozani, M.; Ayaburi, E.; Ko, M.; Choo, K.-K.R. Privacy concerns and benefits of engagement with social media-enabled apps: A privacy calculus perspective. Comput. Hum. Behav. 2020, 107, 106260. [Google Scholar] [CrossRef]
- Bitrián, P.; Buil, I.; Catalán, S. Enhancing user engagement: The role of gamification in mobile apps. J. Bus. Res. 2021, 132, 170–185. [Google Scholar] [CrossRef]
- Oakley-Girvan, I.; Yunis, R.; Longmire, M.; Ouillon, J.S. What Works Best to Engage Participants in Mobile App Interventions and e-Health: A Scoping Review. Telemed. E-Health 2022, 28, 768–780. [Google Scholar] [CrossRef]
- Xu, J.H.; Cai, Y.; Fang, Z.; Paliyawan, P. Promoting Mental Well-Being for Audiences in a Live-Streaming Game by Highlight-Based Bullet Comments. In Proceedings of the 2021 IEEE 10th Global Conference on Consumer Electronics, Kyoto, Japan, 12–15 October 2021; pp. 383–385. [Google Scholar]
- Goetzen, A.; Wang, R.; Redmiles, E.M.; Zannettou, S.; Ayalon, O. Likes and Fragments: Examining Perceptions of Time Spent on TikTok 2023. arXiv 2013, arXiv:2303.02041. [Google Scholar] [CrossRef]
- OECD. Available online: https://www.oecd.org/statistics/Measuring-impacts-of-business-on-well-being.pdf (accessed on 28 April 2023).
- Kocağ, E.K.; Popescu, C.R.G. Coping With COVID-19 While Focusing on Good Health and Well-Being: Vaccination Willingness. In Frameworks for Sustainable Development Goals to Manage Economic, Social, and Environmental Shocks and Disasters; IGI Global: Hershey, PA, USA, 2022; pp. 1–15. [Google Scholar]
- Tseng, H.-T.; Ibrahim, F.; Hajli, N.; Nisar, T.M.; Shabbir, H. Effect of privacy concerns and engagement on social support behaviour in online health community platforms. Technol. Forecast. Soc. Change 2022, 178, 121592. [Google Scholar] [CrossRef]
- Henderson, E.M.; Keogh, E.; Rosser, B.A.; Eccleston, C. Searching the Internet for help with pain: Adolescent search, coping, and medication behaviour. Br. J. Health Psychol. 2013, 18, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kwon, M. Health-Related Internet Use by Children and Adolescents: Systematic Review. J. Med. Internet Res. 2018, 20, e120. [Google Scholar] [CrossRef]
- Osei-Frimpong, K.; Wilson, A.; Lemke, F. Patient co-creation activities in healthcare service delivery at the micro level: The influence of online access to healthcare information. Technol. Forecast. Soc. Change 2018, 126, 14–27. [Google Scholar] [CrossRef]
- Chen, S.; Guo, X.; Wu, T.; Ju, X. Exploring the Online Doctor-Patient Interaction on Patient Satisfaction Based on Text Mining and Empirical Analysis. Inf. Process. Manag. 2020, 57, 102253. [Google Scholar] [CrossRef]
- Wang, C.L. New frontiers and future directions in interactive marketing: Inaugural Editorial. J. Res. Interact. Mark. 2021, 15, 1–9. [Google Scholar] [CrossRef]
- Lu, Z.; Xia, H.; Heo, S.; Wigdor, D. You Watch, You Give, and You Engage: A Study of Live Streaming Practices in China. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–13. [Google Scholar]
- Wilke, J.; Mohr, L.; Yuki, G.; Bhundoo, A.K.; Jiménez-Pavón, D.; Laiño, F.; Murphy, N.; Novak, B.; Nuccio, S.; Ortega-Gómez, S.; et al. Train at home, but not alone: A randomised controlled multicentre trial assessing the effects of live-streamed tele-exercise during COVID-19-related lockdowns. Br. J. Sports Med. 2022, 56, 667–675. [Google Scholar] [CrossRef]
- Leung, L.; Chen, C. E-health/m-health adoption and lifestyle improvements: Exploring the roles of technology readiness, the expectation-confirmation model, and health-related information activities. Telecommun. Policy 2019, 43, 563–575. [Google Scholar] [CrossRef]
- Alam, M.Z.; Hu, W.; Kaium, M.A.; Hoque, M.R.; Alam, M.M.D. Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach. Technol. Soc. 2020, 61, 101255. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, Y.; Wang, R.; Huang, S.; Yuan, Q. Understanding the Mechanism Between IT Identity, IT Mindfulness and Mobile Health Technology Continuance Intention: An Extended Expectation Confirmation Model. Technol. Forecast. Soc. Change 2022, 176, 121449. [Google Scholar] [CrossRef]
- Chaiken, S.; Trope, Y. Dual-Process Theories in Social Psychology; Guilford Press: New York, NY, USA, 1999; pp. 462–483. [Google Scholar]
- van Gelder, J.-L.; de Vries, R.E.; van der Pligt, J. Evaluating a dual-process model of risk: Affect and cognition as determinants of risky choice. J. Behav. Decis. Mak. 2009, 22, 45–61. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Tian, X. The dual-process model of product information and habit in influencing consumers’ purchase intention: The role of live streaming features. Electron. Commer. Res. Appl. 2022, 53, 101150. [Google Scholar] [CrossRef]
- Coyne, S.M.; Rogers, A.A.; Zurcher, J.D.; Stockdale, L.; Booth, M. Does time spent using social media impact mental health?: An eight year longitudinal study. Comput. Hum. Behav. 2020, 104, 106160. [Google Scholar] [CrossRef]
- Hamilton, K.; Gibbs, I.; Keech, J.J.; Hagger, M.S. Reasoned and implicit processes in heavy episodic drinking: An integrated dual-process model. Br. J. Health Psychol. 2020, 25, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.K.; Ali, N.; Khan, N.A.; Ammara, U.; Anjum, N. Understanding multiscreening phenomenon for online shopping through perspective of self-regulation and dual process theory: Case of Chinese young generation. Electron. Commer. Res. Appl. 2020, 42, 100988. [Google Scholar] [CrossRef]
- Han, X.; Du, J.T.; Zhang, T.; Han, W.; Zhu, Q. How online ratings and trust influence health consumers’ physician selection intentions: An experimental study. Telemat. Inform. 2021, 62, 101631. [Google Scholar] [CrossRef]
- Biswas, B.; Sengupta, P.; Kumar, A.; Delen, D.; Gupta, S. A critical assessment of consumer reviews: A hybrid NLP-based methodology. Decis. Support Syst. 2022, 159, 113799. [Google Scholar] [CrossRef]
- Keech, J.J.; Hamilton, K. An integrated dual-process model for coping behaviour. Stress Health 2022, 38, 591–601. [Google Scholar] [CrossRef]
- Tran, L.T.T. Managing the effectiveness of e-commerce platforms in a pandemic. J. Retail. Consum. Serv. 2021, 58, 102287. [Google Scholar] [CrossRef]
- Shahbaznezhad, H.; Dolan, R.; Rashidirad, M. The Role of Social Media Content Format and Platform in Users’ Engagement Behavior. J. Interact. Mark. 2021, 53, 47–65. [Google Scholar] [CrossRef]
- Kumar, A.; Salo, J.; Li, H. Stages of User Engagement on Social Commerce Platforms: Analysis with the Navigational Clickstream Data. Int. J. Electron. Commer. 2019, 23, 179–211. [Google Scholar] [CrossRef]
- Baumel, A.; Muench, F.; Edan, S.; Kane, J.M. Objective User Engagement With Mental Health Apps: Systematic Search and Panel-Based Usage Analysis. J. Med. Internet Res. 2019, 21, e14567. [Google Scholar] [CrossRef] [PubMed]
- Cechetti, N.P.; Bellei, E.A.; Biduski, D.; Rodriguez, J.P.M.; Roman, M.K.; De Marchi, A.C.B. Developing and implementing a gamification method to improve user engagement: A case study with an m-Health application for hypertension monitoring. Telemat. Inform. 2019, 41, 126–138. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, X.; Liu, L.; Ren, C. Converting readers to patients? From free to paid knowledge-sharing in online health communities. Inf. Process. Manag. 2021, 58, 102490. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhuang, W.; Guo, Q.; Fan, W. What factors influence grassroots knowledge supplier performance in online knowledge platforms? Evidence from a paid Q&A service. Electron. Mark. 2022, 32, 2507–2523. [Google Scholar] [CrossRef]
- Behera, R.K.; Bala, P.K.; Dhir, A. The emerging role of cognitive computing in healthcare: A systematic literature review. Int. J. Med. Inf. 2019, 129, 154–166. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Cai, J. How attachment affects user stickiness on live streaming platforms: A socio-technical approach perspective. J. Retail. Consum. Serv. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Giertz, J.N.; Weiger, W.H.; Törhönen, M.; Hamari, J. Content versus community focus in live streaming services: How to drive engagement in synchronous social media. J. Serv. Manag. 2021, 33, 33–58. [Google Scholar] [CrossRef]
- Xue, J.; Liang, X.; Xie, T.; Wang, H. See now, act now: How to interact with customers to enhance social commerce engagement? Inf. Manage. 2020, 57, 103324. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K.; Barhorst, J. Alexa, do voice assistants influence consumer brand engagement?—Examining the role of AI powered voice assistants in influencing consumer brand engagement. J. Bus. Res. 2021, 124, 312–328. [Google Scholar] [CrossRef]
- Ma, X.; Zou, X.; Lv, J. Why do consumers hesitate to purchase in live streaming? A perspective of interaction between participants. Electron. Commer. Res. Appl. 2022, 55, 101193. [Google Scholar] [CrossRef]
- Lu, B.; Chen, Z. Live streaming commerce and consumers’ purchase intention: An uncertainty reduction perspective. Inf. Manag. 2021, 58, 103509. [Google Scholar] [CrossRef]
- Men, J.; Zheng, X.; Davison, R.M. The role of vicarious learning strategies in shaping consumers’ uncertainty: The case of live-streaming shopping. Internet Res. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Tan, H.; Yan, M. Physician-user interaction and users’ perceived service quality: Evidence from Chinese mobile healthcare consultation. Inf. Technol. People 2020, 33, 1403–1426. [Google Scholar] [CrossRef]
- Costa, R. da On a new community concept: Social networks, personal communities, collective intelligence. Interface-Comun. Saúde Educ. 2005, 9, 235–248. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, D. The influence of technological interactivity and media sociability on sport consumer value co-creation behaviors via collective efficacy and collective intelligence. Int. J. Sports Mark. Spons. 2021, 23, 18–40. [Google Scholar] [CrossRef]
- Nazir, S.; Khadim, S.; Ali Asadullah, M.; Syed, N. Exploring the influence of artificial intelligence technology on consumer repurchase intention: The mediation and moderation approach. Technol. Soc. 2023, 72, 102190. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H. Artificial intelligence-enabled personalization in interactive marketing: A customer journey perspective. J. Res. Interact. Mark. 2022; 1–18, ahead-of-print. [Google Scholar] [CrossRef]
- Kumar, V.; Rajan, B.; Venkatesan, R.; Lecinski, J. Understanding the Role of Artificial Intelligence in Personalized Engagement Marketing. Calif. Manage. Rev. 2019, 61, 135–155. [Google Scholar] [CrossRef]
- Hu, M.; Chaudhry, S.S. Enhancing consumer engagement in e-commerce live streaming via relational bonds. Internet Res. 2020, 30, 1019–1041. [Google Scholar] [CrossRef]
- Jeyaraj, A. Models of information systems habit: An exploratory meta-analysis. Int. J. Inf. Manag. 2022, 62, 102436. [Google Scholar] [CrossRef]
- Tong, X.; Chen, Y.; Zhou, S.; Yang, S. How background visual complexity influences purchase intention in live streaming: The mediating role of emotion and the moderating role of gender. J. Retail. Consum. Serv. 2022, 67, 103031. [Google Scholar] [CrossRef]
- Munaro, A.C.; Hübner Barcelos, R.; Francisco Maffezzolli, E.C.; Santos Rodrigues, J.P.; Cabrera Paraiso, E. To engage or not engage? The features of video content on YouTube affecting digital consumer engagement. J. Consum. Behav. 2021, 20, 1336–1352. [Google Scholar] [CrossRef]
- Li, M.; Mao, J. Hedonic or utilitarian? Exploring the impact of communication style alignment on user’s perception of virtual health advisory services. Int. J. Inf. Manag. 2015, 35, 229–243. [Google Scholar] [CrossRef]
- Franke, T.; Attig, C.; Wessel, D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Int. J. Human–Computer Interact. 2019, 35, 456–467. [Google Scholar] [CrossRef]
- Lim, J.S.; Choe, M.-J.; Zhang, J.; Noh, G.-Y. The role of wishful identification, emotional engagement, and parasocial relationships in repeated viewing of live-streaming games: A social cognitive theory perspective. Comput. Hum. Behav. 2020, 108, 106327. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, Y.-C. What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telemat. Inform. 2018, 35, 293–303. [Google Scholar] [CrossRef]
- Eldenfria, A.; Al-Samarraie, H. Towards an Online Continuous Adaptation Mechanism (OCAM) for Enhanced Engagement: An EEG Study. Int. J. Hum.–Comput. Interact. 2019, 35, 1960–1974. [Google Scholar] [CrossRef]
- Holdener, M.; Gut, A.; Angerer, A. Applicability of the User Engagement Scale to Mobile Health: A Survey-Based Quantitative Study. JMIR MHealth UHealth 2020, 8, e13244. [Google Scholar] [CrossRef]
- Farivar, S.; Turel, O.; Yuan, Y. A trust-risk perspective on social commerce use: An examination of the biasing role of habit. Internet Res. 2017, 27, 586–607. [Google Scholar] [CrossRef]
- Ladhari, R.; Massa, E.; Skandrani, H. YouTube vloggers’ popularity and influence: The roles of homophily, emotional attachment, and expertise. J. Retail. Consum. Serv. 2020, 54, 102027. [Google Scholar] [CrossRef]
- Urbach, N.; Ahlemann, F. Structural Equation Modeling in Information Systems Research Using Partial Least Squares. J. Inf. Technol. Theory Appl. JITTA 2010, 11, 2. [Google Scholar]
- Heart, T. Who Is out There? Exploring the Effects of Trust and Perceived Risk on SaaS Adoption Intentions 2010. ACM SIGMIS Database DATABASE Adv. Inf. Syst. 2010, 41, 49–68. [Google Scholar] [CrossRef]
- Taherdoost, H. What Is the Best Response Scale for Survey and Questionnaire Design; Review of Different Lengths of Rating Scale/Attitude Scale/Likert Scale. Hamed Taherdoost 2019, 1–10. Available online: https://ssrn.com/abstract=3588604 (accessed on 20 February 2023).
- Mohatlane, E.J. Back-Translation as a Quality Control Mechanism in Sesotho Translation. J. Soc. Sci. 2014, 41, 167–175. [Google Scholar] [CrossRef]
- Rubio, D.M.; Berg-Weger, M.; Tebb, S.S.; Lee, E.S.; Rauch, S. Objectifying content validity: Conducting a content validity study in social work research. Soc. Work Res. 2003, 27, 94–104. [Google Scholar] [CrossRef]
- Yan, M.; Filieri, R.; Raguseo, E.; Gorton, M. Mobile apps for healthy living: Factors influencing continuance intention for health apps. Technol. Forecast. Soc. Change 2021, 166, 120644. [Google Scholar] [CrossRef]
- Franque, F.B.; Oliveira, T.; Tam, C.; Santini, F.d.O. A meta-analysis of the quantitative studies in continuance intention to use an information system. Internet Res. 2020, 31, 123–158. [Google Scholar] [CrossRef]
- Kim, Y.; Briley, D.A.; Ocepek, M.G. Differential innovation of smartphone and application use by sociodemographics and personality. Comput. Hum. Behav. 2015, 44, 141–147. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Overton, T.S. Estimating Nonresponse Bias in Mail Surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef]
- Chandler, J.; Mueller, P.; Paolacci, G. Nonnaïveté among Amazon Mechanical Turk workers: Consequences and solutions for behavioral researchers. Behav. Res. Methods 2014, 46, 112–130. [Google Scholar] [CrossRef]
- Puteh, F.; Azman Ong, M.H. Quantitative Data Analysis: Choosing Between SPSS, PLS and AMOS in Social Science Research. Int. Interdiscip. J. Sci. Res. 2017, 3, 14–25. [Google Scholar]
- Cheng, E.W.L. SEM being more effective than multiple regression in parsimonious model testing for management development research. J. Manag. Dev. 2001, 20, 650–667. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistics notes: Cronbach’s alpha. BMJ 1997, 314, 572. [Google Scholar] [CrossRef] [PubMed]
- 84. Fornell, C.; F. Larcker, D. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 2022, 18, 39–50. [Google Scholar] [CrossRef]
- Liang, H.; Saraf, N.; Hu, Q.; Xue, Y. Assimilation of Enterprise Systems: The Effect of Institutional Pressures and the Mediating Role of Top Management. Manag. Inf. Syst. Q. 2007, 31, 58–87. [Google Scholar] [CrossRef]
- Williams, L.J.; Edwards, J.R.; Vandenberg, R.J. Recent Advances in Causal Modeling Methods for Organizational and Management Research. J. Manag. 2003, 29, 903–936. [Google Scholar] [CrossRef]
- Zhao, X.; Lynch, J.G.; Chen, Q. Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis. J. Consum. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- Akbar, S.; Coiera, E.; Magrabi, F. Safety concerns with consumer-facing mobile health applications and their consequences: A scoping review. J. Am. Med. Inform. Assoc. 2020, 27, 330–340. [Google Scholar] [CrossRef]
- Olaniyi, B.Y.; del Río, A.F.; Periáñez, Á.; Bellhouse, L. User Engagement in Mobile Health Applications. In Proceedings of 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 4704–4712. [Google Scholar]
- Sittig, S.; Wang, J.; Iyengar, S.; Myneni, S.; Franklin, A. Incorporating Behavioral Trigger Messages Into a Mobile Health App for Chronic Disease Management: Randomized Clinical Feasibility Trial in Diabetes. JMIR MHealth UHealth 2020, 8, e15927. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.-N. How purchase intention consummates purchase behaviour: The stochastic nature of product valuation in electronic commerce. Behav. Inf. Technol. 2015, 34, 57–68. [Google Scholar] [CrossRef]
Demographics | Characteristics | Frequency | Percent (%) |
---|---|---|---|
Sex | Male | 226 | 45.29% |
Female | 273 | 54.71% | |
Age | 20 s | 72 | 14.43% |
30 s | 120 | 24.05% | |
40 s | 212 | 42.48% | |
50 s | 95 | 19.04% | |
Education | High school certificate or below | 47 | 9.42% |
Technical school | 113 | 22.65% | |
Undergraduate degree | 252 | 50.50% | |
Master’s or higher degree | 87 | 17.43% | |
Monthly income, CNY | <3000 | 34 | 6.81% |
(3000, 6000) | 184 | 36.87% | |
(6000, 9000) | 235 | 47.09% | |
>9000 | 46 | 9.22% | |
Experience of mobile health livestreaming usage | Under 1 year | 166 | 33.27% |
1–2 years | 207 | 41.48% | |
Over 2 years | 126 | 25.25% | |
Frequency of mobile health livestreaming usage | Less than 5 times per month | 247 | 49.50% |
5–10 times per month | 191 | 38.28% | |
More than 10 times per month | 61 | 12.22% | |
Breadth of mobile health livestreaming platform usage | 1 | 233 | 46.69% |
2 | 168 | 33.67% | |
≥3 | 98 | 19.64% |
Variables | Items | Ladings | Cronbach’s α | CR | Rho_A | AVE |
---|---|---|---|---|---|---|
Perceived vicariousness (PV) | PV1 | 0.864 | 0.838 | 0.901 | 0.872 | 0.752 |
PV2 | 0.839 | |||||
PV3 | 0.897 | |||||
Perceived synchronicity (PS) | PS1 | 0.915 | 0.916 | 0.940 | 0.934 | 0.798 |
PS2 | 0.883 | |||||
PS3 | 0.876 | |||||
PS4 | 0.899 | |||||
Perceived intelligence (PI) | PI1 | 0.861 | 0.889 | 0.923 | 0.889 | 0.750 |
PI2 | 0.851 | |||||
PI3 | 0.889 | |||||
PI4 | 0.862 | |||||
Arousal (AR) | AR1 | 0.855 | 0.798 | 0.881 | 0.803 | 0.713 |
AR2 | 0.859 | |||||
AR3 | 0.818 | |||||
Affinity (AF) | AF1 | 0.944 | 0.907 | 0.942 | 0.907 | 0.844 |
AF2 | 0.868 | |||||
AF3 | 0.942 | |||||
Concentration (CC) | CC1 | 0.833 | 0.753 | 0.859 | 0.755 | 0.669 |
CC2 | 0.825 | |||||
CC3 | 0.796 | |||||
Engagement (EG) | EG1 | 0.971 | 0.990 | 0.991 | 0.990 | 0.935 |
EG2 | 0.968 | |||||
EG3 | 0.968 | |||||
EG4 | 0.969 | |||||
EG5 | 0.975 | |||||
EG6 | 0.963 | |||||
EG7 | 0.959 | |||||
EG8 | 0.962 |
Items | (1) PV | (2) PS | (3) PI | (4) AR | (5) AF | (6) CC | (7) EG |
---|---|---|---|---|---|---|---|
(1) PV | 0.873 | ||||||
(2) PS | 0.465 | 0.869 | |||||
(3) PI | 0.537 | 0.495 | 0.916 | ||||
(4) AR | 0.526 | 0.456 | 0.351 | 0.855 | |||
(5) AF | 0.468 | 0.350 | 0.475 | 0.482 | 0.865 | ||
(6) CC | 0.530 | 0.579 | 0.438 | 0.540 | 0.528 | 0.880 | |
(7) EG | 0.607 | 0.534 | 0.545 | 0.519 | 0.476 | 0.590 | 0.857 |
PV | PS | PI | AR | AF | CC | EG | |
---|---|---|---|---|---|---|---|
PV1 | 0.864 | 0.034 | 0.154 | 0.046 | 0.097 | 0.037 | 0.046 |
PV2 | 0.839 | 0.072 | 0.082 | 0.009 | 0.047 | 0.060 | 0.062 |
PV3 | 0.897 | 0.063 | 0.200 | 0.037 | 0.061 | 0.003 | 0.069 |
PS1 | 0.016 | 0.915 | 0.046 | 0.042 | 0.262 | 0.087 | 0.157 |
PS2 | 0.022 | 0.883 | 0.056 | 0.103 | 0.301 | 0.010 | 0.148 |
PS3 | 0.014 | 0.876 | 0.010 | 0.119 | 0.217 | 0.028 | 0.107 |
PS4 | 0.013 | 0.899 | 0.096 | 0.079 | 0.222 | 0.018 | 0.129 |
PI1 | 0.170 | 0.094 | 0.861 | 0.299 | 0.201 | 0.190 | 0.072 |
PI2 | 0.143 | 0.023 | 0.851 | 0.108 | 0.232 | 0.234 | 0.101 |
PI3 | 0.178 | 0.059 | 0.889 | 0.188 | 0.195 | 0.134 | 0.108 |
PI4 | 0.165 | 0.044 | 0.862 | 0.155 | 0.185 | 0.104 | 0.005 |
AR1 | 0.095 | 0.135 | 0.359 | 0.855 | 0.293 | 0.161 | 0.060 |
AR2 | 0.086 | 0.198 | 0.390 | 0.859 | 0.298 | 0.276 | 0.097 |
AR3 | 0.031 | 0.208 | 0.321 | 0.818 | 0.184 | 0.175 | 0.202 |
AF1 | 0.087 | 0.063 | 0.112 | 0.031 | 0.944 | 0.042 | 0.167 |
AF2 | 0.164 | 0.039 | 0.103 | 0.116 | 0.868 | 0.075 | 0.539 |
AF3 | 0.137 | 0.016 | 0.076 | 0.041 | 0.942 | 0.082 | 0.164 |
CC1 | 0.085 | 0.022 | 0.287 | 0.096 | 0.337 | 0.833 | 0.093 |
CC2 | 0.081 | 0.116 | 0.238 | 0.131 | 0.271 | 0.825 | 0.313 |
CC3 | 0.016 | 0.057 | 0.235 | 0.385 | 0.230 | 0.796 | 0.117 |
EG1 | 0.002 | 0.382 | 0.182 | 0.188 | 0.041 | 0.213 | 0.971 |
EG2 | 0.002 | 0.376 | 0.174 | 0.139 | 0.012 | 0.199 | 0.968 |
EG3 | 0.045 | 0.378 | 0.214 | 0.181 | 0.074 | 0.142 | 0.968 |
EG4 | 0.022 | 0.330 | 0.212 | 0.147 | 0.021 | 0.175 | 0.969 |
EG5 | 0.016 | 0.341 | 0.195 | 0.163 | 0.051 | 0.215 | 0.975 |
EG6 | 0.003 | 0.314 | 0.170 | 0.193 | 0.049 | 0.174 | 0.963 |
EG7 | 0.008 | 0.303 | 0.237 | 0.127 | 0.037 | 0.202 | 0.959 |
EG8 | 0.044 | 0.356 | 0.229 | 0.178 | 0.089 | 0.159 | 0.962 |
Hypothesis | β | Standard Deviation | T Statistics | p Value | Confidence Interval 95% | Supported | |
---|---|---|---|---|---|---|---|
(H1) PV→PI | 0.332 *** | 0.044 | 7.53 | 0 | [0.244, 0.416] | 0.130 | Yes |
(H2) PS→PI | 0.195 *** | 0.043 | 4.571 | 0 | [0.112, 0.280] | 0.045 | Yes |
(H3) PI→EG | 0.245 *** | 0.05 | 4.933 | 0 | [0.148, 0.342] | 0.066 | Yes |
(H4) AR→CC | 0.547 *** | 0.037 | 14.741 | 0 | [0.471, 0.615] | 0.259 | Yes |
(H5) AF→CC | 0.228 *** | 0.041 | 5.551 | 0 | [0.145, 0.308] | 0.080 | Yes |
(H6) CC→EG | 0.461 *** | 0.049 | 9.461 | 0 | [0.363, 0.556] | 0.228 | Yes |
(H6a) CC × PI→EG | 0.088 *** | 0.017 | 5.075 | 0 | [0.058, 0.126] | 0.032 | Yes |
Mediation Paths (IV→M→DV) | β | Standard Deviation | T Statistics | p Value | Confidence Interval 95% | Supported |
---|---|---|---|---|---|---|
PV→PI→EG | 0.081 *** | 0.020 | 4.049 | 0.000 | [0.045, 0.123] | Yes |
PS→PI→EG | 0.048 ** | 0.016 | 3.048 | 0.002 | [0.021, 0.083] | Yes |
AR→CC→EG | 0.253 *** | 0.029 | 8.643 | 0.000 | [0.196, 0.312] | Yes |
AF→CC→EG | 0.105 *** | 0.028 | 3.818 | 0.000 | [0.056, 0.163] | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Wang, X.; Li, S.; Zhao, Q. How Mobile Health Livingstreaming Engages the Consumer-Insights from a Dual-Process Model. Sustainability 2023, 15, 8097. https://doi.org/10.3390/su15108097
Lu F, Wang X, Li S, Zhao Q. How Mobile Health Livingstreaming Engages the Consumer-Insights from a Dual-Process Model. Sustainability. 2023; 15(10):8097. https://doi.org/10.3390/su15108097
Chicago/Turabian StyleLu, Fuyong, Xintao Wang, Siheng Li, and Qun Zhao. 2023. "How Mobile Health Livingstreaming Engages the Consumer-Insights from a Dual-Process Model" Sustainability 15, no. 10: 8097. https://doi.org/10.3390/su15108097
APA StyleLu, F., Wang, X., Li, S., & Zhao, Q. (2023). How Mobile Health Livingstreaming Engages the Consumer-Insights from a Dual-Process Model. Sustainability, 15(10), 8097. https://doi.org/10.3390/su15108097