Methods to Reduce Flicker and Light Pollution of Low-Mounting-Height Luminaires in Urban Road Lighting
Abstract
:1. Introduction
2. Human Visual Characteristics
2.1. Persistence of Vision
2.2. Visual Masking
3. Flicker Index Analysis
3.1. FI Model Revision
3.2. The Nature of the Flicker Effect Is the Energy Ratio
4. Forward and Reverse Low-Mounting-Height Lighting
- The value has a greater impact on FI value;
- The 12° irradiation method can illuminate a wider road than the 90° irradiation method;
- The main method for reducing the FI value is to coordinate the relationship between and ;
- The average road surface brightness, overall uniformity, and longitudinal uniformity of the bridges in Wuhan were found to be higher than those in Shenzhen, indicating that the lighting effect in Wuhan was superior to that in Shenzhen;
- The FI value obtained from Equation (1) for the Shenzhen bridge test is significantly higher, at 35.6%, in comparison to Wuhan’s value of 2.86%. This discrepancy is mainly due to the excessive surface luminance of the lamps utilized in Shenzhen. The average luminance of the lamps surface in Shenzhen is 9495.74 cd/m2, while that of Wuhan is only 1.18 cd/m2. As compared to the surface luminance of existing low-installation-height lamps in Shenzhen, the surface luminance of Wuhan lamps only accounts for 0.012%, which results in a 99.988% reduction in stray light;
- Based on the definition of road flicker frequency in CIE 88-2004, the flicker frequency is 7.41 Hz for the Shenzhen bridge and is 3.47 Hz for the Wuhan bridge, both of which are in the range not recommended by CIE 88-2004;
- Another approach to reduce flicker is to decrease the spacing D between luminaires, but this may result in an increase in LPD. According to the guidelines of CIE136-2000 [67], LPD should not exceed 1 W/m2. Wuhan’s tested lamps saved 60% of the electricity compared to the CIE standard, while compared to conventional low-installation-height lamps in Shenzhen, they saved 81% of electricity.
- By comparing the Threshold Increment (TI) and Flicker Index (FI) values of the two bridges, it is evident that reducing the surface luminance of lamps significantly reduces both indices.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez Vega, C.; Zielinska-Dabkowska, K.M.; Schroer, S.; Jechow, A.; Hölker, F. A Systematic Review for Establishing Relevant Environmental Parameters for Urban Lighting: Translating Research into Practice. Sustainability 2022, 14, 1107. [Google Scholar] [CrossRef]
- Petritoli, E.; Leccese, F.; Pizzuti, S.; Pieroni, F. Smart lighting as basic building block of smart city: An energy performance comparative case study. Measurement 2019, 136, 466–477. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef]
- Malaguarnera, R.; Ledda, C.; Filippello, A.; Frasca, F.; Francavilla, V.C.; Ramaci, T.; Parisi, M.C.; Rapisarda, V.; Piro, S. Thyroid Cancer and Circadian Clock Disruption. Cancers 2020, 12, 3109. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.A.; Gagné, M.; Fraser, K.C. Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird. Environ. Pollut. 2021, 269, 116136. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.K.; Kumar, M.; Bose, B. Eco-physiological Responses of Artificial Night Light Pollution in Plants. Russ. J. Plant Physiol. 2019, 66, 190–202. [Google Scholar] [CrossRef]
- Bassi, A.; Love, O.P.; Cooke, S.J.; Warriner, T.R.; Harris, C.M.; Madliger, C.L. Effects of artificial light at night on fishes: A synthesis with future research priorities. Fish Fish. 2021, 23, 631–647. [Google Scholar] [CrossRef]
- Hölker, F.; Wurzbacher, C.; Weißenborn, C.; Monaghan, M.T.; Holzhauer, S.I.J.; Premke, K. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140130. [Google Scholar] [CrossRef]
- Ożadowicz, A.; Grela, J. Energy saving in the street lighting control system—A new approach based on the EN-15232 standard. Energy Effic. 2017, 10, 563–576. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Ruby, A.; Kuechly, H.U.; Kinzey, B.; Miller, N.; Sanders, J.; Barentine, J.; Kleinodt, R.; Espey, B. Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Light. Res. Technol. 2020, 53, 189–211. [Google Scholar] [CrossRef]
- Bara, S.; Rodriguez-Aros, A.; Perez, M.; Tosar, B.; Lima, R.; de Miguel, A.D.; Zamorano, J. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness. Light. Res. Technol. 2019, 51, 1092–1107. [Google Scholar] [CrossRef]
- Mehri, A.; Hajizadeh, R.; Farhang Dehghan, S.; Nassiri, P.; Jafari, S.M.; Taheri, F.; Zakerian, S.A. Safety Evaluation of the Lighting at the Entrance of a Very Long Road Tunnel: A Case Study in Ilam. Saf. Health Work 2017, 8, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Mehri, A.; Farhang Dehghan, S.; Abbasi, M.; Beheshti, M.H.; Sajedifar, J.; Jafari, S.M.; Khadem, M.; Hajizadeh, R. Assessment of contrast perception of obstacles in a tunnel entrance. Health Promot. Perspect. 2018, 8, 268–274. [Google Scholar] [CrossRef]
- Mehri, A.; Sajedifar, J.; Abbasi, M.; Naimabadi, A.; Mohammadi, A.A.; Teimori, G.H.; Zakerian, S.A. Safety evaluation of lighting at very long tunnels on the basis of visual adaptation. Saf. Sci. 2019, 116, 196–207. [Google Scholar] [CrossRef]
- Qin, L.; Dong, L.L.; Xu, W.H.; Zhang, L.D.; Leon, A.S. Influence of Vehicle Speed on the Characteristics of Driver’s Eye Movement at a Highway Tunnel Entrance during Day and Night Conditions: A Pilot Study. Int. J. Environ. Res. Public Health 2018, 15, 656. [Google Scholar] [CrossRef]
- Peña-García, A. Optical coupling of grouped tunnels to decrease the energy and materials consumption of their lighting installations. Tunn. Undergr. Space Technol. 2019, 91, 103007. [Google Scholar] [CrossRef]
- Grubisic, M.; Haim, A.; Bhusal, P.; Dominoni, D.M.; Gabriel, K.; Jechow, A.; Kupprat, F.; Lerner, A.; Marchant, P.; Riley, W. Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates. Sustainability 2019, 11, 6400. [Google Scholar] [CrossRef]
- Ansorge, U.; Francis, G.; Herzog, M.H.; Oğmen, H. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions. Adv. Cogn. Psychol. 2008, 3, 1–8. [Google Scholar] [CrossRef]
- Pena-Garcia, A.; Sedziwy, A. Optimizing Lighting of Rural Roads and Protected Areas with White Light: A Compromise among Light Pollution, Energy Savings, and Visibility. Leukos 2020, 16, 147–156. [Google Scholar] [CrossRef]
- Yoomak, S.; Jettanasen, C.; Ngaopitakkul, A.; Bunjongjit, S.; Leelajindakrairerk, M. Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system. Energy Build. 2018, 159, 542–557. [Google Scholar] [CrossRef]
- Chen, S.; Lin, Y.; Zhao, H. Effects of flicker with various brightness contrasts on visual fatigue in road lighting using fixed low-mounting-height luminaires. Tunn. Undergr. Space Technol. 2023, 136, 105091. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Yang, S.; Zhang, B.; Li, T.; Du, Y.; Yang, M.; Zhao, H. Evaluation method and reduction measures for the flicker effect in road lighting using fixed Low Mounting Height Luminaires. Tunn. Undergr. Space Technol. 2019, 93, 103101. [Google Scholar] [CrossRef]
- Peña-García, A. The impact of lighting on drivers well-being and safety in very long underground roads: New challenges for new infrastructures. Tunn. Undergr. Space Technol. 2018, 80, 38–43. [Google Scholar] [CrossRef]
- Commission International de l’Éclairage (CIE). Visual Aspects of Time-Modulated Lighting Systems-Definitions and Measurement Models; Commission International de l’Éclairage (CIE): Vienna, Austria, 2016. [Google Scholar]
- Barlow, H.B. Temporal and spatial summation in human vision at different background intensities. J. Physiol. 1958, 141, 337–350. [Google Scholar] [CrossRef]
- Akyürek, E.G.; de Jong, R. Distortions of temporal integration and perceived order caused by the interplay between stimulus contrast and duration. Conscious. Cogn. 2017, 54, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T. Visible persistence: Effects of luminance, spatial frequency and orientation. Vis. Res. 1983, 23, 1687–1692. [Google Scholar] [CrossRef]
- Wilson, J.T.L. Effects of stimulus luminance and duration on responses to onset and offset. Vis. Res. 1983, 23, 1699–1709. [Google Scholar] [CrossRef]
- Commission International de l’Éclairage (CIE). Guide for the Lighting of Road Tunnels and Underpasses; Commission International de l’Éclairage (CIE): Vienna, Austria, 2004. [Google Scholar]
- Dondi, G.; Vignali, V.; Lantieri, C.; Manganelli, G. Effects of Flickering Seizures on Road Drivers and Passengers. Procedia Soc. Behav. Sci. 2012, 53, 711–720. [Google Scholar] [CrossRef]
- De Lange Dzn, H. Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. J. Opt. Soc. Am. 1958, 48, 777–784. [Google Scholar] [CrossRef]
- Kelly, D.H. Theory of Flicker and Transient Responses, I. Uniform Fields*. J. Opt. Soc. Am. 1971, 61, 537–546. [Google Scholar] [CrossRef]
- Rovamo, J.; Raninen, A. Modelling of Human Flicker Detection at Various Light Levels. Perception 1996, 25 (Suppl. S1), 129. [Google Scholar] [CrossRef]
- Bodington, D.; Bierman, A.; Narendran, N. A flicker perception metric. Light. Res. Technol. 2015, 48, 624–641. [Google Scholar] [CrossRef]
- Veitch, J.A.; McColl, S.L. Modulation of fluorescent light: Flicker rate and light source effects on visual performance and visual comfort. Int. J. Light. Res. Technol. 1995, 27, 243–256. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; Du, H.; Rong, J. A Study on the Effects of Fatigue Driving and Drunk Driving on Drivers’ Physical Characteristics. Traffic Inj. Prev. 2014, 15, 801–808. [Google Scholar] [CrossRef]
- Qi, J. Study on Driving Fatigue Based on Ergonomics. Adv. Mater. Res. 2013, 706–708, 2119–2123. [Google Scholar] [CrossRef]
- Sturgis, S.P.; Osgood, D.J. Effects of Glare and Background Luminance on Visual Acuity and Contrast Sensitivity: Implications for Driver Night Vision Testing. Hum. Factors 1982, 24, 347–360. [Google Scholar] [CrossRef]
- Kwong, Q.J. Light level, visual comfort and lighting energy savings potential in a green-certified high-rise building. J. Build. Eng. 2020, 29, 101198. [Google Scholar] [CrossRef]
- Sullivan, J.M. Visual Fatigue and the Driver; University of Michigan Transportation Research Institute: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Evans, R.W.; Digre, K.B. Light sensitivity in migraineurs. Headache 2003, 43, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Jeavons, P.M.; Harding, G.F.A. Photosensitive Epilepsy: A Review of the Literature and a Study of 460 Patients; Heinemann: London, UK, 1975. [Google Scholar]
- Wilkins, A.J. Visual Stress; Oxford University Press Inc.: New York, NY, USA, 1995. [Google Scholar]
- Yoshimoto, S.; Garcia, J.; Jiang, F.; Wilkins, A.J.; Takeuchi, T.; Webster, M.A. Visual discomfort and flicker. Vis. Res. 2017, 138, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Harding, G.; Erba, G.; Barkley, G.L.; Wilkins, A. Photic- and pattern-induced seizures: A review for the Epilepsy Foundation of America Working Group. Epilepsia 2005, 46, 1426–1441. [Google Scholar] [CrossRef]
- Marcus, D.A.; Soso, M.J. Migraine and stripe-induced visual discomfort. Arch. Neurol. 1989, 46, 1129–1132. [Google Scholar] [CrossRef]
- Chatrian, G.E.; Lettich, E.; Miller, L.H.; Green, J.R. Pattern-Sensitive Epilepsy. Epilepsia 1970, 11, 125–149. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.; Wilkins, A.J. Uncomfortable images in art and nature. Perception 2008, 37, 1098–1113. [Google Scholar] [CrossRef] [PubMed]
- Juricevic, I.; Land, L.; Wilkins, A.; Webster, M. Visual discomfort and natural image statistics. Perception 2010, 39, 884–899. [Google Scholar] [CrossRef]
- O’Hare, L.; Hibbard, P.B. Spatial frequency and visual discomfort. Vis. Res. 2011, 51, 1767–1777. [Google Scholar] [CrossRef]
- O’Hare, L.; Hibbard, P.B. Visual discomfort and blur. J. Vis. 2013, 13, 7. [Google Scholar] [CrossRef]
- Harding, G.; Wilkins, A.J.; Erba, G.; Barkley, G.L.; Fisher, R.S. Photic- and Pattern-induced Seizures: Expert Consensus of the Epilepsy Foundation of America Working Group. Epilepsia 2005, 46, 1423–1425. [Google Scholar] [CrossRef] [PubMed]
- Jean-Paul, R.A.M.I. A driving simulator for road lighting using fixed low mounting height luminaires. In Proceedings of the Session of the CIE, Beijing, China, 4–11 July 2007. [Google Scholar]
- Bommel, W.V. Road Lighting: Fundamentals, Technology and Application, 1st ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Block, J.; Bullough, J.; Figueiro, M. IESNA Lighting Handbook, 9th ed.; The Illuminating Engineering Society of North America: New York, NY, USA, 2000. [Google Scholar]
- Coaton, J.R.; Marsden, A.M. Lamps and Lighting; Arnold: Loudon, UK, 1997. [Google Scholar]
- Eastman, A.A.; Campbell, J.H. Stroboscopic and Flicker Effects from Fluorescent Lamps. Illum. Eng. 1952, 47, 27–35. [Google Scholar]
- Wei, N.I. The Latest International Standardization Progress on Flicker and Stroboscopic Effect. China Light Light. 2018, 8, 21–28. [Google Scholar]
- Fei, R.W.; Lloyd, J.D.; Crapo, A.D.; Dixon, S. Light flicker test in the United States. IEEE Trans. Ind. Appl. 2000, 36, 438–443. [Google Scholar] [CrossRef]
- Enns, J.T.; Di Lollo, V. What’s new in visual masking? Trends Cogn. Sci. 2000, 4, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Schnapf, J.L.; Nunn, B.J.; Meister, M.; Baylor, D.A. Visual transduction in cones of the monkey Macaca fascicularis. J. Physiol. 1990, 427, 681–713. [Google Scholar] [CrossRef]
- Bin, C.; Chuang, G.; Jian-Zhong, W. Review on Visual Masking. Adv. Psychol. Sci. 2009, 17, 1146–1155. [Google Scholar]
- Breitmeyer, B.; Öğmen, H. Visual Masking: Time Slices Through Conscious and Unconscious Vision. In Visual Masking: Time Slices Through Conscious and Unconscious Vision; Oxford University Press: Oxford, UK, 2010; Volume 41, pp. 1–384. [Google Scholar] [CrossRef]
- Yamauchi, H.; Okada, S.; Taketa, K.; Matsuda, Y.; Mori, T.; Watanabe, T.; Matsuo, Y.; Matsushita, Y. 1440/spl times/1080 pixel, 30 frames per second motion-JPEG 2000 codec for HD-movie transmission. IEEE J. Solid-State Circuits 2005, 40, 331–341. [Google Scholar] [CrossRef]
- Haitian, Z. Road Lighting: Muptidimensional Theory and Technology; Science Press: Beijing, China, 2020. [Google Scholar]
- Zhao, H. Multi-Dimensional Street Lighting System. Patent PCT/CN2013/083351, 11 September 2013. [Google Scholar]
- Commission International de l’Éclairage (CIE). Technigal Report: Guide to the Lighting of Urban Areas; Commission International de l’Éclairage (CIE): Vienna, Austria, 2000. [Google Scholar]
- Commission International de l’Éclairage (CIE). CIE 249: 2022 Visual Aspects of Time-Modulated Lighting Systems; Commission International de l’Éclairage (CIE): Vienna, Austria, 2022. [Google Scholar] [CrossRef]
- Kelly, D.H. Visual response to time-dependent stimuli. I. Amplitude sensitivity measurements. J. Opt. Soc. Am. 1961, 51, 422–429. [Google Scholar] [CrossRef]
- Commission International de l’Éclairage (CIE). Guide on the Limitation of the Effects of Obtrusive Light from Outdoor Lighting Installations, 2nd ed.; Commission International de l’Éclairage (CIE): Vienna, Austria, 2017. [Google Scholar]
Location | W | m | m | deg | cd/m2 | cd/m2 | m | km/h | W/m2 | cd/m2 | Hz | % | % | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SZ | 24 | 15 | 1.5 | 90 | 9495.74 | 34.66 | 1.0 | 40 | 2.13 | 273.97 | 1.03 | 3.12 | 0.59 | 0.42 | 7.41 | 5.4 | 35.6 |
WH | 12 | 20 | 3.2 | 12 | 1.18 | 1.02 | 0.2 | 40 | 0.4 | 1.16 | 4.83 | 4.17 | 0.68 | 0.95 | 3.47 | 0.8 | 2.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhang, B.; Zeng, X.; Lin, Y.; Zhao, H. Methods to Reduce Flicker and Light Pollution of Low-Mounting-Height Luminaires in Urban Road Lighting. Sustainability 2023, 15, 8185. https://doi.org/10.3390/su15108185
Chen S, Zhang B, Zeng X, Lin Y, Zhao H. Methods to Reduce Flicker and Light Pollution of Low-Mounting-Height Luminaires in Urban Road Lighting. Sustainability. 2023; 15(10):8185. https://doi.org/10.3390/su15108185
Chicago/Turabian StyleChen, Shenfei, Bing Zhang, Xianxian Zeng, Yi Lin, and Haitian Zhao. 2023. "Methods to Reduce Flicker and Light Pollution of Low-Mounting-Height Luminaires in Urban Road Lighting" Sustainability 15, no. 10: 8185. https://doi.org/10.3390/su15108185
APA StyleChen, S., Zhang, B., Zeng, X., Lin, Y., & Zhao, H. (2023). Methods to Reduce Flicker and Light Pollution of Low-Mounting-Height Luminaires in Urban Road Lighting. Sustainability, 15(10), 8185. https://doi.org/10.3390/su15108185