Unveiling the Spatial Effects of Climate Change on Economic Growth: International Evidence
Abstract
:1. Introduction
2. Related Literature
3. Methodology
3.1. The Dynamic Spatial Panel Data Model
3.2. The Spatial Weight Matrix
3.3. The Spatial Autocorrelation Test
4. Data
5. Empirical Findings
5.1. Preliminary Analysis
5.2. Results of the Dynamic Spatial Autoregressive Model
5.3. Analysis of Direct and Indirect Marginal Effects
5.3.1. The Full Sample
5.3.2. Hottest Countries vs. Coldest Countries
5.3.3. Low–Middle-Income Countries vs. High-Income Countries
6. Concluding Remarks and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
# | Country | Climate Regime | Income Level | # | Country | Climate Regime | Income Level |
---|---|---|---|---|---|---|---|
1 | Albania | Coldest | LMI | 44 | Jordan | Coldest | LMI |
2 | Algeria | Hottest | LMI | 45 | Kenya | Hottest | LMI |
3 | Argentina | Coldest | LMI | 46 | Korea | Coldest | HI |
4 | Australia | Hottest | HI | 47 | Kuwait | Hottest | HI |
5 | Austria | Coldest | HI | 48 | Madagascar | Hottest | LMI |
6 | Bahrain | Hottest | HI | 49 | Malaysia | Hottest | LMI |
7 | Bangladesh | Hottest | LMI | 50 | Mali | Hottest | LMI |
8 | Belgium | Coldest | HI | 51 | Malta | Coldest | HI |
9 | Benin | Hottest | LMI | 52 | Mexico | Coldest | LMI |
10 | Bolivia | Coldest | LMI | 53 | Morocco | Coldest | LMI |
11 | Botswana | Hottest | LMI | 54 | Myanmar | Hottest | LMI |
12 | Brazil | Hottest | LMI | 55 | Namibia | Coldest | LMI |
13 | Bulgaria | Coldest | LMI | 56 | Netherlands | Coldest | HI |
14 | Burkina Faso | Hottest | LMI | 57 | New Zealand | Coldest | HI |
15 | Cameroon | Hottest | LMI | 58 | Nicaragua | Hottest | LMI |
16 | Canada | Coldest | HI | 59 | Niger | Hottest | LMI |
17 | Central African Republic | Hottest | LMI | 60 | Nigeria | Hottest | LMI |
18 | Chile | Coldest | HI | 61 | Norway | Coldest | HI |
19 | China | Coldest | LMI | 62 | Pakistan | Coldest | LMI |
20 | Colombia | Hottest | LMI | 63 | Panama | Hottest | HI |
21 | Congo | Hottest | LMI | 64 | Paraguay | Hottest | LMI |
22 | Côte d’Ivoire | Hottest | LMI | 65 | Peru | Coldest | LMI |
23 | Cyprus | Coldest | HI | 66 | Philippines | Hottest | LMI |
24 | Denmark | Coldest | HI | 67 | Portugal | Coldest | HI |
25 | Dominican Republic | Hottest | LMI | 68 | Saudi Arabia | Hottest | HI |
26 | Ecuador | Coldest | LMI | 69 | Senegal | Hottest | LMI |
27 | Egypt | Coldest | LMI | 70 | Sierra Leone | Hottest | LMI |
28 | El Salvador | Hottest | LMI | 71 | Singapore | Hottest | HI |
29 | Fiji | Hottest | LMI | 72 | South Africa | Coldest | LMI |
30 | Finland | Coldest | HI | 73 | Spain | Coldest | HI |
31 | France | Coldest | HI | 74 | Sri Lanka | Hottest | LMI |
32 | Gabon | Hottest | LMI | 75 | Sweden | Coldest | HI |
33 | Gambia | Hottest | LMI | 76 | Switzerland | Coldest | HI |
34 | Germany | Coldest | HI | 77 | Syrian Arab Republic | Coldest | LMI |
35 | Greece | Coldest | HI | 78 | Thailand | Hottest | LMI |
36 | Honduras | Hottest | LMI | 79 | Togo | Hottest | LMI |
37 | India | Hottest | LMI | 80 | Tunisia | Coldest | LMI |
38 | Indonesia | Hottest | LMI | 81 | Turkey | Coldest | LMI |
39 | Iraq | Hottest | LMI | 82 | Uganda | Hottest | LMI |
40 | Ireland | Coldest | HI | 83 | United Kingdom | Coldest | HI |
41 | Italy | Coldest | HI | 84 | United States | Coldest | HI |
42 | Jamaica | Hottest | LMI | 85 | Uruguay | Coldest | HI |
43 | Japan | Coldest | HI | 86 | Zimbabwe | Coldest | LMI |
References
- World Meteorological Organization. WMO Provisional State of the Global Climate 2022; WMO: Geneva, Switzerland, 2022.
- National Oceanic and Atmospheric Administration. July 2022 Global Climate Report. 2022. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202207 (accessed on 3 January 2023).
- Moosmann, L.; Siemons, A.; Fallasch, F.; Schneider, L.; Urrutia, C.; Wissner, N.; Oppelt, D. The COP26 Climate Change Conference: Status of Climate Negotiations and Issues at Stake; Policy Department for Economic, Scientific and Quality of Life Policies, European Parliament: Bruxelles, Belgium, 2021.
- Masood, E.; Tollefson, J.; Irwin, A. COP27 climate talks: What succeeded, what failed and what’s next. Nature 2022, 612, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Crowley, T.J. Causes of Climate Change Over the Past 1000 Years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Stern, D.I.; Kaufmann, R.K. Anthropogenic and natural causes of climate change. Clim. Chang. 2014, 122, 257–269. [Google Scholar] [CrossRef]
- Manabe, S. Role of greenhouse gas in climate change. Tellus A Dyn. Meteorol. Oceanogr. 2019, 71, 1620078. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Broennimann, S.; Cowan, T.; Friedman, A.R.; Hawkins, E.; Iles, C.E.; Mueller, W.; Schurer, A.; Undorf, S. Causes of climate change over the historical record. Environ. Res. Lett. 2019, 14, 123006. [Google Scholar] [CrossRef]
- Ju, H.; van der Velde, M.; Lin, E.; Xiong, W.; Li, Y. The impacts of climate change on agricultural production systems in China. Clim. Change 2013, 120, 313–324. [Google Scholar] [CrossRef]
- Crost, B.; Duquennois, C.; Felter, J.H.; Rees, D.I. Climate change, agricultural production and civil conflict: Evidence from the Philippines. J. Environ. Econ. Manag. 2018, 88, 379–395. [Google Scholar] [CrossRef]
- Chandio, A.A.; Shah, M.I.; Sethi, N.; Mushtaq, Z. Assessing the effect of climate change and financial development on agricultural production in ASEAN-4: The role of renewable energy, institutional quality, and human capital as moderators. Environ. Sci. Pollut. Res. 2022, 29, 13211–13225. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, B.; Wang, C. Climate change and urban total factor productivity: Evidence from capital cities and municipalities in China. Empir. Econ. 2022, 1–41. [Google Scholar] [CrossRef]
- Sangeetha, S.; Usha, S. Impact of Climate Change on the Labor Market. ECS Trans. 2022, 107, 11287. [Google Scholar]
- Godinho, C. What do we know about the employment impacts of climate policies? A review of the ex post literature. WIREs Clim. Chang. 2022, 13, e794. [Google Scholar] [CrossRef]
- Jbir, R. Temperature, energy consumption, and Co2 emission: Testing for nonlinearity on USA Economy. Environ. Dev. Sustain. 2021, 23, 12434–12445. [Google Scholar] [CrossRef]
- Campagna, L.M.; Fiorito, F. On the Impact of Climate Change on Building Energy Consumptions: A Meta-Analysis. Energies 2022, 15, 354. [Google Scholar] [CrossRef]
- Lam, C.K.C.; He, Q.; Cheng, K.-L.; Fan, P.Y.; Chun, K.P.; Choi, B.; Mah, D.N.-Y.; Cheung, D.M.-W.; Lo, K.; Yetemen, O. Impact of climate change and socioeconomic factors on domestic energy consumption: The case of Hong Kong and Singapore. Energy Rep. 2022, 8, 12886–12904. [Google Scholar] [CrossRef]
- Monasterolo, I. Climate Change and the Financial System. Annu. Rev. Resour. Econ. 2020, 12, 299–320. [Google Scholar] [CrossRef]
- Capasso, G.; Gianfrate, G.; Spinelli, M. Climate change and credit risk. J. Clean. Prod. 2020, 266, 121634. [Google Scholar] [CrossRef]
- Battiston, S.; Dafermos, Y.; Monasterolo, I. Climate risks and financial stability. J. Financ. Stab. 2021, 54, 100867. [Google Scholar] [CrossRef]
- Alagidede, P.; Adu, G.; Frimpong, P.B. The effect of climate change on economic growth: Evidence from Sub-Saharan Africa. Environ. Econ. Policy Stud. 2016, 18, 417–436. [Google Scholar] [CrossRef]
- Sequeira, T.N.; Santos, M.S.; Magalhães, M. Climate change and economic growth: A heterogeneous panel data approach. Environ. Sci. Pollut. Res. 2018, 25, 22725–22735. [Google Scholar] [CrossRef]
- Kahn, M.E.; Mohaddes, K.; Ng, R.N.; Pesaran, M.H.; Raissi, M.; Yang, J.-C. Long-term macroeconomic effects of climate change: A cross-country analysis. Energy Econ. 2021, 104, 105624. [Google Scholar] [CrossRef]
- Iyigun, M.; Nunn, N.; Qian, N. Winter Is Coming: The Long-Run Effects of Climate Change on Conflict, 1400–1900; Working Paper No. w23033, National Bureau of Economic Research: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Helbling, M.; Meierrieks, D. How climate change leads to emigration: Conditional and long-run effects. Rev. Dev. Econ. 2021, 25, 2323–2349. [Google Scholar] [CrossRef]
- Koubi, V.; Bernauer, T.; Kalbhenn, A.; Spilker, G. Climate variability, economic growth, and civil conflict. J. Peace Res. 2012, 49, 113–127. [Google Scholar] [CrossRef]
- Acevedo, S.; Mrkaic, M.; Novta, N.; Pugacheva, E.; Topalova, P. The effects of weather shocks on economic activity: What are the channels of impact? J. Macroecon. 2020, 65, 103207. [Google Scholar] [CrossRef]
- Abeygunawardena, P.; Vyas, Y.; Knill, P.; Foy, T.; Harrold, M.; Steele, P.; Tanner, T.; Hirsch, D.; Oosterman, M.; Rooimans, J.; et al. Poverty and Climate Change—Reducing the Vulnerability of the Poor through Adaptation; World Bank Press: Washington, DC, USA, 2003. [Google Scholar]
- Benzie, M.; Hedlund, J.; Carlsen, H. Introducing the Transnational Climate Impacts Index: Indicators of Country-Level Exposure-Methodology Report; Working Paper No. 2016-07, Stockholm Environment Institute: Stockholm, Sweden, 2016. [Google Scholar]
- Hallegatte, S.; Mach, K.J. Make climate-change assessments more relevant. Nature 2016, 534, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, K.; Gaspar, V.; Pazarbasioglu, C. Poor and Vulnerable Countries Need Support to Adapt to Climate Change. 2022. Available online: https://www.imf.org/en/Blogs/Articles/2022/03/23/blog032322-poor-and-vulnerable-countris-need-support-to-adapt-to-climate-change (accessed on 19 December 2022).
- Montesquieu, C.S. The Spirit of Laws; The Lawbook Exchange, Ltd.: Clark, NJ, USA, 1750. [Google Scholar]
- Batten, S.; Sowerbutts, R.; Tanaka, M. Climate change: Macroeconomic impact and implications for monetary policy. In Ecological, Societal, and Technological Risks and the Financial Sector; Walker, T., Gramlich, D., Bitar, M., Fardnia, P., Eds.; Palgrave Macmillan: New York, NY, USA, 2020; pp. 13–38. [Google Scholar]
- Adams, R.M.; Rosenzweig, C.; Peart, R.M.; Ritchie, J.T.; McCarl, B.A.; Glyer, J.D.; Curry, R.B.; Jones, J.W.; Boote, K.J.; Allen, L.H. Global climate change and US agriculture. Nature 1990, 345, 219–224. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Dinar, A.; Sanghi, A. The effect of development on the climate sensitivity of agriculture. Environ. Dev. Econ. 2001, 6, 85–101. [Google Scholar] [CrossRef]
- Deschênes, O.; Greenstone, M. The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. Am. Econ. Rev. 2007, 97, 354–385. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Dell, M.L.; Jones, B.F.; Olken, B.A. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef]
- Rosselló-Nadal, J. How to evaluate the effects of climate change on tourism. Tour. Manag. 2014, 42, 334–340. [Google Scholar] [CrossRef]
- Semenza, J.C.; Ebi, K.L. Climate change impact on migration, travel, travel destinations and the tourism industry. J. Travel Med. 2019, 26, taz026. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, H.; Tang, S. Assessing the impacts of climate change to financial stability: Evidence from China. Int. J. Clim. Change Strat. Manag. 2021, 13, 375–393. [Google Scholar] [CrossRef]
- Caby, J.; Ziane, Y.; Lamarque, E. The impact of climate change management on banks profitability. J. Bus. Res. 2022, 142, 412–422. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C.; Nychka, D. Changes in frost days in simulations of twentyfirst century climate. Clim. Dyn. 2004, 23, 495–511. [Google Scholar] [CrossRef]
- Lal, R. Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef]
- Barbieri, M.; Barberio, M.D.; Banzato, F.; Billi, A.; Boschetti, T.; Franchini, S.; Gori, F.; Petitta, M. Climate change and its effect on groundwater quality. Environ. Geochem. Health 2021, 45, 1133–1144. [Google Scholar] [CrossRef]
- Colacito, R.; Hoffmann, B.; Phan, T. Temperature and Growth: A Panel Analysis of the United States. J. Money Crédit. Bank. 2019, 51, 313–368. [Google Scholar] [CrossRef]
- Letta, M.; Tol, R.S.J. Weather, Climate and Total Factor Productivity. Environ. Resour. Econ. 2019, 73, 283–305. [Google Scholar] [CrossRef]
- Henseler, M.; Schumacher, I. The impact of weather on economic growth and its production factors. Clim. Chang. 2019, 154, 417–433. [Google Scholar] [CrossRef]
- Kim, H.S.; Matthes, C.; Phan, T. Severe Weather and the Macroeconomy; Working Paper Series No. 21-14R, Federal Reserve Bank of Richmond: Richmond, VA, USA, 2022. [Google Scholar]
- Kim, H.S.; Chaverri, C.; Corugedo, E.F.; Juarros, P. On the Macro Impact of Extreme Climate Events in Central America: A Higher Frequency Investigation; IMF Working Paper No. WP/22/237, International Monetary Fund: Washington, DC, USA, 2022. [Google Scholar]
- Zhao, X.; Gerety, M.; Kuminoff, N.V. Revisiting the temperature-economic growth relationship using global subnational data. J. Environ. Manag. 2018, 223, 537–544. [Google Scholar] [CrossRef]
- Hernandez, K.; Madeira, C. The impact of climate change on economic output across industries in Chile. PLoS ONE 2022, 17, e0266811. [Google Scholar] [CrossRef]
- Deryugina, T.; Hsiang, S. Does the Environment Still Matter? Daily Temperature and Income in the United States; NBER Working Paper No. 20750, National Bureau of Economic Research: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Donadelli, M.; Jüppner, M.; Vergalli, S. Temperature Variability and the Macroeconomy: A World Tour. Environ. Resour. Econ. 2022, 83, 221–259. [Google Scholar] [CrossRef]
- Kose, M.A.; Prasad, E.S.; Terrones, M.E. Does openness to international financial flows raise productivity growth? J. Int. Money Financ. 2009, 28, 554–580. [Google Scholar] [CrossRef]
- Barguellil, A.; Ben-Salha, O.; Zmami, M. Exchange Rate Volatility and Economic Growth. J. Econ. Integr. 2018, 33, 1302–1336. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econ. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 2003, 115, 53–74. [Google Scholar] [CrossRef]
Years | Contiguity Weight Matrix () | Inverse Distance Weight Matrix () | ||
---|---|---|---|---|
Moran’s I | p-Value | Moran’s I | p-Value | |
1980 | 0.036 *** | 0.000 | 0.025 *** | 0.000 |
1981 | 0.052 *** | 0.000 | 0.041 *** | 0.000 |
1982 | 0.035 | 0.172 | 0.063 *** | 0.003 |
1983 | 0.121 *** | 0.004 | 0.046 ** | 0.019 |
1984 | 0.085 ** | 0.024 | 0.033 ** | 0.049 |
1985 | 0.091 ** | 0.019 | 0.040 ** | 0.028 |
1986 | 0.010 | 0.330 | 0.004 | 0.277 |
1987 | 0.189 *** | 0.000 | 0.064 *** | 0.003 |
1988 | 0.046 | 0.123 | 0.043 ** | 0.024 |
1989 | 0.169 *** | 0.000 | 0.114 *** | 0.000 |
1990 | −0.040 | 0.250 | −0.040 | 0.114 |
1991 | 0.086 ** | 0.038 | −0.052 ** | 0.044 |
1992 | 0.328 *** | 0.000 | 0.167 *** | 0.000 |
1993 | 0.238 *** | 0.000 | 0.115 *** | 0.000 |
1994 | 0.085 ** | 0.027 | 0.037 ** | 0.038 |
1995 | 0.014 | 0.305 | 0.043 ** | 0.023 |
1996 | 0.024 | 0.238 | 0.004 | 0.281 |
1997 | −0.073 | 0.105 | −0.014 | 0.472 |
1998 | 0.118 *** | 0.002 | 0.059 *** | 0.003 |
1999 | 0.103 ** | 0.010 | 0.039 ** | 0.032 |
2000 | 0.289 *** | 0.000 | 0.112 *** | 0.000 |
2001 | 0.053 * | 0.096 | 0.031 * | 0.059 |
2002 | 0.042 | 0.137 | 0.017 | 0.142 |
2003 | −0.062 | 0.117 | −0.040 | 0.113 |
2004 | 0.081 *** | 0.005 | 0.034 ** | 0.012 |
2005 | 0.145 *** | 0.001 | 0.078 *** | 0.001 |
2006 | 0.147 *** | 0.001 | 0.076 *** | 0.001 |
2007 | 0.112 *** | 0.006 | 0.063 *** | 0.003 |
2008 | 0.026 | 0.216 | 0.013 | 0.172 |
2009 | 0.153 *** | 0.000 | 0.061 *** | 0.004 |
2010 | 0.115 *** | 0.005 | 0.084 *** | 0.000 |
2011 | 0.164 *** | 0.000 | 0.078 *** | 0.001 |
2012 | 0.088 ** | 0.014 | 0.063 *** | 0.001 |
2013 | 0.071 ** | 0.028 | 0.063 *** | 0.001 |
2014 | 0.171 *** | 0.000 | 0.094 *** | 0.000 |
2015 | 0.015 | 0.275 | 0.002 | 0.285 |
2016 | 0.049 | 0.104 | 0.024 * | 0.093 |
2017 | 0.181 *** | 0.000 | 0.084 *** | 0.000 |
2018 | 0.107 *** | 0.008 | 0.048 ** | 0.014 |
2019 | 0.083 ** | 0.027 | 0.038 ** | 0.034 |
IPS Unit Root Test | LLC Unit Root Test | |||
---|---|---|---|---|
Constant | Constant and Trend | Constant | Constant and Trend | |
−18.52 *** | −16.56 *** | −4.65 *** | −4.92 *** | |
−3.09 *** | −2.79 *** | −2.34 *** | −5.05 *** | |
−3.09 *** | −7.79 *** | −4.19 *** | −5.60 *** | |
−5.81 *** | −4.72 *** | −2.51 *** | −4.50 *** | |
−5.75 *** | −7.97 *** | −2.73 *** | −4.06 *** | |
−14.56 *** | −18.86 *** | −8.90 *** | −7.66 *** | |
−6.42 *** | −6.75 *** | −6.20 *** | −9.48 *** | |
−40.99 *** | −40.95 *** | −52.38 *** | −44.54 *** |
LMerr Test (Spatial Error) | LMlag Test (Spatial Lag) | Hausman Test | |
---|---|---|---|
Full sample | |||
7.41 (0.380) | 25.15 *** (0.000) | 26.55 *** (0.000) | |
10.25 (0.110) | 34.91 *** (0.000) | 32.64 *** (0.000) | |
Hottest countries | |||
7.94 (0.390) | 37.55 *** (0.000) | 38.74 *** (0.000) | |
8.59 (0.280) | 24.08 *** (0.000) | 48.65 *** (0.000) | |
Coldest countries | |||
12.42 * (0.080) | 9.87 ** (0.040) | 34.25 *** (0.000) | |
9.66 (0.200) | 25.11 *** (0.000) | 34.24 *** (0.000) | |
Low–middle-income countries | |||
5.88 (0.610) | 42.15 *** (0.000) | 27.25 *** (0.000) | |
11.50 (0.100) | 19.44 *** (0.000) | 36.12 *** (0.000) | |
High-income countries | |||
0.01 (0.940) | 27.02 *** (0.000) | 28.04 *** (0.000) | |
11.15 * (0.090) | 9.92 ** (0.030) | 48.75 *** (0.000) |
Variables | Full Sample | Hottest Countries | Coldest Countries | LMI Countries | HI Countries |
---|---|---|---|---|---|
Contiguity weight matrix () | |||||
0.097 *** (0.000) | −0.011 (0.647) | −0.012 (0.621) | 0.041 * (0.063) | 0.267 *** (0.000) | |
0.023 ** (0.011) | 0.071 *** (0.000) | 0.003 (0.887) | −0.007 (0.547) | −0.007 (0.736) | |
−0.083 (0.284) | −0.761 ** (0.038) | −0.074 (0.407) | −0.152 *** (0.000) | 0.047 (0.728) | |
−3.746 *** (0.000) | −3.702 *** (0.000) | −6.093 *** (0.000) | −2.631 *** (0.000) | −5.512 *** (0.000) | |
−0.081 *** (0.002) | −0.029 (0.400) | 0.010 (0.775) | −0.096 (0.307) | 0.078 ** (0.023) | |
2.459 *** (0.000) | 3.378 *** (0.000) | 2.972 *** (0.000) | 2.750 *** (0.000) | 1.984 *** (0.007) | |
0.026 *** (0.000) | 0.021 *** (0.005) | 0.040 *** (0.000) | 0.022 *** (0.000) | 0.035 *** (0.000) | |
−0.003 (0.470) | 0.050 (0.211) | −0.007 (0.223) | 0.096 ** (0.010) | −0.002 (0.534) | |
0.021 (0.780) | 0.188 * (0.070) | 0.195 ** (0.037) | 0.124 (0.443) | 0.120 * (0.077) | |
Inverse distance weight matrix () | |||||
0.089 *** (0.000) | −0.020 (0.425) | −0.016 (0.499) | 0.032 (0.141) | 0.268 *** (0.000) | |
0.126 ** (0.053) | 0.372 *** (0.000) | 0.091 (0.266) | 0.043 (0.601) | −0.108 * (0.077) | |
−0.081 (0.292) | −0.725 ** (0.048) | −0.077 (0.386) | −0.144 *** (0.000) | 0.048 (0.716) | |
−3.513 *** (0.000) | −3.508 *** (0.000) | −6.090 *** (0.000) | −2.548 *** (0.000) | −4.876 *** (0.000) | |
−0.067 * (0.092) | −0.019 (0.567) | 0.017 (0.644) | −0.101 (0.279) | 0.088 *** (0.008) | |
2.100 *** (0.000) | 2.472 *** (0.001) | 3.185 *** (0.000) | 2.190 *** (0.001) | 2.044 *** (0.004) | |
0.024 *** (0.000) | 0.018 ** (0.015) | 0.039 *** (0.000) | 0.019 *** (0.008) | 0.035 *** (0.000) | |
−0.004 (0.373) | 0.038 (0.345) | −0.007 (0.208) | 0.083 ** (0.028) | −0.001 (0.598) | |
0.012 (0.868) | 0.173 * (0.094) | 0.203 ** (0.029) | 0.158 (0.330) | 0.126 * (0.054) | |
0.036 *** | 0.131 ** | 0.023 | 0.046 *** | 0.118 *** | |
0.452 *** | 0.123 * | 0.247 *** | 0.322 *** | 0.530 *** | |
Number of countries | 86 | 43 | 43 | 55 | 31 |
Short-Run Effects | Long-Run Effects | |||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
Contiguity weight matrix () | ||||||
−0.076 (0.315) | −0.007 (0.338) | −0.084 (0.316) | −0.086 (0.315) | −0.015 (0.327) | −0.101 (0.316) | |
−3.717 *** (0.000) | −0.345 *** (0.000) | −4.062 *** (0.000) | −4.153 *** (0.000) | −0.765 *** (0.000) | −4.918 *** (0.000) | |
−0.082 *** (0.001) | −0.007 *** (0.008) | −0.089 *** (0.001) | −0.091 *** (0.001) | −0.016 *** (0.003) | −0.108 *** (0.001) | |
2.439 *** (0.000) | 0.226 *** (0.000) | 2.665 *** (0.000) | 2.726 *** (0.000) | 0.501 *** (0.000) | 3.227 *** (0.000) | |
0.026 *** (0.000) | 0.002 *** (0.001) | 0.029 *** (0.000) | 0.029 *** (0.000) | 0.005 *** (0.000) | 0.035 *** (0.000) | |
−0.003 (0.483) | −0.0003 (0.491) | −0.004 (0.482) | −0.004 (0.483) | −0.0007 (0.485) | −0.005 (0.482) | |
0.018 (0.802) | 0.001 (0.800) | 0.019 (0.802) | 0.003 (0.800) | 0.003 (0.800) | 0.024 (0.801) | |
Inverse distance weight matrix () | ||||||
−0.075 (0.324) | −0.062 (0.343) | −0.137 (0.328) | −0.083 (0.324) | −0.148 (0.353) | −0.232 (0.337) | |
−3.506 *** (0.000) | −2.904 *** (0.000) | −6.411 *** (0.000) | −3.910 *** (0.000) | −6.880 *** (0.000) | −10.791 *** (0.000) | |
−0.068 *** (0.006) | −0.056 ** (0.016) | −0.125 *** (0.007) | −0.076 *** (0.006) | −0.134 ** (0.024) | −0.211 ** (0.012) | |
2.095 *** (0.000) | 1.731 *** (0.000) | 3.827 *** (0.000) | 2.336 *** (0.000) | 4.098 *** (0.001) | 6.435 *** (0.000) | |
0.024 *** (0.000) | 0.020 *** (0.001) | 0.044 *** (0.000) | 0.027 *** (0.000) | 0.047 *** (0.002) | 0.075 *** (0.000) | |
−0.004 (0.388) | −0.003 (0.398) | −0.008 (0.389) | −0.005 (0.388) | −0.009 (0.406) | −0.014 (0.394) | |
0.009 (0.896) | 0.008 (0.892) | 0.017 (0.894) | 0.010 (0.896) | 0.019 (0.892) | 0.030 (0.893) |
Short-Run Effects | Long-Run Effects | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | Direct | Indirect | Total | Direct | Indirect | Total | |
Hottest countries | ||||||||||||
−0.729 ** (0.042) | −0.008 (0.668) | −0.737 ** (0.043) | −0.694 * (0.053) | −0.102 (0.238) | −0.796 * (0.056) | −0.729 ** (0.042) | −0.115 * (0.067) | −0.844 ** (0.043) | −0.695 * (0.053) | −0.651 * (0.094) | −1.347 * (0.063) | |
−3.636 *** (0.000) | −0.042 (0.626) | −3.679 *** (0.000) | −3.448 *** (0.000) | −0.516 (0.119) | −3.965 *** (0.000) | −3.635 *** (0.000) | −0.575 *** (0.001) | −4.211 *** (0.000) | −3.454 *** (0.000) | −3.262 *** (0.003) | −6.717 *** (0.000) | |
−0.029 (0.371) | −0.0003 (0.770) | −0.030 (0.371) | −0.020 (0.538) | −0.002 (0.624) | −0.023 (0.540) | −0.029 (0.371) | −0.004 (0.389) | −0.034 (0.371) | −0.020 (0.538) | −0.019 (0.561) | −0.039 (0.544) | |
3.336 *** (0.000) | 0.037 (0.633) | 3.373 *** (0.000) | 2.438 *** (0.001) | 0.355 (0.126) | 2.794 *** (0.001) | 3.334 *** (0.000) | 0.526 *** (0.001) | 3.860 *** (0.000) | 2.442 *** (0.001) | 2.279 *** (0.008) | 4.721 *** (0.001) | |
0.021 *** (0.004) | 0.0002 (0.646) | 0.021 *** (0.004) | 0.019 ** (0.012) | 0.002 (0.188) | 0.021 ** (0.015) | 0.021 *** (0.004) | 0.003 ** (0.017) | 0.025 *** (0.004) | 0.019 ** (0.012) | 0.017 ** (0.045) | 0.037 ** (0.019) | |
0.050 (0.226) | 0.0005 (0.738) | 0.050 (0.226) | 0.038 (0.358) | 0.005 (0.485) | 0.043 (0.360) | 0.050 (0.226) | 0.007 (0.248) | 0.058 (0.226) | 0.038 (0.358) | 0.035 (0.389) | 0.073 (0.365) | |
0.192 * (0.056) | 0.002 (0.674) | 0.183 * (0.056) | 0.168 * (0.077) | 0.025 (0.275) | 0.194 * (0.082) | 0.183 * (0.056) | 0.029 * (0.089) | 0.212 * (0.057) | 0.169 * (0.077) | 0.160 (0.132) | 0.329 * (0.092) | |
Coldest countries | ||||||||||||
−0.067 (0.448) | −0.003 (0.550) | −0.070 (0.449) | −0.070 (0.424) | −0.024 (0.459) | −0.094 (0.427) | −0.066 (0.448) | −0.003 (0.533) | −0.069 (0.449) | −0.069 (0.424) | −0.035 (0.449) | −0.105 (0.428) | |
−6.034 *** (0.000) | −0.282 (0.123) | −6.316 *** (0.000) | −6.048 *** (0.000) | −2.032 *** (0.004) | −8.081 *** (0.000) | −5.963 *** (0.000) | −0.316 * (0.082) | −6.279 *** (0.000) | −5.973 *** (0.000) | −3.014 *** (0.001) | −8.987 *** (0.000) | |
0.010 (0.782) | 0.0004 (0.826) | 0.010 (0.782) | 0.016 (0.646) | 0.005 (0.666) | 0.022 (0.647) | 0.009 (0.782) | 0.0005 (0.819) | 0.010 (0.782) | 0.016 (0.646) | 0.008 (0.660) | 0.024 (0.648) | |
2.933 *** (0.000) | 0.137 (0.142) | 3.070 *** (0.000) | 3.155 *** (0.000) | 1.063 ** (0.013) | 4.218 *** (0.000) | 2.899 *** (0.000) | 0.153 (0.102) | 3.052 *** (0.000) | 3.116 *** (0.000) | 1.575 *** (0.005) | 4.691 *** (0.000) | |
0.040 *** (0.000) | 0.001 (0.148) | 0.042 *** (0.000) | 0.039 *** (0.000) | 0.013 ** (0.012) | 0.053 *** (0.000) | 0.040 *** (0.000) | 0.002 (0.107) | 0.042 *** (0.000) | 0.039 *** (0.000) | 0.019 *** (0.004) | 0.059 *** (0.000) | |
−0.007 (0.239) | −0.0003 (0.390) | −0.007 (0.239) | −0.007 (0.224) | −0.002 (0.272) | −0.009 (0.226) | −0.007 (0.239) | −0.0003 (0.363) | −0.007 (0.239) | −0.007 (0.224) | −0.003 (0.257) | −0.011 (0.227) | |
0.191 ** (0.027) | 0.009 (0.247) | 0.200 ** (0.028) | 0.200 ** (0.021) | 0.067 * (0.085) | 0.267 ** (0.025) | 0.188 ** (0.027) | 0.010 (0.209) | 0.199 ** (0.028) | 0.197 ** (0.021) | 0.100 * (0.065) | 0.297 ** (0.026) |
Short-Run Effects | Long-Run Effects | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | Direct | Indirect | Total | Direct | Indirect | Total | |
Low–middle-income countries | ||||||||||||
−0.150 *** (0.000) | −0.018 *** (0.002) | −0.168 *** (0.000) | −0.143 *** (0.000) | −0.069 *** (0.007) | −0.212 *** (0.000) | −0.157 *** (0.000) | −0.016 *** (0.005) | −0.173 *** (0.000) | −0.148 *** (0.000) | −0.091 *** (0.006) | −0.240 *** (0.000) | |
−2.593 *** (0.000) | −0.312 *** (0.001) | −2.905 *** (0.000) | −2.513 *** (0.000) | −1.216 *** (0.005) | −3.730 *** (0.000) | −2.702 *** (0.000) | −0.279 *** (0.004) | −2.982 *** (0.000) | −2.606 *** (0.000) | −1.610 *** (0.004) | −4.216 *** (0.000) | |
−0.097 (0.291) | −0.011 (0.315) | −0.109 (0.291) | −0.103 (0.263) | −0.050 (0.301) | −0.153 (0.267) | −0.101 (0.291) | −0.010 (0.323) | −0.112 (0.291) | −0.107 (0.263) | −0.066 (0.299) | −0.173 (0.268) | |
2.734 *** (0.000) | 0.327 *** (0.001) | 3.061 *** (0.000) | 2.178 *** (0.000) | 1.041 *** (0.007) | 3.219 *** (0.000) | 2.848 *** (0.000) | 0.293 *** (0.003) | 3.142 *** (0.000) | 2.258 *** (0.000) | 1.378 *** (0.006) | 3.636 *** (0.000) | |
0.022 *** (0.002) | 0.002 ** (0.013) | 0.025 *** (0.002) | 0.020 *** (0.006) | 0.009 ** (0.032) | 0.029 *** (0.008) | 0.023 *** (0.002) | 0.002 ** (0.020) | 0.025 *** (0.002) | 0.020 *** (0.006) | 0.012 ** (0.030) | 0.033 *** (0.009) | |
0.096 ** (0.013) | 0.011 ** (0.034) | 0.108 ** (0.014) | 0.083 ** (0.033) | 0.040 * (0.069) | 0.124 ** (0.035) | 0.101 ** (0.013) | 0.010 ** (0.044) | 0.111 ** (0.014) | 0.086 ** (0.033) | 0.053 * (0.067) | 0.140 ** (0.036) | |
0.120 (0.431) | 0.014 (0.454) | 0.135 (0.432) | 0.154 (0.315) | 0.075 (0.356) | 0.229 (0.321) | 0.125 (0.431) | 0.013 (0.461) | 0.138 (0.432) | 0.160 (0.315) | 0.099 (0.354) | 0.259 (0.323) | |
High-income countries | ||||||||||||
0.060 (0.659) | 0.014 (0.677) | 0.074 (0.661) | 0.061 (0.647) | 0.065 (0.660) | 0.126 (0.653) | 0.084 (0.659) | 0.030 (0.689) | 0.114 (0.665) | 0.084 (0.647) | 0.108 (0.668) | 0.193 (0.657) | |
−5.577 *** (0.000) | −1.336 *** (0.000) | −6.914 *** (0.000) | −4.992 *** (0.000) | −5.387 *** (0.000) | −10.380 *** (0.000) | −7.782 *** (0.000) | −2.911 *** (0.003) | −10.694 *** (0.000) | −6.895 *** (0.000) | −9.080 *** (0.000) | −15.975 *** (0.000) | |
0.080 ** (0.019) | 0.019 ** (0.038) | 0.099 ** (0.020) | 0.092 *** (0.006) | 0.099 ** (0.016) | 0.191 *** (0.009) | 0.112 ** (0.019) | 0.041 * (0.067) | 0.154 ** (0.023) | 0.127 *** (0.007) | 0.167 ** (0.032) | 0.294 ** (0.014) | |
1.977 *** (0.000) | 0.474 ** (0.017) | 2.451 *** (0.006) | 2.066 *** (0.003) | 2.235 ** (0.010) | 4.302 *** (0.005) | 2.759 *** (0.006) | 1.032 ** (0.037) | 3.791 *** (0.007) | 2.854 *** (0.003) | 3.770 ** (0.020) | 6.625 *** (0.007) | |
0.036 *** (0.000) | 0.008 *** (0.000) | 0.045 *** (0.000) | 0.036 *** (0.000) | 0.040 *** (0.000) | 0.077 *** (0.000) | 0.050 *** (0.000) | 0.019 *** (0.005) | 0.070 *** (0.000) | 0.051 *** (0.000) | 0.067 *** (0.001) | 0.118 *** (0.000) | |
−0.002 (0.544) | −0.0005 (0.549) | −0.002 (0.543) | −0.001 (0.605) | −0.002 (0.607) | −0.004 (0.605) | −0.003 (0.543) | −0.001 (0.559) | −0.004 (0.543) | −0.002 (0.605) | −0.003 (0.612) | −0.006 (0.606) | |
0.119 * (0.065) | 0.029 (0.102) | 0.148 * (0.068) | 0.128 ** (0.043) | 0.139 * (0.068) | 0.267 * (0.052) | 0.167 * (0.065) | 0.063 (0.144) | 0.231 * (0.076) | 0.177 ** (0.044) | 0.236 * (0.097) | 0.413 * (0.064) |
Short-Run Effects | Long-Run Effects | |||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
Full sample | ||||||
−0.076 | −0.007 | −0.084 | −0.086 | −0.015 | −0.101 | |
−0.075 | −0.062 | −0.137 | −0.083 | −0.148 | −0.232 | |
Hottest countries | ||||||
−0.729 *** | −0.008 | −0.737 ** | −0.729 *** | −0.115 * | −0.844 ** | |
−0.694 * | −0.102 | −0.796 * | −0.695 * | −0.651 * | −1.347 * | |
Coldest countries | ||||||
−0.067 | −0.003 | −0.070 | −0.066 | −0.003 | −0.069 | |
−0.070 | −0.024 | −0.094 | −0.069 | −0.035 | −0.105 | |
Low–middle-income countries | ||||||
−0.150 *** | −0.018 *** | −0.168 *** | −0.157 *** | −0.016 *** | −0.173 *** | |
−0.143 *** | −0.069 *** | −0.212 *** | −0.148 *** | −0.091 *** | −0.240 *** | |
High-income countries | ||||||
0.060 | 0.014 | 0.074 | 0.084 | 0.030 | 0.114 | |
0.061 | 0.065 | 0.126 | 0.084 | 0.108 | 0.193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benhamed, A.; Osman, Y.; Ben-Salha, O.; Jaidi, Z. Unveiling the Spatial Effects of Climate Change on Economic Growth: International Evidence. Sustainability 2023, 15, 8197. https://doi.org/10.3390/su15108197
Benhamed A, Osman Y, Ben-Salha O, Jaidi Z. Unveiling the Spatial Effects of Climate Change on Economic Growth: International Evidence. Sustainability. 2023; 15(10):8197. https://doi.org/10.3390/su15108197
Chicago/Turabian StyleBenhamed, Adel, Yousif Osman, Ousama Ben-Salha, and Zied Jaidi. 2023. "Unveiling the Spatial Effects of Climate Change on Economic Growth: International Evidence" Sustainability 15, no. 10: 8197. https://doi.org/10.3390/su15108197
APA StyleBenhamed, A., Osman, Y., Ben-Salha, O., & Jaidi, Z. (2023). Unveiling the Spatial Effects of Climate Change on Economic Growth: International Evidence. Sustainability, 15(10), 8197. https://doi.org/10.3390/su15108197