Unraveling the Fate and Transport of DNAPLs in Heterogeneous Aquifer Systems—A Critical Review and Bibliometric Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Bibliometric Analysis Steps
2.1.1. Database Selection
2.1.2. Bibliometric Indicators and Tools Used
3. Findings of Bibliometric Analysis
Contribution of Countries and Spatial Distribution of DNAPL-Contaminated Sites
4. What Controls the Dissolved-Phase Plume Evolution of DNAPLs in Heterogeneous Porous Systems?
4.1. DNAPL Fate and Transport under Dynamic Groundwater Flow
4.2. Mass Transfer Processes between Aquifer and Low-Permeability, Porous Media
4.3. Dissolution
4.4. Sorption–Desorption in the Aquifer (Mobile) and Aquitard (Immobile Type) Region
4.5. Degradation Processes
4.6. Transverse Dispersion and Mixing
5. Overview of Studies Pertaining to DNAPL Plume Evolution in Heterogeneous Porous Systems
5.1. Classification of Studies Based on the Scale
5.1.1. Laboratory-Scale Studies
5.1.2. Field-Scale Studies
5.2. Classification of Studies Based on the Type of Modeling Framework Used
5.2.1. Analytical Modeling Studies
5.2.2. Semi-Analytical Modeling Studies
5.2.3. Numerical Modeling Studies
6. Research Gaps and Future Perspectives
- Model calibration at the field-scale enhanced significantly when the effects of the dynamic flow model boundary conditions and intra-borehole flow were considered in the numerical models [42]. In addition, linear and exponential source depletion models effectively mimicked the back diffusion and its associated risks for gradual and noninstantaneous source depletion scenarios [84]. Thus, release models along with dynamic boundary and initial conditions should be involved in the mathematical modeling of DNAPL transport, especially under field-scale conditions;
- When modeling contaminant transport dynamics in highly heterogeneous aquifers, raw geological data with expert knowledge and an appropriate geostatistical technique can be taken into consideration;
- Microscale flow and transport processes through stagnant zones and low-permeability regions should be emphasized in greater amounts in the modeling framework when simulating the anomalous transport behavior of DNAPL under field-scale conditions;
- The space- and/or time-dependency of model parameters can be taken into account in 2D and 3D modeling frameworks for the simulation of DNAPLs under field-scale conditions;
- Spatial and temporal dependence of output metrics towards model input parameters can be quantified by applying spatial- and time-varying global sensitivity analyses.
7. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huling, S.G.; Weaver, J.W. Ground Water Issue Dense Nonaqueous Phase Liquids; US Environmental Protection Agency: Washington, DC, USA, 1991. [Google Scholar]
- Moran, M.J.; Zogorski, J.S.; Squillace, P.J. Chlorinated Solvents in Groundwater of the United States. Environ. Sci. Technol. 2007, 41, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.L.; Cherry, J.A.; Chapman, S.W. Field Study of TCE Diffusion Profiles below DNAPL to Assess Aquitard Integrity. J. Contam. Hydrol. 2004, 74, 197–230. [Google Scholar] [CrossRef] [PubMed]
- Chapman, S.W.; Parker, B.L. Plume Persistence Due to Aquitard Back Diffusion Following Dense Nonaqueous Phase Liquid Source Removal or Isolation. Water Resour. Res. 2005, 41, 1–16. [Google Scholar] [CrossRef]
- Parker, B.L.; Chapman, S.W.; Guilbeault, M.A. Plume Persistence Caused by Back Diffusion from Thin Clay Layers in a Sand Aquifer Following TCE Source-Zone Hydraulic Isolation. J. Contam. Hydrol. 2008, 102, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Rasa, E.; Chapman, S.W.; Bekins, B.A.; Fogg, G.E.; Scow, K.M.; Mackay, D.M. Role of Back Diffusion and Biodegradation Reactions in Sustaining an MTBE/TBA Plume in Alluvial Media. J. Contam. Hydrol. 2011, 126, 235–247. [Google Scholar] [CrossRef]
- Clement, T.P.; Gautam, T.R.; Lee, K.; Truex, M.J.; Davis, G.B. Modeling of DNAPL-Dissolution, Rate-Limited Sorption and Biodegradation Reactions in Groundwater Systems. Bioremediat. J. 2004, 8, 47–64. [Google Scholar] [CrossRef]
- Lee, K.; Chrysikopoulos, C. Dissolution of a Multicomponent DNAPL Pool in an Experimental Aquifer. J. Hazard. Mater. 2006, 128, 218–226. [Google Scholar] [CrossRef]
- Hatfield, K.; Stauffer, T.B. Transport in Porous Media Containing Residual Hydrocarbon. I: Model. J. Environ. Eng. 1993, 119, 540–558. [Google Scholar] [CrossRef]
- Yang, M.; Annable, M.D.; Jawitz, J.W. Back Diffusion from Thin Low Permeability Zones. Environ. Sci. Technol. 2015, 49, 415–422. [Google Scholar] [CrossRef]
- Yang, M.; McCurley, K.L.; Annable, M.D.; Jawitz, J.W. Diffusion of Solutes from Depleting Sources into and out of Finite Low-Permeability Zones. J. Contam. Hydrol. 2019, 221, 127–134. [Google Scholar] [CrossRef]
- Tatti, F.; Papini, M.P.; Sappa, G.; Raboni, M.; Arjmand, F.; Viotti, P. Contaminant Back-Diffusion from Low-Permeability Layers as Affected by Groundwater Velocity: A Laboratory Investigation by Box Model and Image Analysis. Sci. Total Environ. 2018, 622–623, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Wanner, P.; Parker, B.L.; Hunkeler, D. Assessing the Effect of Chlorinated Hydrocarbon Degradation in Aquitards on Plume Persistence Due to Back-Diffusion. Sci. Total Environ. 2018, 633, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Erning, K.; Grandel, S.; Dahmke, A.; Schäfer, D. Simulation of DNAPL Infiltration and Spreading Behaviour in the Saturated Zone at Varying Flow Velocities and Alternating Subsurface Geometries. Environ. Earth Sci. 2012, 65, 1119–1131. [Google Scholar] [CrossRef]
- Zheng, F.; Gao, Y.; Sun, Y.; Shi, X.; Xu, H.; Wu, J. Influence of Flow Velocity and Spatial Heterogeneity on DNAPL Migration in Porous Media: Insights from Laboratory Experiments and Numerical Modelling. Hydrogeol. J. 2015, 23, 1703–1718. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Mendoza-Sanchez, I.; Abriola, L.M. Modeling the Influence of Coupled Mass Transfer Processes on Mass Flux Downgradient of Heterogeneous DNAPL Source Zones. J. Contam. Hydrol. 2018, 211, 1–14. [Google Scholar] [CrossRef]
- Seyedabbasi, M.A.; Newell, C.J.; Adamson, D.T.; Sale, T.C. Relative Contribution of DNAPL Dissolution and Matrix Diffusion to the Long-Term Persistence of Chlorinated Solvent Source Zones. J. Contam. Hydrol. 2012, 134–135, 69–81. [Google Scholar] [CrossRef]
- Atchley, A.L.; Navarre-Sitchler, A.K.; Maxwell, R.M. The Effects of Physical and Geochemical Heterogeneities on Hydro-Geochemical Transport and Effective Reaction Rates. J. Contam. Hydrol. 2014, 165, 53–64. [Google Scholar] [CrossRef]
- Rivett, M.O.; Wealthall, G.P.; Dearden, R.A.; McAlary, T.A. Review of Unsaturated-Zone Transport and Attenuation of Volatile Organic Compound (VOC) Plumes Leached from Shallow Source Zones. J. Contam. Hydrol. 2011, 123, 130–156. [Google Scholar] [CrossRef]
- Engelmann, C.; Händel, F.; Binder, M.; Yadav, P.K.; Dietrich, P.; Liedl, R.; Walther, M. The Fate of DNAPL Contaminants in Non-Consolidated Subsurface Systems—Discussion on the Relevance of Effective Source Zone Geometries for Plume Propagation. J. Hazard. Mater. 2019, 375, 233–240. [Google Scholar] [CrossRef]
- Essaid, H.I.; Bekins, B.A.; Cozzarelli, I.M. Organic Contaminant Transport and Fate in the Subsurface: Evolution of Knowledge and Understanding. Water Resour. Res. 2015, 51, 4861–4902. [Google Scholar] [CrossRef]
- ITRC. Evaluating Natural Source Zone Depletion at Sites with LNAPL; ITRC: Washington, DC, USA, 2009; Volume LNAPL-1, Available online: https://lnapl-3.itrcweb.org/appendix-b-natural-source-zone-depletion-nszd-appendix/ (accessed on 15 December 2022).
- Pivetz, B.; Keeley, A.; Weber, E.; Weaver, J.; Wilson, J.; Ma, C. Ground Water Issue Paper: Synthesis Report on State of Understanding of Chlorinated Solvent Transformation; U.S. Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Sudicky, E.A. A Natural Gradient Experiment on Solute Transport in a Sand Aquifer: Spatial Variability of Hydraulic Conductivity and Its Role in the Dispersion Process. Water Resour. Res. 1986, 22, 2069–2082. [Google Scholar] [CrossRef]
- Schulze-Makuch, D. Longitudinal Dispersivity Data and Implications for Scaling Behavior. Ground Water 2005, 43, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Pickens, J.F.; Grisak, G.E. Scale-Dependent Dispersion in a Stratified Granular Aquifer. Water Resour. Res. 1981, 17, 1191–1211. [Google Scholar] [CrossRef]
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
- Tartakovsky, A.M.; Neuman, S.P. Effects of Peclet Number on Pore-Scale Mixing and Channeling of a Tracer and on Directional Advective Porosity. Geophys. Res. Lett. 2008, 35, L21401. [Google Scholar] [CrossRef]
- Muniruzzaman, M.; Rolle, M. Modeling Multicomponent Ionic Transport in Groundwater with IPhreeqc Coupling: Electrostatic Interactions and Geochemical Reactions in Homogeneous and Heterogeneous Domains. Adv. Water Resour. 2016, 98, 1–15. [Google Scholar] [CrossRef]
- Zare, F.; Elsawah, S.; Iwanaga, T.; Jakeman, A.J.; Pierce, S.A. Integrated Water Assessment and Modelling: A Bibliometric Analysis of Trends in the Water Resource Sector. J. Hydrol. 2017, 552, 765–778. [Google Scholar] [CrossRef]
- Schotten, M.; Meester, W.J.N.; Steiginga, S.; Ross, C.A. A Brief History of Scopus: The World’s Largest Abstract and Citation Database of Scientific Literature. In Research Analytics; Auerbach Publications: Sebastopol, CA, USA, 2017; pp. 31–58. [Google Scholar]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Manual; University of Leiden: Leiden, The Netherlands, 2021; Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.6.pdf (accessed on 10 November 2022).
- USEPA. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers; U.S. Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Birke, V.; Burmeier, H.; Rosenau, D. Permeable Reactive Barriers (PRBs) in Germany and Austria: State-of-the-Art Report 2003. In Proceedings of the Consoil, Gent, Belgium, 12–16 May 2003; pp. 1572–1581. [Google Scholar]
- CPCB. State Wise List of Contaminated Sites; Central Pollution Control Board, Waste Management Division-I: Delhi, India, 2022. [Google Scholar]
- Gupta, P.K. Pollution Load on Indian Soil-Water Systems and Associated Health Hazards: A Review. J. Environ. Eng. 2020, 146, 03120004. [Google Scholar] [CrossRef]
- Wolfe, W.J.; Haugh, C.J.; Webbers, A.; Diehl, T.H. Preliminary Conceptual Models of the Occurrence, Fate, and Transport of Chlorinated Solvents in Karst Regions of Tennessee; US Department of the Interior, US Geological Survey: Nashville, TN, USA, 1997. [Google Scholar]
- Pankow, J.F.; Cherry, J.A. Dense Chlorinated Solvents and Other DNAPLs in Groundwater: History, Behavior, and Remediation; Waterloo Press: Guelph, ON, Canada, 1996; ISBN 0964801418/9780964801417. [Google Scholar]
- Wanner, P.; Parker, B.L.; Chapman, S.W.; Aravena, R.; Hunkeler, D. Quantification of Degradation of Chlorinated Hydrocarbons in Saturated Low Permeability Sediments Using Compound-Specific Isotope Analysis. Environ. Sci. Technol. 2016, 50, 5622–5630. [Google Scholar] [CrossRef]
- Ma, R.; Zheng, C.; Tonkin, M.; Zachara, J.M. Importance of Considering Intraborehole Flow in Solute Transport Modeling under Highly Dynamic Flow Conditions. J. Contam. Hydrol. 2011, 123, 11–19. [Google Scholar] [CrossRef]
- Luciano, A.; Viotti, P.; Papini, M.P. Laboratory Investigation of DNAPL Migration in Porous Media. J. Hazard. Mater. 2010, 176, 1006–1017. [Google Scholar] [CrossRef]
- Yang, J.-H.; Lee, K.-K.; Clement, T.P. Impact of Seasonal Variations in Hydrological Stresses and Spatial Variations in Geologic Conditions on a TCE Plume at an Industrial Complex in Wonju, Korea. Hydrol. Process. 2012, 26, 317–325. [Google Scholar] [CrossRef]
- Brown, G.H.; Brooks, M.C.; Wood, A.L.; Annable, M.D.; Huang, J. Aquitard Contaminant Storage and Flux Resulting from Dense Nonaqueous Phase Liquid Source Zone Dissolution and Remediation. Water Resour. Res. 2012, 48, 1–17. [Google Scholar] [CrossRef]
- Ciampi, P.; Esposito, C.; Bartsch, E.; Alesi, E.J.; Nielsen, C.; Ledda, L.; Lorini, L.; Petrangeli Papini, M. Coupled Hydrogeochemical Approach and Sustainable Technologies for the Remediation of a Chlorinated Solvent Plume in an Urban Area. Sustainability 2022, 14, 10317. [Google Scholar] [CrossRef]
- Chapman, S.W.; Parker, B.L.; Sale, T.C.; Doner, L.A. Testing High Resolution Numerical Models for Analysis of Contaminant Storage and Release from Low Permeability Zones. J. Contam. Hydrol. 2012, 136–137, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Annable, M.D.; Jawitz, J.W. Field-Scale Forward and Back Diffusion through Low-Permeability Zones. J. Contam. Hydrol. 2017, 202, 47–58. [Google Scholar] [CrossRef]
- Guo, Z.; Brusseau, M.L. The Impact of Well-Field Configuration on Contaminant Mass Removal and Plume Persistence for Homogeneous versus Layered Systems. Hydrol. Process. 2017, 31, 4748–4756. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Russo, A.E.; Schnaar, G. Nonideal Transport of Contaminants in Heterogeneous Porous Media: 9—Impact of Contact Time on Desorption and Elution Tailing. Chemosphere 2012, 89, 287–292. [Google Scholar] [CrossRef]
- Mobile, M.A.; Widdowson, M.A.; Gallagher, D.L. Multicomponent NAPL Source Dissolution: Evaluation of Mass-Transfer Coefficients. Environ. Sci. Technol. 2012, 46, 10047–10054. [Google Scholar] [CrossRef] [PubMed]
- Knorr, B.; Maloszewski, P.; Krämer, F.; Stumpp, C. Diffusive Mass Exchange of Non-Reactive Substances in Dual-Porosity Porous Systems—Column Experiments under Saturated Conditions. Hydrol. Process. 2016, 30, 914–926. [Google Scholar] [CrossRef]
- Guo, Z.; Brusseau, M.L. The Impact of Well-Field Configuration and Permeability Heterogeneity on Contaminant Mass Removal and Plume Persistence. J. Hazard. Mater. 2017, 333, 109–115. [Google Scholar] [CrossRef]
- Guo, Z.; Brusseau, M.L.; Fogg, G.E. Determining the Long-Term Operational Performance of Pump and Treat and the Possibility of Closure for a Large TCE Plume. J. Hazard. Mater. 2019, 365, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Tatti, F.; Petrangeli Papini, M.; Torretta, V.; Mancini, G.; Boni, M.R.; Viotti, P. Experimental and Numerical Evaluation of Groundwater Circulation Wells as a Remediation Technology for Persistent, Low Permeability Contaminant Source Zones. J. Contam. Hydrol. 2019, 222, 89–100. [Google Scholar] [CrossRef]
- Guo, Z.; Fogg, G.E.; Henri, C.V. Upscaling of Regional Scale Transport Under Transient Conditions: Evaluation of the Multirate Mass Transfer Model. Water Resour. Res. 2019, 55, 5301–5320. [Google Scholar] [CrossRef]
- Aydin-Sarikurt, D.; Dokou, Z.; Copty, N.K.; Karatzas, G.P. Experimental Investigation and Numerical Modeling of Enhanced DNAPL Solubilization in Saturated Porous Media. Water Air Soil Pollut. 2016, 227, 441. [Google Scholar] [CrossRef]
- Ayral-Çınar, D.; Demond, A.H. Accumulation of DNAPL Waste in Subsurface Clayey Lenses and Layers. J. Contam. Hydrol. 2020, 229, 103579. [Google Scholar] [CrossRef]
- Clement, T.P.; Kim, Y.-C.; Gautam, T.R.; Lee, K.-K. Experimental and Numerical Investigation of DNAPL Dissolution Processes in a Laboratory Aquifer Model. Ground Water Monit. Remediat. 2004, 24, 88–96. [Google Scholar] [CrossRef]
- Johnson, R.L.; Pankow, J.F. Dissolution of Dense Chlorinated Solvents into Groundwater. 2. Source Functions for Pools of Solvent. Environ. Sci. Technol. 1992, 26, 896–901. [Google Scholar] [CrossRef]
- Anderson, M.R.; Johnson, R.L.; Pankow, J.F. Dissolution of Dense Chlorinated Solvents into Groundwater. 3. Modeling Contaminant Plumes from Fingers and Pools of Solvent. Environ. Sci. Technol. 1992, 26, 901–908. [Google Scholar] [CrossRef]
- Mobile, M.; Widdowson, M.; Stewart, L.; Nyman, J.; Deeb, R.; Kavanaugh, M.; Mercer, J.; Gallagher, D. In-Situ Determination of Field-Scale NAPL Mass Transfer Coefficients: Performance, Simulation and Analysis. J. Contam. Hydrol. 2016, 187, 31–46. [Google Scholar] [CrossRef]
- Russo, A.; Johnson, G.R.; Schnaar, G.; Brusseau, M.L. Nonideal Transport of Contaminants in Heterogeneous Porous Media: 8. Characterizing and Modeling Asymptotic Contaminant-Elution Tailing for Several Soils and Aquifer Sediments. Chemosphere 2010, 81, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Knorr, B.; Maloszewski, P.; Stumpp, C. Quantifying the Impact of Immobile Water Regions on the Fate of Nitroaromatic Compounds in Dual-Porosity Media. J. Contam. Hydrol. 2016, 191, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Carey, G.R.; Chapman, S.W.; Parker, B.L.; McGregor, R. Application of an Adapted Version of MT3DMS for Modeling Back-Diffusion Remediation Timeframes. Remediat. J. 2015, 25, 55–79. [Google Scholar] [CrossRef]
- Bons, P.D.; van Milligen, B.P.; Blum, P. A General Unified Expression for Solute and Heat Dispersion in Homogeneous Porous Media. Water Resour. Res. 2013, 49, 6166–6178. [Google Scholar] [CrossRef]
- Hochstetler, D.L.; Rolle, M.; Chiogna, G.; Haberer, C.M.; Grathwohl, P.; Kitanidis, P.K. Effects of Compound-Specific Transverse Mixing on Steady-State Reactive Plumes: Insights from Pore-Scale Simulations and Darcy-Scale Experiments. Adv. Water Resour. 2013, 54, 1–10. [Google Scholar] [CrossRef]
- Rolle, M.; Eberhardt, C.; Chiogna, G.; Cirpka, O.A.; Grathwohl, P. Enhancement of Dilution and Transverse Reactive Mixing in Porous Media: Experiments and Model-Based Interpretation. J. Contam. Hydrol. 2009, 110, 130–142. [Google Scholar] [CrossRef]
- Rolle, M.; Chiogna, G.; Hochstetler, D.L.; Kitanidis, P.K. On the Importance of Diffusion and Compound-Specific Mixing for Groundwater Transport: An Investigation from Pore to Field Scale. J. Contam. Hydrol. 2013, 153, 51–68. [Google Scholar] [CrossRef]
- Olsson, Å.; Grathwohl, P. Transverse Dispersion of Non-Reactive Tracers in Porous Media: A New Nonlinear Relationship to Predict Dispersion Coefficients. J. Contam. Hydrol. 2007, 92, 149–161. [Google Scholar] [CrossRef]
- Ballarini, E.; Bauer, S.; Eberhardt, C.; Beyer, C. Evaluation of the Role of Heterogeneities on Transverse Mixing in Bench-Scale Tank Experiments by Numerical Modeling. Groundwater 2014, 52, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, M.; Suresh Kumar, G.; Nambi, I.M. Numerical Study on Kinetic/Equilibrium Behaviour of Dissolution of Toluene under Variable Subsurface Conditions. Eur. J. Environ. Civ. Eng. 2014, 18, 1070–1093. [Google Scholar] [CrossRef]
- Berlin, M.; Vasudevan, M.; Kumar, G.S.; Nambi, I.M. Numerical Modelling on Fate and Transport of Petroleum Hydrocarbons in an Unsaturated Subsurface System for Varying Source Scenario. J. Earth Syst. Sci. 2015, 124, 655–674. [Google Scholar] [CrossRef]
- Valsala, R.; Govindarajan, S.K. Co-Colloidal BTEX and Microbial Transport in a Saturated Porous System: Numerical Modeling and Sensitivity Analysis. Transp. Porous Media 2019, 127, 269–294. [Google Scholar] [CrossRef]
- Guo, Z.; Fogg, G.E.; Brusseau, M.L.; LaBolle, E.M.; Lopez, J. Modeling Groundwater Contaminant Transport in the Presence of Large Heterogeneity: A Case Study Comparing MT3D and RWhet. Hydrogeol. J. 2019, 27, 1363–1371. [Google Scholar] [CrossRef]
- Maruo, T.; RyuichiItoi; Tanaka, T.; Iwasaki, M.; Oishi, H. Laboratory Experiment of Tracer Test with Vertical Two-Dimensional Porous Media. Procedia Earth Planet. Sci. 2013, 6, 121–130. [Google Scholar] [CrossRef]
- Luciano, A.; Mancini, G.; Torretta, V.; Viotti, P. An Empirical Model for the Evaluation of the Dissolution Rate from a DNAPL-Contaminated Area. Environ. Sci. Pollut. Res. 2018, 25, 33992–34004. [Google Scholar] [CrossRef]
- Ayral-Cinar, D.; Demond, A.H. Effective Diffusion Coefficients of DNAPL Waste Components in Saturated Low Permeability Soil Materials. J. Contam. Hydrol. 2017, 207, 1–7. [Google Scholar] [CrossRef]
- Vaezihir, A.; Bayanlou, M.B.; Ahmadnezhad, Z.; Barzegari, G. Remediation of BTEX Plume in a Continuous Flow Model Using Zeolite-PRB. J. Contam. Hydrol. 2020, 230, 103604. [Google Scholar] [CrossRef]
- Newell, C.J.; Cowie, I.; McGuire, T.M.; McNab, W.W. Multiyear Temporal Changes in Chlorinated Solvent Concentrations at 23 Monitored Natural Attenuation Sites. J. Environ. Eng. 2006, 132, 653–663. [Google Scholar] [CrossRef]
- Stoppiello, M.G.; Lofrano, G.; Carotenuto, M.; Viccione, G.; Guarnaccia, C.; Cascini, L. A Comparative Assessment of Analytical Fate and Transport Models of Organic Contaminants in Unsaturated Soils. Sustainability 2020, 12, 2949. [Google Scholar] [CrossRef]
- Naseri-Rad, M.; Berndtsson, R.; McKnight, U.S.; Persson, M.; Persson, K.M. INSIDE-T: A Groundwater Contamination Transport Model for Sustainability Assessment in Remediation Practice. Sustainability 2021, 13, 7596. [Google Scholar] [CrossRef]
- Jawitz, J.W.; Fure, A.D.; Demmy, G.G.; Berglund, S.; Rao, P.S.C. Groundwater Contaminant Flux Reduction Resulting from Nonaqueous Phase Liquid Mass Reduction. Water Resour. Res. 2005, 41, 1–15. [Google Scholar] [CrossRef]
- Yang, M.; Annable, M.D.; Jawitz, J.W. Solute Source Depletion Control of Forward and Back Diffusion through Low-Permeability Zones. J. Contam. Hydrol. 2016, 193, 54–62. [Google Scholar] [CrossRef]
- Yang, M.; Annable, M.D.; Jawitz, J.W. Forward and Back Diffusion through Argillaceous Formations. Water Resour. Res. 2017, 53, 4514–4523. [Google Scholar] [CrossRef]
- Adamson, D.T.; Chapman, S.W.; Farhat, S.K.; Parker, B.L.; DeBlanc, P.C.; Newell, C.J. Simple Modeling Tool for Reconstructing Source History Using High Resolution Contaminant Profiles from Low-k Zones. Remediat. J. 2015, 25, 31–51. [Google Scholar] [CrossRef]
- Atteia, O.; Höhener, P. Fast Semi-Analytical Approach to Approximate Plumes of Dissolved Redox-Reactive Pollutants in Heterogeneous Aquifers. 1. BTEX. Adv. Water Resour. 2012, 46, 63–73. [Google Scholar] [CrossRef]
- Atteia, O.; Höhener, P. Fast Semi-Analytical Approach to Approximate Plumes of Dissolved Redox-Reactive Pollutants in Heterogeneous Aquifers. 2: Chlorinated Ethenes. Adv. Water Resour. 2012, 46, 74–83. [Google Scholar] [CrossRef]
- Muskus, N.; Falta, R.W. Semi-Analytical Method for Matrix Diffusion in Heterogeneous and Fractured Systems with Parent-Daughter Reactions. J. Contam. Hydrol. 2018, 218, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Falta, R.W.; Wang, W. A Semi-Analytical Method for Simulating Matrix Diffusion in Numerical Transport Models. J. Contam. Hydrol. 2017, 197, 39–49. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Guo, Z. The Integrated Contaminant Elution and Tracer Test Toolkit, ICET3, for Improved Characterization of Mass Transfer, Attenuation, and Mass Removal. J. Contam. Hydrol. 2018, 208, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Zheng, C. A Lithofacies Approach for Modeling Non-Fickian Solute Transport in a Heterogeneous Alluvial Aquifer. Water Resour. Res. 2016, 52, 552–565. [Google Scholar] [CrossRef]
- Chang, S.W.; Chung, I.-M.; Kim, I.H.; Joo, J.C.; Moon, H.S. Importance of Infiltration Rates for Fate and Transport of Benzene in High-Tiered Risk-Based Assessment Considering Korean Site-Specific Factors at Contaminated Sites. Water 2021, 13, 3646. [Google Scholar] [CrossRef]
Search Steps | Steps Used in Search | Query on Scopus | Description |
---|---|---|---|
1 | Search Keywords | TITLE-ABS-KEY | (((“Chlorinated Solvents” OR “DNAPL” OR “DNAPLS” OR (“Dense Non-Aqueous Phase” AND (“Liquid” OR “Liquids”))) AND (“Transport”) AND (“in” AND “the”) AND (“Groundwater” OR (“Ground” AND “Water”) OR “Aquifer” OR (“Saturated” AND “porous” AND “media”)))) |
2 | Year | AND PUBYEAR > 1990 | Published from 1990 to 2022 considered |
3 | Document Type | AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”) OR LIMIT-TO (DOCTYPE, “ch”)) | Journal article, review paper, book chapter (journal articles, review papers, and book chapters searched, ignoring conference proceedings, etc.) |
4 | Document’s Language | AND (LIMIT-TO (LANGUAGE, “English”)) | Language “English” |
5 | Subject Area | AND (LIMIT-TO (SUBJAREA, “ENVI”) OR LIMIT-TO (SUBJAREA, “EART”) OR LIMIT-TO (SUBJAREA, “CHEM”) OR LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “AGRI”) OR LIMIT-TO (SUBJAREA, “CENG”) OR LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO (SUBJAREA, “MATE”) OR LIMIT-TO (SUBJAREA, “MATH”) OR LIMIT-TO (SUBJAREA, “MULT”)) | Limited to Environmental Science, Earth and Planetary Sciences, Chemistry, Engineering, Agricultural, and Biological Sciences, Chemical Engineering, Computer Science, Material Science, Mathematics, and Multidisciplinary |
Description | Results | |
---|---|---|
Timespan | 1990:2022 | |
Sources (Journals, Books, etc.) | 107 | |
Number of Research Documents | 412 | |
Average Years from Publication | 13.60 | |
Average Citations per Research Document | 31.59 | |
Average Citations per Year per Research Document | 2.28 | |
References | 15,507 | |
Document Types | Research Article | 397 |
Book Chapter | 6 | |
Review | 9 | |
Document Contents | Keywords Plus (ID) | 3625 |
Author’s Keywords (DE) | 882 | |
Authors | No. of Authors | 1060 |
No. of Appearances of Authors | 1531 | |
No. of Authors Who Published as Single-Authors | 23 | |
No. of Authors Who Published Multi-Authored Documents | 1037 | |
Authors Collaboration | No. of Single-Authored Documents | 25 |
Documents per Author | 0.389 | |
Authors per Document | 2.57 | |
Co-Authors per Document | 3.72 | |
Collaboration Index | 2.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guleria, A.; Gupta, P.K.; Chakma, S.; Yadav, B.K. Unraveling the Fate and Transport of DNAPLs in Heterogeneous Aquifer Systems—A Critical Review and Bibliometric Analysis. Sustainability 2023, 15, 8214. https://doi.org/10.3390/su15108214
Guleria A, Gupta PK, Chakma S, Yadav BK. Unraveling the Fate and Transport of DNAPLs in Heterogeneous Aquifer Systems—A Critical Review and Bibliometric Analysis. Sustainability. 2023; 15(10):8214. https://doi.org/10.3390/su15108214
Chicago/Turabian StyleGuleria, Abhay, Pankaj Kumar Gupta, Sumedha Chakma, and Brijesh Kumar Yadav. 2023. "Unraveling the Fate and Transport of DNAPLs in Heterogeneous Aquifer Systems—A Critical Review and Bibliometric Analysis" Sustainability 15, no. 10: 8214. https://doi.org/10.3390/su15108214
APA StyleGuleria, A., Gupta, P. K., Chakma, S., & Yadav, B. K. (2023). Unraveling the Fate and Transport of DNAPLs in Heterogeneous Aquifer Systems—A Critical Review and Bibliometric Analysis. Sustainability, 15(10), 8214. https://doi.org/10.3390/su15108214