Electrokinetic-Assisted Phytoremediation of Pb-Contaminated Soil: Influences of Periodic Polarity Reversal Direct Current Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soil Preparation
2.3. Experiments Setup
2.4. Sample Collection and Extraction
2.4.1. Soil Samples
2.4.2. Plant Samples
2.5. Analytical Method
2.5.1. Soil Physicochemical Parameters
2.5.2. Heavy Metal Content in Soil and Plants
2.5.3. Parameters of Analysis
2.6. Quality Control
3. Results and Discussion
3.1. Effect of Exchange Electric Field on Pb Uptake by Plants and Pb Content in Soil
3.2. Accumulation and Translocation of Pb in Tall Fescue and Wheat
3.3. Current Changes
3.4. Soil pH and Electrical Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.P.; Wang, J.W.; Zhang, Y.N. Review of toxic lead in urban soil and exposure risk to children. Med. Geogr. 2016, 37, 85–92. [Google Scholar]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111–197. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Hou, D.Y.; O’Connor, D.; Shen, Z.T.; Shi, P.L.; Ok, Y.S.; Tsang, D.C.W.; Wen, Y.; Luo, M.N. Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1386–1423. [Google Scholar] [CrossRef]
- Niu, H.; Wang, Z.L.; Song, J.N.; Long, A.G.; Cao, M.; Luo, J. Cadmium subcellular distribution and chemical form in Festuca arundinacea in different intercropping systems during phytoremediation. Chemosphere 2021, 276, 130–137. [Google Scholar] [CrossRef]
- Jin, Z.; Deng, S.; Wen, Y.; Jin, Y.; Pan, L.; Zhang, Y.; Black, T.; Jones, K.C.; Zhang, H.; Zhang, D. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils. Sci. Total Environ. 2019, 697, 134–148. [Google Scholar] [CrossRef]
- Hong, Y.; Heerink, N.; Jin, S.Q.Q.; Berentsen, P.; Zhang, L.Z.; van der Werf, W. Intercropping and agroforestry in China—Current state and trends. Agric. Ecosyst. Environ. 2017, 244, 52–61. [Google Scholar] [CrossRef]
- Liu, W.Q.; Zhu, F.; Ma, S.Y. Research Progress on the Electro-kinetic Remediation of Soil Polluted by Heavy Metal. Saf. Environ. Eng. 2015, 22, 6. [Google Scholar]
- Azhar, U.; Ahmad, H.; Shafqat, H.; Babar, M.; Shahzad Munir, H.M.; Sagir, M.; Arif, M.; Hassan, A.; Rachmadona, N.; Rajendran, S.; et al. Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environ. Res. 2022, 214, 113918. [Google Scholar] [CrossRef] [PubMed]
- Begum, Z.A.; Rahman, I.M.M.; Tate, Y.; Sawai, H.; Maki, T.; Hasegawa, H. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 2012, 87, 1161–1170. [Google Scholar] [CrossRef]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Awa, S.H.; Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, F.; Elbasiouny, H.; Ali, R.; Brevik, E.C. Enhanced Immobilization and Phytoremediation of Heavy Metals in Landfill Contaminated Soils. Water Air Soil Pollut. 2020, 231, 204. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, T.; Li, T.; Jiang, M.; Xiong, J.; Li, B.; Zhan, F.; He, Y. Characteristics and opportunities of electrokinetic-assisted phytoremediation of heavy metal contaminated soil. Chem. Ind. Eng. Prog. 2020, 39, 5252–5265. [Google Scholar]
- Yeung, A.T.; Gu, Y.Y. A review on techniques to enhance electrochemical remediation of contaminated soils. J. Hazard. Mater. 2011, 195, 11–29. [Google Scholar] [CrossRef]
- Yuan, L.; Guo, P.; Guo, S.; Wang, J.; Huang, Y. Influence of electrical fields enhanced phytoremediation of multi-metal contaminated soil on soil parameters and plants uptake in different soil sections. Environ. Res. 2021, 198, 111290. [Google Scholar] [CrossRef]
- Aboughalma, H.; Bi, R.; Schlaak, M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2008, 43, 926–933. [Google Scholar] [CrossRef]
- Lim, J.M.; Salido, A.L.; Butcher, D.J. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem. J. 2004, 76, 3–9. [Google Scholar] [CrossRef]
- Cang, L.; Wang, Q.Y.; Zhou, D.M.; Xu, H. Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Sep. Purif. Technol. 2011, 79, 246–253. [Google Scholar] [CrossRef]
- Siyar, R.; Doulati Ardejani, F.; Farahbakhsh, M.; Norouzi, P.; Yavarzadeh, M.; Maghsoudy, S. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere 2020, 246, 125802. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Zhang, J.; Larson, S.L.; Ballard, J.H.; Guo, K.; Arslan, Z.; Ma, Y.H.; Waggoner, C.A.; White, J.R.; Han, F.X.X. Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. Int. J. Phytoremediat. 2019, 21, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wen, Y.; Li, X.; Li, Y.; Yang, X.; Lin, Z.; Song, Z.; Cooper, J.M.; Zhao, B. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 2018, 175, 281–290. [Google Scholar] [CrossRef]
- Li, T.; Mu, T.; Liu, G.; Yang, X.; Zhu, G.; Shang, C. A Method of Soil Moisture Content Estimation at Various Soil Organic Matter Conditions Based on Soil Reflectance. Remote Sens. 2022, 14, 2411. [Google Scholar] [CrossRef]
- Bache, B.W. Barium isotope method for measuring cation-exchange capacity of soils and clays. Journal of the Science of Food and Agriculture, 22, 169–171. J. Sci. Food Agric. 1970, 21, 169–171. [Google Scholar] [CrossRef]
- Chiriac, E.R.; Chiţescu, C.L.; Sandru, C.; Geană, E.-I.; Lupoae, M.; Dobre, M.; Borda, D.; Gird, C.E.; Boscencu, R. Comparative Study of the Bioactive Properties and Elemental Composition of Red Clover (Trifolium pratense) and Alfalfa (Medicago sativa) Sprouts during Germination. Appl. Sci. 2020, 10, 7249. [Google Scholar] [CrossRef]
- Azeez, J.O.; Olowoboko, T.B.; Bada, B.S.; Odedina, J.N.; Onasanya, O.O. Evaluation of soil metal sorption characteristics and heavy metal extractive ability of indigenous plant species in Abeokuta, Nigeria. Int. J. Phytoremediat. 2020, 22, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, B.; Szulc, W.; Blaszczak, E.; Kazberuk, W.; Ptasinski, D. Restoration of marginal soils polluted with heavy metals to agricultural production. J. Soil Water Conserv. 2020, 75, 610–616. [Google Scholar] [CrossRef]
- Zhang, W.H.; Zhang, L.L.; Mao, S.Y.; Qiu, R.L. Migration and Stabilization of Multiple Heavy Metals in an Aged Contaminated Soil under a Constant Voltage Electric Field. Soil Sediment Contam. 2014, 23, 540–556. [Google Scholar] [CrossRef]
- Putra, R.S.; Ohkawa, Y.; Tanaka, S. Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis L.). Sep. Purif. Technol. 2013, 102, 34–42. [Google Scholar] [CrossRef]
- Mertens, J.; Vervaeke, P.; Schrijver, A.D.; Luyssaert, S. Metal uptake by young trees from dredged brackish sediment: Limitations and possibilities for phytoextraction and phytostabilisation. Sci. Total Environ. 2004, 326, 209–215. [Google Scholar] [CrossRef]
- Chirakkara, R.A.; Reddy, K.R.; Cameselle, C. Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil. Electrochim. Acta 2015, 181, 179–191. [Google Scholar] [CrossRef]
- Luan, Y.; Xu, J.; Zhou, J.; Wang, H.; Han, F.; Wang, K.; Lv, Y. Migration and Removal of Labile Cadmium Contaminants in Paddy Soils by Electrokinetic Remediation without Changing Soil pH. Int. J. Environ. Res. Public. Health 2022, 19, 3812. [Google Scholar] [CrossRef]
- Bi, R.; Schlaak, M.; Siefert, E.; Lord, R.; Connolly, H. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 2011, 83, 318–326. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.S.; Lepp, N.W.; Edwards, R.; Sunderland, G. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: A laboratory-scale feasibility study. Environ. Monit. Assess. 2003, 84, 141–158. [Google Scholar] [CrossRef]
- Kravkaz Kuscu, I.S. Certain soil characteristics and light conditions of enzyme activities and variance conditional to plant type. Environ. Monit. Assess. 2020, 192, 229. [Google Scholar] [CrossRef]
Test Indicators | pH | Organic Matter Content (g kg−1) | Moisture Content (%) | Cation Exchange Capacity (cmol kg−1) | Conductivity (ms cm−1) | Pb Concentration (mg kg−1) |
---|---|---|---|---|---|---|
Simulate the soil | 7.44 ± 0.03 | 40.40 ± 0.17 | 25.7 ± 0.64 | 16.21 ± 0.46 | 3.43 ± 0.01 | 268.24 ± 5.29 |
Experiment Number | Processing | Power Mode | Plant Species | Power-Up Time (h) | Repair Time (d) |
---|---|---|---|---|---|
T1 | FA | / | Tall Fescue | 0 | 30 |
T2 | WT | / | Wheat | 0 | 30 |
T3 | EK | Exchange electrodes | / | 6 | 30 |
T4 | FA + EK | Tall Fescue | 6 | 30 | |
T5 | FA + EK | Tall Fescue | 6 | 30 | |
T6 | FA + EK | Tall Fescue | 6 | 30 | |
T7 | WT + EK | Wheat | 6 | 30 | |
T8 | WT + EK | Wheat | 6 | 30 | |
T9 | WT + EK | Wheat | 6 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulati, H.; Mamat, A.; Ailijiang, N.; Jiang, L.; Li, N.; Hu, Y.; Su, Y. Electrokinetic-Assisted Phytoremediation of Pb-Contaminated Soil: Influences of Periodic Polarity Reversal Direct Current Field. Sustainability 2023, 15, 8439. https://doi.org/10.3390/su15118439
Mulati H, Mamat A, Ailijiang N, Jiang L, Li N, Hu Y, Su Y. Electrokinetic-Assisted Phytoremediation of Pb-Contaminated Soil: Influences of Periodic Polarity Reversal Direct Current Field. Sustainability. 2023; 15(11):8439. https://doi.org/10.3390/su15118439
Chicago/Turabian StyleMulati, Hayishaer, Anwar Mamat, Nuerla Ailijiang, Lu Jiang, Ning Li, Yuanfang Hu, and Yuhong Su. 2023. "Electrokinetic-Assisted Phytoremediation of Pb-Contaminated Soil: Influences of Periodic Polarity Reversal Direct Current Field" Sustainability 15, no. 11: 8439. https://doi.org/10.3390/su15118439
APA StyleMulati, H., Mamat, A., Ailijiang, N., Jiang, L., Li, N., Hu, Y., & Su, Y. (2023). Electrokinetic-Assisted Phytoremediation of Pb-Contaminated Soil: Influences of Periodic Polarity Reversal Direct Current Field. Sustainability, 15(11), 8439. https://doi.org/10.3390/su15118439