Finding the Green Grass in the Haystack? Integrated National Assessment of Ecosystem Services and Condition in Hungary, in Support of Conservation and Planning
Abstract
:1. Introduction
1.1. Ecosystem Condition and Its Relations to Ecosystem Services and Multifunctionality
1.2. MAES-HU
- Q1: How is ecosystem services multifunctionality distributed across landscapes in Hungary?
- Q2: Is there a relationship between ecosystem services multifunctionality and ecosystem condition in forests in terms of species composition and structure?
- Q3: What are the interrelationships/synergies, tradeoffs and bundles/between the capacity indicators of the twelve ecosystem services mapped in MAES-HU? What bundles can be identified (at the capacity level)?
- Q4: How are the individual capacity indicators of the examined ecosystem services related to ecosystem condition Does better ecosystem condition ensure a higher capacity to provide ecosystem services?
2. Materials and Methods
2.1. Data
2.1.1. Ecosystem Services Indicators
2.1.2. Ecosystem Condition Indicators
2.2. Study Area
2.3. Analysis Methods
2.3.1. Multifunctionality
2.3.2. Network-Based Visualisation of the Relationships between Individual Ecosystem Service and Condition Indicators
2.3.3. Identification of Ecosystem Service Bundles by k-Means Cluster Analysis
3. Results
3.1. The Ecosystem Services Multifunctionality of Hungarian Ecosystems
3.2. Multifunctionality and Ecosystem Condition in Forests
3.3. Ecosystem Service Correlation Networks
3.3.1. Entire Country
3.3.2. Forests
3.4. Ecosystem Services Bundles in Hungary—The Result of the Cluster Analysis
4. Discussion
4.1. Patterns of Ecosystem Services Multifunctionality in Hungary
4.2. The Relationship between Multifunctionality and Ecosystem Condition in Forests
4.3. Interrelations between Ecosystem Services
4.4. Ecosystem Services Bundles in Hungary
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive Human-Driven Decline of Life on Earth Points to the Need for Transformative Change. Science 2019, 366, aax3100. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; p. 1148. [Google Scholar]
- Ruckelshaus, M.H.; Jackson, S.T.; Mooney, H.A.; Jacobs, K.L.; Kassam, K.-A.S.; Arroyo, M.T.K.; Báldi, A.; Bartuska, A.M.; Boyd, J.; Joppa, L.N.; et al. The IPBES Global Assessment: Pathways to Action. Trends Ecol. Evol. 2020, 35, 407–414. [Google Scholar] [CrossRef]
- EC (European Commission). EU Biodiversity Strategy for 2030—Bringing Nature Back into Our Lives. COM/2020/380; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- UN. Kunming-Montreal Global Biodiversity Framework. In Proceedings of the UN Convention on Biological Diversity, 15th Conference of Parties, Montréal, Canada, 7–19 December 2022. [Google Scholar]
- EC (European Commission). Proposal for a Regulation of the European Parliament and of the Council on Nature Restoration; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Cimon-Morin, J.; Goyette, J.-O.; Mendes, P.; Pellerin, S.; Poulin, M. A Systematic Conservation Planning Approach to Maintaining Ecosystem Service Provision in Working Landscapes. FACETS 2021, 6, 1570–1600. [Google Scholar] [CrossRef]
- Hölting, L.; Komossa, F.; Filyushkina, A.; Gastinger, M.-M.; Verburg, P.H.; Beckmann, M.; Volk, M.; Cord, A.F. Including Stakeholders’ Perspectives on Ecosystem Services in Multifunctionality Assessments. Ecosyst. People 2020, 16, 354–368. [Google Scholar] [CrossRef]
- Bennett, E.M.; Chaplin-Kramer, R. Science for the Sustainable Use of Ecosystem Services. F1000Research 2016, 5, 2622. [Google Scholar] [CrossRef] [PubMed]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of Decision Support Tools to Operationalize the Ecosystem Services Concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef]
- Agudelo, C.A.R.; Bustos, S.L.H.; Moreno, C.A.P. Modeling Interactions among Multiple Ecosystem Services. A Critical Review. Ecol. Model. 2020, 429, 109103. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards Systematic Analyses of Ecosystem Service Trade-Offs and Synergies: Main Concepts, Methods and the Road Ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Hölting, L.; Jacobs, S.; Felipe-Lucia, M.R.; Maes, J.; Norström, A.V.; Plieninger, T.; Cord, A.F. Measuring Ecosystem Multifunctionality across Scales. Environ. Res. Lett. 2019, 14, 124083. [Google Scholar] [CrossRef]
- Schröter, M.; Remme, R.P. Spatial Prioritisation for Conserving Ecosystem Services: Comparing Hotspots with Heuristic Optimisation. Landsc. Ecol. 2016, 31, 431–450. [Google Scholar] [CrossRef]
- Funk, A.; Martínez-López, J.; Borgwardt, F.; Trauner, D.; Bagstad, K.J.; Balbi, S.; Magrach, A.; Villa, F.; Hein, T. Identification of Conservation and Restoration Priority Areas in the Danube River Based on the Multi-Functionality of River-Floodplain Systems. Sci. Total Environ. 2019, 654, 763–777. [Google Scholar] [CrossRef]
- Szitár, K.; Csoszi, M.; Vaszócsik, V.; Schneller, K.; Csecserits, A.; Kollányi, L.; Petrik, O.; Lehoczki, R.; Halassy, M.; Tanács, E.; et al. Az Országos Zöldinfrastruktúra-Hálózat Kijelölésének Módszertana Többszempontú Állapotértékelés Alapján. Természetvédelmi Közlemények 2021, 27, 145–157. [Google Scholar] [CrossRef]
- Le Provost, G.; Schenk, N.V.; Penone, C.; Thiele, J.; Westphal, C.; Allan, E.; Ayasse, M.; Blüthgen, N.; Boeddinghaus, R.S.; Boesing, A.L.; et al. The Supply of Multiple Ecosystem Services Requires Biodiversity across Spatial Scales. Nat. Ecol. Evol. 2023, 7, 236–249. [Google Scholar] [CrossRef]
- Hölting, L.; Beckmann, M.; Volk, M.; Cord, A.F. Multifunctionality Assessments – More than Assessing Multiple Ecosystem Functions and Services? A Quantitative Literature Review. Ecol. Indic. 2019, 103, 226–235. [Google Scholar] [CrossRef]
- Manning, P.; van der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining Ecosystem Multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Schuster, R.; Jacob, A.L.; Hanna, D.E.L.; Dallaire, C.O.; Raudsepp-Hearne, C.; Bennett, E.M.; Lehner, B.; Chan, K.M.A. Identifying Key Ecosystem Service Providing Areas to Inform National-Scale Conservation Planning. Environ. Res. Lett. 2021, 16, 014038. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial Interactions among Ecosystem Services in an Urbanizing Agricultural Watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef]
- Czúcz, B.; Kalóczkai, Á.; Arany, I.; Kelemen, K.; Papp, J.; Havadtői, K.; Campbell, K.; Kelemen, M.; Vári, Á. How to Design a Transdisciplinary Regional Ecosystem Service Assessment: A Case Study from Romania, Eastern Europe. One Ecosyst. 2018, 3, e26363. [Google Scholar] [CrossRef]
- Decsi, B.; Ács, T.; Jolánkai, Z.; Kardos, M.K.; Koncsos, L.; Vári, Á.; Kozma, Z. From Simple to Complex—Comparing Four Modelling Tools for Quantifying Hydrologic Ecosystem Services. Ecol. Indic. 2022, 141, 109143. [Google Scholar] [CrossRef]
- Byrnes, J.E.K.; Gamfeldt, L.; Isbell, F.; Lefcheck, J.S.; Griffin, J.N.; Hector, A.; Cardinale, B.J.; Hooper, D.U.; Dee, L.E.; Emmett Duffy, J. Investigating the Relationship between Biodiversity and Ecosystem Multifunctionality: Challenges and Solutions. Methods Ecol. Evol. 2014, 5, 111–124. [Google Scholar] [CrossRef]
- Van der Plas, F.; Manning, P.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Hector, A.; Ampoorter, E.; Baeten, L.; et al. Jack-of-All-Trades Effects Drive Biodiversity–Ecosystem Multifunctionality Relationships in European Forests. Nat. Commun. 2016, 7, 11109. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Loinaz, G.; Alday, J.G.; Onaindia, M. Multiple Ecosystem Services Landscape Index: A Tool for Multifunctional Landscapes Conservation. J. Environ. Manag. 2015, 147, 152–163. [Google Scholar] [CrossRef]
- Grass, I.; Loos, J.; Baensch, S.; Batáry, P.; Librán-Embid, F.; Ficiciyan, A.; Klaus, F.; Riechers, M.; Rosa, J.; Tiede, J.; et al. Land-Sharing/-Sparing Connectivity Landscapes for Ecosystem Services and Biodiversity Conservation. People Nat. 2019, 1, 262–272. [Google Scholar] [CrossRef]
- Berry, P.; Turkelboom, F.; Verheyden, W.; Martín-López, B. Ecosystem Services Bundles. In OpenNESS Reference Book; Potschin, M., Jax, K., Eds.; EC FP7 Grant Agreement no.308428; 2015; Available online: https://oppla.eu/sites/default/files/uploads/specosystem-service-bundles.pdf (accessed on 10 February 2020).
- Dittrich, A.; Seppelt, R.; Václavík, T.; Cord, A.F. Integrating Ecosystem Service Bundles and Socio-Environmental Conditions—A National Scale Analysis from Germany. Ecosyst. Serv. 2017, 28, 273–282. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Lamarque, P.; Martín-López, B.; Crouzat, E.; Gos, P.; Byczek, C.; Lavorel, S. An Interdisciplinary Methodological Guide for Quantifying Associations between Ecosystem Services. Glob. Environ. Chang. 2014, 28, 298–308. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding Relationships among Multiple Ecosystem Services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating Win-Wins from Trade-Offs? Ecosystem Services for Human Well-Being: A Meta-Analysis of Ecosystem Service Trade-Offs and Synergies in the Real World. Glob. Environ. Chang. 2014, 28, 263–275. [Google Scholar] [CrossRef]
- Kovács, E.; Kelemen, E.; Kalóczkai, Á.; Margóczi, K.; Pataki, G.; Gébert, J.; Málovics, G.; Balázs, B.; Roboz, Á.; Krasznai Kovács, E.; et al. Understanding the Links between Ecosystem Service Trade-Offs and Conflicts in Protected Areas. Ecosyst. Serv. 2015, 12, 117–127. [Google Scholar] [CrossRef]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and Trade-Offs between Ecosystem Service Supply, Biodiversity, and Habitat Conservation Status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Rabe, S.-E.; Koellner, T.; Marzelli, S.; Schumacher, P.; Grêt-Regamey, A. National Ecosystem Services Mapping at Multiple Scales—The German Exemplar. Ecol. Indic. 2016, 70, 357–372. [Google Scholar] [CrossRef]
- Morelli, F.; Jiguet, F.; Sabatier, R.; Dross, C.; Princé, K.; Tryjanowski, P.; Tichit, M. Spatial Covariance between Ecosystem Services and Biodiversity Pattern at a National Scale (France). Ecol. Indic. 2017, 82, 574–586. [Google Scholar] [CrossRef]
- Mederly, P.; Černecký, J.; Špulerová, J.; Izakovičová, Z.; Ďuricová, V.; Považan, R.; Švajda, J.; Močko, M.; Jančovič, M.; Gusejnov, S.; et al. National Ecosystem Services Assessment in Slovakia – Meeting Old Liabilities and Introducing New Methods. One Ecosyst. 2020, 5, e53677. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Neugarten, R.; Sharp, R.; Collins, P.; Polasky, S.; Hole, D.; Schuster, R.; Strimas-Mackey, M.; Mulligan, M.; Brandon, C.; et al. Mapping the Planet’s Critical Natural Assets for People. Nat. Ecol. Evol. 2021, 7, 51–61. [Google Scholar] [CrossRef]
- Malinga, R.; Gordon, L.J.; Jewitt, G.; Lindborg, R. Mapping Ecosystem Services across Scales and Continents—A Review. Ecosyst. Serv. 2015, 13, 57–63. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, R.; Zhang, Y.; Su, H.; Wang, P.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Squire, G. Ecosystem Health towards Sustainability. Ecosyst. Health Sustain. 2015, 1, 1–15. [Google Scholar] [CrossRef]
- Ten Brink, P.; Mutafoglu, K.; Schweitzer, J.-P.; Kettunen, M.; Twigger-Ross, C.; Baker, J.; Kuipers, Y.; Emonts, M.; Tyrväinen, L.; Hujala, T.; et al. The Health and Social Benefits of Nature and Biodiversity Protection. In A Report for the European Commission (ENV. B. 3/ETU/2014/0039); Institute for European Environmental Policy: London, UK, 2016. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Potschin-Young, M.; Burkhard, B.; Czúcz, B.; Santos-Martín, F. Glossary of Ecosystem Services Mapping and Assessment Terminology. One Ecosyst. 2018, 3, e27110. [Google Scholar] [CrossRef]
- WHO. A Health Perspective on the Role of the Environment in One Health; World Health Organization, Regional Office for Europe: Copenhagen, Demark, 2022. [Google Scholar]
- Smith, A.C.; Harrison, P.A.; Pérez Soba, M.; Archaux, F.; Blicharska, M.; Egoh, B.N.; Erős, T.; Fabrega Domenech, N.; György, á.I.; Haines-Young, R.; et al. How Natural Capital Delivers Ecosystem Services: A Typology Derived from a Systematic Review. Ecosyst. Serv. 2017, 26, 111–126. [Google Scholar] [CrossRef]
- Van der Plas, F. Biodiversity and Ecosystem Functioning in Naturally Assembled Communities. Biol. Rev. 2019, 94, 1220–1245. [Google Scholar] [CrossRef]
- Rendon, P.; Erhard, M.; Maes, J.; Burkhard, B. Analysis of Trends in Mapping and Assessment of Ecosystem Condition in Europe. Ecosyst. People 2019, 15, 156–172. [Google Scholar] [CrossRef]
- VanderWilde, C.P.; Newell, J.P. Ecosystem Services and Life Cycle Assessment: A Bibliometric Review. Resour. Conserv. Recycl. 2021, 169, 105461. [Google Scholar] [CrossRef]
- Roche, P.K.; Campagne, C.S. From Ecosystem Integrity to Ecosystem Condition: A Continuity of Concepts Supporting Different Aspects of Ecosystem Sustainability. Curr. Opin. Environ. Sustain. 2017, 29, 63–68. [Google Scholar] [CrossRef]
- Keith, H.; Czúcz, B.; Jackson, B.; Driver, A.; Nicholson, E.; Maes, J. A Conceptual Framework and Practical Structure for Implementing Ecosystem Condition Accounts. One Ecosyst. 2020, 5, e58216. [Google Scholar] [CrossRef]
- Potschin-Young, M.; Czúcz, B.; Liquete, C.; Maes, J.; Rusch, G.M.; Haines-Young, R. Intermediate Ecosystem Services: An Empty Concept? Ecosyst. Serv. 2017, 27, 124–126. [Google Scholar] [CrossRef]
- Erdős, L.; Bede-Fazekas, Á.; Bátori, Z.; Berg, C.; Kröel-Dulay, G.; Magnes, M.; Sengl, P.; Tölgyesi, C.; Török, P.; Zinnen, J. Species-Based Indicators to Assess Habitat Degradation: Comparing the Conceptual, Methodological, and Ecological Relationships between Hemeroby and Naturalness Values. Ecol. Indic. 2022, 136, 108707. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Manning, P.; van der Plas, F.; Boch, S.; Prati, D.; Ammer, C.; Schall, P.; Gossner, M.M.; et al. Multiple Forest Attributes Underpin the Supply of Multiple Ecosystem Services. Nat. Commun. 2018, 9, 4839. [Google Scholar] [CrossRef]
- Neyret, M.; Fischer, M.; Allan, E.; Hölzel, N.; Klaus, V.H.; Kleinebecker, T.; Krauss, J.; Le Provost, G.; Peter, S.; Schenk, N.; et al. Assessing the Impact of Grassland Management on Landscape Multifunctionality. Ecosyst. Serv. 2021, 52, 101366. [Google Scholar] [CrossRef]
- Aslaksen, I.; Nybø, S.; Framstad, E.; Garnåsjordet, P.A.; Skarpaas, O. Biodiversity and Ecosystem Services: The Nature Index for Norway. Ecosyst. Serv. 2015, 12, 108–116. [Google Scholar] [CrossRef]
- Rendon, P.; Steinhoff-Knopp, B.; Burkhard, B. Linking Ecosystem Condition and Ecosystem Services: A Methodological Approach Applied to European Agroecosystems. Ecosyst. Serv. 2022, 53, 101387. [Google Scholar] [CrossRef]
- Tanács, E.; Bede-Fazekas, Á.; Csecserits, A.; Kisné Fodor, L.; Pásztor, L.; Somodi, I.; Standovár, T.; Zlinszky, A.; Zsembery, Z.; Vári, Á. Assessing Ecosystem Condition at the National Level in Hungary—Indicators, Approaches, Challenges. One Ecosyst. 2022, 7, e81543. [Google Scholar] [CrossRef]
- Maes, J.; Teller, A.; Erhard, M.; Grizzetti, B.; Paracchini, M.L.; Somma, F.; Orgiazzi, A.; Jones, A.; Zulian, G.; Petersen, J.-E.; et al. Mapping and Assessment of Ecosystems and Their Services an Analytical Framework for Mapping and Assessment of Ecosystem Condition in EU: Discussion Paper; Publications office of the European Union: Luxembourg, 2018; ISBN 978-92-79-74288-0. [Google Scholar]
- Van der Plas, F.; Manning, P.; Soliveres, S.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Ampoorter, E.; Baeten, L.; et al. Biotic Homogenization Can Decrease Landscape-Scale Forest Multifunctionality. Proc. Natl. Acad. Sci. USA 2016, 113, 3557–3562. [Google Scholar] [CrossRef]
- Prangel, E.; Kasari-Toussaint, L.; Neuenkamp, L.; Noreika, N.; Karise, R.; Marja, R.; Ingerpuu, N.; Kupper, T.; Keerberg, L.; Oja, E.; et al. Afforestation and Abandonment of Semi-natural Grasslands Lead to Biodiversity Loss and a Decline in Ecosystem Services and Functions. J. Appl. Ecol. 2023, 60, 825–836. [Google Scholar] [CrossRef]
- Hakkenberg, C.R.; Goetz, S.J. Climate Mediates the Relationship between Plant Biodiversity and Forest Structure across the United States. Glob. Ecol. Biogeogr. 2021, 30, 2245–2258. [Google Scholar] [CrossRef]
- Blasi, C.; Marchetti, M.; Chiavetta, U.; Aleffi, M.; Audisio, P.; Azzella, M.M.; Brunialti, G.; Capotorti, G.; Del Vico, E.; Lattanzi, E.; et al. Multi-taxon and Forest Structure Sampling for Identification of Indicators and Monitoring of Old-growth Forest. Plant Biosyst.—Int. J. Deal. Asp. Plant Biol. 2010, 144, 160–170. [Google Scholar] [CrossRef]
- Parisi, F.; Lombardi, F.; Sciarretta, A.; Tognetti, R.; Campanaro, A.; Marchetti, M.; Trematerra, P. Spatial Patterns of Saproxylic Beetles in a Relic Silver Fir Forest (Central Italy), Relationships with Forest Structure and Biodiversity Indicators. For. Ecol. Manag. 2016, 381, 217–234. [Google Scholar] [CrossRef]
- Moeslund, J.E.; Zlinszky, A.; Ejrnæs, R.; Brunbjerg, A.K.; Bøcher, P.K.; Svenning, J.-C.; Normand, S. Light Detection and Ranging Explains Diversity of Plants, Fungi, Lichens, and Bryophytes across Multiple Habitats and Large Geographic Extent. Ecol. Appl. 2019, 29, e01907. [Google Scholar] [CrossRef]
- Kovács-Hostyánszki, A.; Bereczki, K.; Czúcz, B.; Fabók, V.; Fodor, L.; Kalóczkai, Á.; Kiss, M.; Koncz, P.; Kovács, E.; Rezneki, R.; et al. Nemzeti Ökoszisztéma-Szolgáltatás Térképezés És Értékelés, Avagy a Természetvédelem Országos Programja. Természetvédelmi Közlemények 2019, 25, 80–90. [Google Scholar] [CrossRef]
- Vári, Á.; Tanács, E.; Tormáné Kovács, E.; Kalóczkai, Á.; Arany, I.; Czúcz, B.; Bereczki, K.; Belényesi, M.; Csákvári, E.; Kiss, M.; et al. National Ecosystem Services Assessment in Hungary: Framework, Process and Conceptual Questions. Sustainability 2022, 14, 12847. [Google Scholar] [CrossRef]
- Tanács, E.; Belényesi, M.; Lehoczki, R.; Pataki, R.; Petrik, O.; Standovár, T.; Pásztor, L.; Laborczi, A.; Szatmári, G.; Molnár, Z.; et al. Compiling a High-Resolution Country-Level Ecosystem Map to Support Environmental Policy: Methodological Challenges and Solutions from Hungary. Geocarto Int. 2021, 37, 8746–8769. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The Links between Biodiversity, Ecosystem Services and Human Well-Being. Ecosyst. Ecol. New Synth. 2010, 1, 110–139. [Google Scholar]
- Czúcz, B.; Haines-Young, R.; Kiss, M.; Bereczki, K.; Kertész, M.; Vári, Á.; Potschin-Young, M.; Arany, I. Ecosystem Service Indicators along the Cascade: How Do Assessment and Mapping Studies Position Their Indicators? Ecol. Indic. 2020, 118, 106729. [Google Scholar] [CrossRef]
- Kovács-Hostyánszki, A.; Kisné Fodor, L.; Zsembery, Z.; Tanács, E. (Eds.) Hazai Ökoszisztéma-Szolgáltatások Térképezése és Értékelése; Agrárminisztérium: Budapest, Hungary, 2022; ISBN 978-615-6446-07-7. [Google Scholar]
- Bölöni, J.; Molnár, Z.; Illyés, E.; Kun, A. A New Habitat Classification and Manual for Standardized Habitat Mapping. Ann. Bot. 2007, 7, 55–76. [Google Scholar]
- Molnár, C.; Molnár, Z.; Barina, Z.; Bauer, N.; Biró, M.; Bodonczi, L.; Csathó, A.; Csiky, J.; Deák, J.Á.; Fekete, G.; et al. Vegetation-Based Landscape Regions of Hungary. Acta Bot. Hung. 2008, 50, 47–58. [Google Scholar] [CrossRef]
- Pásztor, L.; Laborczi, A.; Takács, K.; Szatmári, G.; Bakacsi, Z.; Szabó, J.; Illés, G. DOSoReMI as the National Implementation of GlobalSoilMap for the Territory of Hungary. In GlobalSoilMap; CRC Press: London, UK, 2017; pp. 17–22. [Google Scholar]
- Pásztor, L.; Bakacsi, Z.; Laborczi, A.; Szabó, J. Kategória típusú talajtérképek térbeli felbontásának javítása kiegészítő talajtani adatok és adatbányászati módszerek segítségével. Agrokémia Talajt. 2013, 62, 205–218. [Google Scholar] [CrossRef]
- Várallyay, G.; Szücs, L.; Murányi, A.; Rajkai, K.; Zilahy, P. Soil factors determining the agro-ecological potential of Hungary. Agrokémia Talajt. 1985, 34, 90–94. [Google Scholar]
- Langanke, T.; Moran, A.; Dulleck, B.; Schleicher, C.; Copernicus Land Monitoring Service–High Resolution Layer Water and Wetness Product Specifications Document. Copernicus Team at EEA: 2016. Available online: https://land.copernicus.eu/user-corner/technical-library/hrl-water-wetness-technical-document-prod-2015 (accessed on 7 May 2023).
- Willemen, L.; Veldkamp, A.; Verburg, P.H.; Hein, L.; Leemans, R. A Multi-Scale Modelling Approach for Analysing Landscape Service Dynamics. J. Environ. Manag. 2012, 100, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Felipe-Lucia, M.R.; Comín, F.A.; Bennett, E.M. Interactions Among Ecosystem Services Across Land Uses in a Floodplain Agroecosystem. Ecol. Soc. 2014, 19, 1–24. [Google Scholar] [CrossRef]
- Lee, H.; Lautenbach, S. A Quantitative Review of Relationships between Ecosystem Services. Ecol. Indic. 2016, 66, 340–351. [Google Scholar] [CrossRef]
- Csorba, P.; Ádám, S.; Bartos-Elekes, Z.; Bata, T.; Bede-Fazekas, Á.; Czúcz, B.; Csima, P.; Csüllög, G.; Fodor, N.; Frisnyák, S.; et al. Landscapes. In National Atlas of Hungary; Kocsis, K., Gercsák, G., Horváth, G., Keresztesi, Z., Nemerkényi, Z., Eds.; Hungarian Academy of Science: Budapest, Hungary, 2018; Volume 2, pp. 112–129. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Hijmans, R.J.; Van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A.; et al. Package ‘Raster’. R Package 2015, 734, 473. [Google Scholar]
- FAO. State of the World’s Forests 2020: Forestry, Biodiversity and People; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Harrell, F.E.; Dupont, C. Hmisc: Harrell Miscellaneous, R Package Version 4.1-1; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 16 February 2018).
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Corrplot: Visualization of a Correlation Matrix, R Package Version 0.84; R Foundation for Statistical Computing: Vienna, Austria, 2017; Volume 1. [Google Scholar]
- Csardi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterjournalComplex Syst. 2006, 1695, 1–9. [Google Scholar]
- H2O. H2O: R Interface for H2O, R Package Version 3.32.0.4; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- De Groot, R.S.; van der Meer, P.J. Quantifying and Valuing Goods and Services Provided by Plantation Forests. In Ecosystem Goods and Services from Plantation Forests; Earthscan: London, UK, 2010; pp. 32–58. [Google Scholar]
- Baral, H.; Guariguata, M.R.; Keenan, R.J. A Proposed Framework for Assessing Ecosystem Goods and Services from Planted Forests. Ecosyst. Serv. 2016, 22, 260–268. [Google Scholar] [CrossRef]
- Felton, A.; Nilsson, U.; Sonesson, J.; Felton, A.M.; Roberge, J.-M.; Ranius, T.; Ahlström, M.; Bergh, J.; Björkman, C.; Boberg, J.; et al. Replacing Monocultures with Mixed-Species Stands: Ecosystem Service Implications of Two Production Forest Alternatives in Sweden. Ambio 2016, 45, 124–139. [Google Scholar] [CrossRef]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic Grasslands: A Synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef]
- Bullock, J.M.; Jefferson, R.G.; Blackstock, T.H.; Pakeman, R.J.; Emmett, B.A.; Pywell, R.J.; Grime, J.P.; Silvertown, J. Semi-Natural Grasslands; UK National Ecosystem Assessment: Cambridge, UK, 2011; pp. 162–195. [Google Scholar]
- Villoslada Peciña, M.; Ward, R.D.; Bunce, R.G.H.; Sepp, K.; Kuusemets, V.; Luuk, O. Country-Scale Mapping of Ecosystem Services Provided by Semi-Natural Grasslands. Sci. Total Environ. 2019, 661, 212–225. [Google Scholar] [CrossRef]
- De Groot, R.; Stuip, M.; Finlayson, C.; Davidson, N. Ramsar Technical Report 3: Valuing Wetlands: Guidance for Valuing the Benefits Derived from Wetland Ecosystem Services; Ramsar Convention Secretariat: Gland, Switzerland; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2006; Available online: https://www.researchgate.net/publication/40110849_Valuing_Wetlands_Guidance_for_Valuing_the_Benefits_Derived_from_Wetland_Ecosystem_Services (accessed on 7 May 2023).
- Davidson, N.C.; van Dam, A.A.; Finlayson, C.M.; McInnes, R.J.; Davidson, N.C.; van Dam, A.A.; Finlayson, C.M.; McInnes, R.J. Worth of Wetlands: Revised Global Monetary Values of Coastal and Inland Wetland Ecosystem Services. Mar. Freshw. Res. 2019, 70, 1189–1194. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Van Meter, K.J.; Byrnes, D.K.; Basu, N.B. Maximizing US Nitrate Removal through Wetland Protection and Restoration. Nature 2020, 588, 625–630. [Google Scholar] [CrossRef]
- Hambäck, P.A.; Dawson, L.; Geranmayeh, P.; Jarsjö, J.; Kačergytė, I.; Peacock, M.; Collentine, D.; Destouni, G.; Futter, M.; Hugelius, G.; et al. Tradeoffs and Synergies in Wetland Multifunctionality: A Scaling Issue. Sci. Total Environ. 2023, 862, 160746. [Google Scholar] [CrossRef]
- Pinke, Z.; Kiss, M.; Lövei, G.L. Developing an Integrated Land Use Planning System on Reclaimed Wetlands of the Hungarian Plain Using Economic Valuation of Ecosystem Services. Ecosyst. Serv. 2018, 30, 299–308. [Google Scholar] [CrossRef]
- McInnes, R.J. Recognizing Ecosystem Services from Wetlands of International Importance: An Example from Sussex, UK. Wetlands 2013, 33, 1001–1017. [Google Scholar] [CrossRef]
- European Environment Agency. The European Environment: State and Outlook 2020: Knowledge for Transition to a Sustainable Europe; European Environment Agency: Copenhagen, Denmark, 2019; ISBN 978-92-9480-090-9. [Google Scholar]
- Grêt-Regamey, A.; Weibel, B.; Kienast, F.; Rabe, S.-E.; Zulian, G. A Tiered Approach for Mapping Ecosystem Services. Ecosyst. Serv. 2015, 13, 16–27. [Google Scholar] [CrossRef]
- Palomo, I.; Willemen, L.; Drakou, E.; Burkhard, B.; Crossman, N.; Bellamy, C.; Burkhard, K.; Campagne, C.S.; Dangol, A.; Franke, J.; et al. Practical Solutions for Bottlenecks in Ecosystem Services Mapping. One Ecosyst. 2018, 3, e20713. [Google Scholar] [CrossRef]
- Pandeya, B.; Buytaert, W.; Zulkafli, Z.; Karpouzoglou, T.; Mao, F.; Hannah, D.M. A Comparative Analysis of Ecosystem Services Valuation Approaches for Application at the Local Scale and in Data Scarce Regions. Ecosyst. Serv. 2016, 22, 250–259. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Armsworth, P.R.; Anderson, B.J.; Heinemeyer, A.; Gillings, S.; Roy, D.B.; Thomas, C.D.; Gaston, K.J. The Impact of Proxy-Based Methods on Mapping the Distribution of Ecosystem Services. J. Appl. Ecol. 2010, 47, 377–385. [Google Scholar] [CrossRef]
- Butterfield, B.J.; Camhi, A.L.; Rubin, R.L.; Schwalm, C.R. Chapter Five—Tradeoffs and Compatibilities among Ecosystem Services: Biological, Physical and Economic Drivers of Multifunctionality. In Advances in Ecological Research; Ecosystem Services: From Biodiversity to Society, Part 2; Woodward, G., Bohan, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 54, pp. 207–243. [Google Scholar]
- Hector, A.; Bagchi, R. Biodiversity and Ecosystem Multifunctionality. Nature 2007, 448, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, T.H.; Watson, K.B.; Koh, I.; Ellis, A.M.; Nicholson, C.C.; Posner, S.; Richardson, L.L.; Sonter, L.J. Disaggregating the Evidence Linking Biodiversity and Ecosystem Services. Nat. Commun. 2016, 7, 13106. [Google Scholar] [CrossRef] [PubMed]
- Bartha, D.; Bodonczi, L.; Szmorad, F.; Aszalós, R.; Bölöni, J.; Kenderes, K.; Ódor, P.; Standovár, T.; Tímár, G. A Magyarországi Erdők Természetességének Vizsgálata II. Az Erdők Természetességének Elemzése Tájak És Erdőtársulások Szerint. (Assessing Forest Naturalness in Hungary II. The Forest Naturalness of Macroregions and Forest Types). Erdészeti Lapok 2005, 140, 198–201. [Google Scholar]
- Bölöni, J.; Molnár, Z.; Horváth, F.; Illyés, E. Naturalness-Based Habitat Quality of the Hungarian (Semi-)Natural Habitats. Acta Bot. Hung. 2008, 50, 149–159. [Google Scholar] [CrossRef]
- Lafond, V.; Cordonnier, T.; Mao, Z.; Courbaud, B. Trade-Offs and Synergies between Ecosystem Services in Uneven-Aged Mountain Forests: Evidences Using Pareto Fronts. Eur. J. For. Res. 2017, 136, 997–1012. [Google Scholar] [CrossRef]
- Vallet, A.; Locatelli, B.; Levrel, H.; Wunder, S.; Seppelt, R.; Scholes, R.J.; Oszwald, J. Relationships between Ecosystem Services: Comparing Methods for Assessing Tradeoffs and Synergies. Ecol. Econ. 2018, 150, 96–106. [Google Scholar] [CrossRef]
- Bonsu, N.O.; Dhubháin, Á.N.; O’Connor, D. Understanding Forest Resource Conflicts in Ireland: A Case Study Approach. Land Use Policy 2019, 80, 287–297. [Google Scholar] [CrossRef]
- Eyvindson, K.; Repo, A.; Mönkkönen, M. Mitigating Forest Biodiversity and Ecosystem Service Losses in the Era of Bio-Based Economy. For. Policy Econ. 2018, 92, 119–127. [Google Scholar] [CrossRef]
- Vergarechea, M.; Astrup, R.; Fischer, C.; Øistad, K.; Blattert, C.; Hartikainen, M.; Eyvindson, K.; Di Fulvio, F.; Forsell, N.; Burgas, D.; et al. Future Wood Demands and Ecosystem Services Trade-Offs: A Policy Analysis in Norway. For. Policy Econ. 2023, 147, 102899. [Google Scholar] [CrossRef]
- Sutherland, I.J.; Bennett, E.M.; Gergel, S.E. Recovery Trends for Multiple Ecosystem Services Reveal Non-Linear Responses and Long-Term Tradeoffs from Temperate Forest Harvesting. For. Ecol. Manag. 2016, 374, 61–70. [Google Scholar] [CrossRef]
- Frélichová, J.; Vačkář, D.; Pártl, A.; Loučková, B.; Harmáčková, Z.V.; Lorencová, E. Integrated Assessment of Ecosystem Services in the Czech Republic. Ecosyst. Serv. 2014, 8, 110–117. [Google Scholar] [CrossRef]
- Széchy, A.; Szerényi, Z. Valuing the Recreational Services Provided by Hungary’s Forest Ecosystems. Sustainability 2023, 15, 3924. [Google Scholar] [CrossRef]
- Albert, C.; Bonn, A.; Burkhard, B.; Daube, S.; Dietrich, K.; Engels, B.; Frommer, J.; Götzl, M.; Grêt-Regamey, A.; Job-Hoben, B.; et al. Towards a National Set of Ecosystem Service Indicators: Insights from Germany. Ecol. Indic. 2016, 61, 38–48. [Google Scholar] [CrossRef]
- Boerema, A.; Rebelo, A.J.; Bodi, M.B.; Esler, K.J.; Meire, P. Are Ecosystem Services Adequately Quantified? J. Appl. Ecol. 2017, 54, 358–370. [Google Scholar] [CrossRef]
- Gonzalez-Redin, J.; Luque, S.; Poggio, L.; Smith, R.; Gimona, A. Spatial Bayesian Belief Networks as a Planning Decision Tool for Mapping Ecosystem Services Trade-Offs on Forested Landscapes. Environ. Res. 2016, 144, 15–26. [Google Scholar] [CrossRef]
- Bodin, Ö.; Alexander, S.M.; Baggio, J.; Barnes, M.L.; Berardo, R.; Cumming, G.S.; Dee, L.E.; Fischer, A.P.; Fischer, M.; Mancilla Garcia, M.; et al. Improving Network Approaches to the Study of Complex Social–Ecological Interdependencies. Nat. Sustain. 2019, 2, 551–559. [Google Scholar] [CrossRef]
- Kuslits, B.; Vári, Á.; Tanács, E.; Aszalós, R.; Drasovean, A.; Buchriegler, R.; Laufer, Z.; Krsic, D.; Milanovic, R.; Arany, I. Ecosystem Services Becoming Political: How Ecological Processes Shape Local Resource-Management Networks. Front. Ecol. Evol. 2021, 9, 635988. [Google Scholar] [CrossRef]
- Dee, L.E.; Allesina, S.; Bonn, A.; Eklöf, A.; Gaines, S.D.; Hines, J.; Jacob, U.; McDonald-Madden, E.; Possingham, H.; Schröter, M.; et al. Operationalizing Network Theory for Ecosystem Service Assessments. Trends Ecol. Evol. 2017, 32, 118–130. [Google Scholar] [CrossRef]
- Eigenbrod, F. Redefining Landscape Structure for Ecosystem Services. Curr. Landsc. Ecol. Rep. 2016, 1, 80–86. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Guerrero, A.M.; Alexander, S.M.; Ashander, J.; Baggio, J.A.; Barnes, M.L.; Bodin, Ö.; Bonn, A.; Fortin, M.-J.; Friedman, R.S.; et al. Conceptualizing Ecosystem Services Using Social–Ecological Networks. Trends Ecol. Evol. 2022, 37, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Bauhus, J.; Pokorny, B.; van der Meer, P.J.; Kanowski, P.J.; Kanninen, M. Ecosystem Goods and Services–the Key for Sustainable Plantations. In Ecosystem Goods and Services from Plantation Forests; Earthscan: London, UK, 2010; pp. 221–243. [Google Scholar]
- Rédei, T.; Csecserits, A.; Lhotsky, B.; Barabás, S.; Kröel-Dulay, G.; Ónodi, G.; Botta-Dukát, Z. Plantation Forests Cannot Support the Richness of Forest Specialist Plants in the Forest-Steppe Zone. For. Ecol. Manag. 2020, 461, 117964. [Google Scholar] [CrossRef]
- Vu Ho, K.; Kröel-Dulay, G.; Tölgyesi, C.; Bátori, Z.; Tanács, E.; Kertész, M.; Török, P.; Erdős, L. Non-Native Tree Plantations Are Weak Substitutes for near-Natural Forests Regarding Plant Diversity and Ecological Value. For. Ecol. Manag. 2023, 531, 120789. [Google Scholar] [CrossRef]
- Almeida, I.; Rösch, C.; Saha, S. Converting Monospecific into Mixed Forests: Stakeholders’ Views on Ecosystem Services in the Black Forest Region. Ecol. Soc. 2021, 26, 28. [Google Scholar] [CrossRef]
Ecosystem Service | Indicator | Original Level | Short Description |
---|---|---|---|
Cultivated crops for nutrition | Crop yield | Level 3 |
|
Reared animals and their outputs for nutrition | Grass yield | Part of level 2 | |
Plant-based energy resources (firewood production) | Wood supply | Level 1 |
|
Plant-based energy resources (firewood production) | Wood yield | Level 2 |
|
Global climate regulation | Greenhouse gas (GHG) balance | Level 2 (modified) |
|
Microclimate regulation | Local climate index | Level 1 |
|
Microclimate regulation | F-index | Level 1 |
|
Pollination | Relative pollination potential | Level 2 |
|
Mediation of waste and toxics—filtration of water-soluble pollutants | Filtration by ecosystems | Level 2 |
|
Mitigation of surface degradation and erosion control | Erosion risk | Level 3 |
|
Hydrological cycle and water flow regulation | Excess water probability | Level 2 |
|
Flood and rainwater runoff control (in hilly areas) | Runoff retention | Level 2 |
|
Recreation—hiking | Hiking | Level 1 and partly Level 2 |
|
Mushroom gathering | Fungi site suitability | Level 2 |
|
Related Ecosystem Service or Mapping Approach | Indicator | Short Description |
---|---|---|
Service-specific indicator: filtration Level 1 | Potential runoff coefficient |
|
General condition indicator (ecosystem specific, direct) | Forest condition (structure) |
|
General condition indicator (ecosystem specific, direct) | Forest condition (tree species composition) |
|
General condition indicator (ecosystem specific, direct) | Forest condition (final score) |
|
Service-specific indicator: Global climate regulation, Level 1 | Soil organic C content |
|
General condition indicator | Soil fertility index | |
General condition indicator landscape-level | Habitat diversity |
|
General condition indicator (ecosystem-specific, pressure-based proxy) | Grassland condition |
|
General condition indicator (ecosystem-specific, pressure-based proxy) | Wetland condition |
|
General condition indicator (ecosystem-specific, pressure-based proxy) | Cropland condition |
|
Major Ecosystem Type | Area (ha) | The Most Characteristic Multifunctionality Score within the Type (Majority of Values) |
---|---|---|
Native forests | 1,082,500 (12%) | 10 |
Grasslands | 922,400 (9%) | 8 |
Wetlands | 348,600 (3.5%) | 7 |
Non-native tree plantations | 772,200 (8%) | 6 |
Agricultural areas | 28,007,600 (32%) | 2 |
Spearman’s rho | Ecosystem Services’ Multifunctionality | ||
---|---|---|---|
Forest Condition | All Forests | Native Forests | Non-Native Tree Plantations |
Final forest condition score | 0.56 | 0.25 | 0.25 |
Forest structure score | 0.32 | 0.06 | 0.29 |
Forest composition score | 0.57 | 0.27 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanács, E.; Vári, Á.; Bede-Fazekas, Á.; Báldi, A.; Csákvári, E.; Endrédi, A.; Fabók, V.; Kisné Fodor, L.; Kiss, M.; Koncz, P.; et al. Finding the Green Grass in the Haystack? Integrated National Assessment of Ecosystem Services and Condition in Hungary, in Support of Conservation and Planning. Sustainability 2023, 15, 8489. https://doi.org/10.3390/su15118489
Tanács E, Vári Á, Bede-Fazekas Á, Báldi A, Csákvári E, Endrédi A, Fabók V, Kisné Fodor L, Kiss M, Koncz P, et al. Finding the Green Grass in the Haystack? Integrated National Assessment of Ecosystem Services and Condition in Hungary, in Support of Conservation and Planning. Sustainability. 2023; 15(11):8489. https://doi.org/10.3390/su15118489
Chicago/Turabian StyleTanács, Eszter, Ágnes Vári, Ákos Bede-Fazekas, András Báldi, Edina Csákvári, Anett Endrédi, Veronika Fabók, Lívia Kisné Fodor, Márton Kiss, Péter Koncz, and et al. 2023. "Finding the Green Grass in the Haystack? Integrated National Assessment of Ecosystem Services and Condition in Hungary, in Support of Conservation and Planning" Sustainability 15, no. 11: 8489. https://doi.org/10.3390/su15118489
APA StyleTanács, E., Vári, Á., Bede-Fazekas, Á., Báldi, A., Csákvári, E., Endrédi, A., Fabók, V., Kisné Fodor, L., Kiss, M., Koncz, P., Kovács-Hostyánszki, A., Mészáros, J., Pásztor, L., Rezneki, R., Standovár, T., Zsembery, Z., & Török, K. (2023). Finding the Green Grass in the Haystack? Integrated National Assessment of Ecosystem Services and Condition in Hungary, in Support of Conservation and Planning. Sustainability, 15(11), 8489. https://doi.org/10.3390/su15118489