Potential Applications of Food-Waste-Based Anaerobic Digestate for Sustainable Crop Production Practice
Abstract
:1. Introduction
2. Food Waste Anaerobic Digestate
3. Nutrient Characteristics of Food Waste Anaerobic Digestate
3.1. High NH4+
3.2. High NaCl
3.3. Less Available Nutrients including P and S
3.4. pH Fluctuation
4. Effects of Using FWAD on Crop Production
4.1. Comparisons with Synthetic Fertilizer
4.2. Effects of Concentrations of Food Waste Anaerobic Digestate
4.3. Effects of Controlling Nitrification
4.4. Effects of Using Food Waste Anaerobic Digestate with Biochar
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAO 2013. Food Wastage Footprint: Impacts on Natural Re-Sources; FAO: Rome, Italy, 2013. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Environmental Protection Agency. 2018 Food Waste Report. (Office of Resource Conservation and Recovery); Environmental Protection Agency: Washington, DC, USA, 2020.
- Song, S.; Lim, J.W.; Lee, J.T.; Cheong, J.C.; Hoy, S.H.; Hu, Q.; Tan, J.K.; Chiam, Z.; Arora, S.; Lum, T.Q.; et al. Food-waste anaerobic digestate as a fertilizer: The agronomic properties of untreated digestate and biochar-filtered digestate residue. Waste Manag. 2021, 136, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Dutta, S.; He, M.; Xiong, X.; Tsang, D.C. Sustainable management and recycling of food waste anaerobic digestate: A review. Bioresour. Technol. 2021, 341, 125915. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Smith, E. Fertilizer Prices Are at Record Highs Here’s What That Means for the Global Economy. CNBC. Available online: https://www.cnbc.com/2022/03/22/fertilizer-prices-are-at-record-highs-heres-what-that-means.html (accessed on 10 December 2022).
- Chai, R.; Ye, X.; Ma, C.; Wang, Q.; Tu, R.; Zhang, L.; Gao, H. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manag. 2019, 14, 20. [Google Scholar] [CrossRef]
- Martin, M.; Poulikidou, S.; Molin, E. Exploring the environmental performance of urban symbiosis for vertical hydroponic farming. Sustainability 2019, 11, 6724. [Google Scholar] [CrossRef]
- Losak, T.; Hlusek, J.; Zatloukalova, A.; Musilova, L.; Vitezova, M.; Skarpa, P.; Zlamalova, T.; Fryc, J.; Vitez, T.; Marecek, J.; et al. Digestate from biogas plants is an attractive alternative to mineral fertilisation of kohlrabi. J. Sustain. Dev. Energy Water Environ. Syst. 2014, 2, 309–318. [Google Scholar] [CrossRef]
- Stoknes, K.; Scholwin, F.; Krzesiński, W.; Wojciechowska, E.; Jasińska, A. Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag. 2016, 56, 466–476. [Google Scholar] [CrossRef]
- Liedl, B.E.; Cummins, M.; Young, A.; Williams, M.L.; Chatfield, J.M. March. Hydroponic lettuce production using liquid effluent from poultry waste bioremediation as a nutrient source. In VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition; ISHS: Leuven, Belgium, 2004; Volume 659, pp. 721–728. [Google Scholar] [CrossRef]
- Pelayo Lind, O.; Hultberg, M.; Bergstrand, K.J.; Larsson-Jönsson, H.; Caspersen, S.; Asp, H. Biogas digestate in vegetable hydroponic production: pH dynamics and pH management by controlled nitrification. Waste Biomass Valori. 2021, 12, 123–133. [Google Scholar] [CrossRef]
- Ronga, D.; Setti, L.; Salvarani, C.; De Leo, R.; Bedin, E.; Pulvirenti, A.; Milc, J.; Pecchioni, N.; Francia, E. Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Sci. Hortic. 2019, 244, 172–181. [Google Scholar] [CrossRef]
- Lamolinara, B.; Pérez-Martínez, A.; Guardado-Yordi, E.; Fiallos, C.G.; Diéguez-Santana, K.; Ruiz-Mercado, G.J. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Manag. 2022, 140, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Bergstrand, K.J. Organic fertilizers in greenhouse production systems–a review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
- Mickan, B.S.; Ren, A.T.; Buhlmann, C.H.; Ghadouani, A.; Solaiman, Z.M.; Jenkins, S.; Pang, J.; Ryan, M.H. Closing the circle for urban food waste anaerobic digestion: The use of digestate and biochar on plant growth in potting soil. J. Clean. Prod. 2022, 347, 131071. [Google Scholar] [CrossRef]
- Weimers, K.; Bergstrand, K.J.; Hultberg, M.; Asp, H. Liquid anaerobic digestate as sole nutrient source in soilless horticulture—Or spiked with mineral nutrients for improved plant growth. Front. Plant Sci. 2022, 13, 443. [Google Scholar] [CrossRef]
- Stoknes, K.; Wojciechowska, E.; Jasińska, A.; Gulliksen, A.; Tesfamichael, A.A. September. Growing vegetables in the circular economy; cultivation of tomatoes on green waste compost and food waste digestate. In International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World; ISHS: Leuven, Belgium, 2017; Volume 1215, pp. 389–396. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste–Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef]
- Gunders, D.; Bloom, J. Wasted: How America Is Losing Up to 40 Percent of Its Food from Farm to Fork to Landfill. Natural Resources Defense Council. August 2017. Available online: https://www.nrdc.org/resources/wasted-how-america-losing-40-percent-its-food-farm-fork-landfill (accessed on 21 November 2022).
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability of anaerobic digestion of household food waste. J. Environ. Manag. 2019, 236, 798–814. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Akbar, D.; Rasul, M.G.; Narayanan, R.; Mofijur, M. Estimation of the sustainable production of gaseous biofuels, generation of electricity, and reduction of greenhouse gas emissions using food waste in anaerobic digesters. Fuel 2022, 310, 122346. [Google Scholar] [CrossRef]
- Nayal, F.S.; Mammadov, A.; Ciliz, N. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion. J. Environ. Manag. 2016, 184, 389–399. [Google Scholar] [CrossRef]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef]
- Manu, M.K.; Li, D.; Liwen, L.; Jun, Z.; Varjani, S.; Wong, J.W.C. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour. Technol. 2021, 334, 125032. [Google Scholar] [CrossRef]
- Dimambro, M.E. Novel Uses for Digestate: Protected horticulture. In Proceedings of the 20th European Biosolids & Organic Resources Conference & Exhibition, Manchester, UK, 9–11 November 2015; Available online: https://www.researchgate.net/profile/Mary_Dimambro/publication/284169259_Novel_uses_for_digestate_Protected_horticulture/links/573b29c208ae9ace840e9fa1.pdf (accessed on 11 November 2022).
- Drosg, B.; Fuchs, W.; Al Seadi, T.; Madsen, M.; Linke, B. Nutrient Recovery by Biogas Digestate Processing; IEA Bioenergy: Dublin, Ireland, 2015; p. 711. [Google Scholar]
- Nelson, P.V. Greenhouse Operation and Management; Prentice Hall: Boston, MA, USA, 2011. [Google Scholar]
- Krishnasamy, K.; Nair, J.; Bäuml, B. Hydroponic system for the treatment of anaerobic liquid. Water Sci. Technol. 2012, 65, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Neal, J.; Wilkie, A.C. Anaerobic digester effluent as fertilizer for hydroponically grown tomatoes. J. Undergrad. Res 2014, 15, 1–5. [Google Scholar]
- Monfet, E.; Aubry, G.; Ramirez, A.A. Nutrient removal and recovery from digestate: A review of the technology. Biofuels 2018, 9, 247–262. [Google Scholar] [CrossRef]
- Ryu, H.D.; Lim, D.Y.; Kim, S.J.; Baek, U.I.; Chung, E.G.; Kim, K.; Lee, J.K. Struvite precipitation for sustainable recovery of nitrogen and phosphorus from anaerobic digestion effluents of swine manure. Sustainability 2020, 12, 8574. [Google Scholar] [CrossRef]
- Li, X.; Guo, J.; Dong, R.; Ahring, B.K.; Zhang, W. Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Sci. Total Environ. 2016, 544, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Somers, M.H.; Azman, S.; Sigurnjak, I.; Ghyselbrecht, K.; Meers, E.; Meesschaert, B.; Appels, L. Effect of digestate disintegration on anaerobic digestion of organic waste. Bioresour. Technol. 2018, 268, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Akter, J.; Lee, J.; Kim, W.; Kim, I. Changes in Organics and Nitrogen during Ozonation of Anaerobic Digester Effluent. Water 2022, 14, 1425. [Google Scholar] [CrossRef]
- Bergstrand, K.J.; Asp, H.; Hultberg, M. Utilizing anaerobic digestates as nutrient solutions in hydroponic production systems. Sustainability 2020, 12, 10076. [Google Scholar] [CrossRef]
- Trajkova, F.; Papadantonakis, N.; Savvas, D. Comparative effects of NaCl and CaCl2 salinity on cucumber grown in a closed hydroponic system. HortScience 2006, 41, 437–441. [Google Scholar] [CrossRef]
- Breś, W.; Kleiber, T.; Markiewicz, B.; Mieloszyk, E.; Mieloch, M. The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy 2022, 12, 244. [Google Scholar] [CrossRef]
- Güngör, K.; Jürgensen, A.; Karthikeyan, K.G. Determination of phosphorus speciation in dairy manure using XRD and XANES spectroscopy. J. Environ. Qual. 2007, 36, 1856–1863. [Google Scholar] [CrossRef] [PubMed]
- Marti, N.; Ferrer, J.; Seco, A.; Bouzas, A. Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Res. 2008, 42, 4609–4618. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.C.; Lee, J.T.; Lim, J.W.; Song, S.; Tan, J.K.; Chiam, Z.Y.; Yap, K.Y.; Lim, E.Y.; Zhang, J.; Tan, H.T.; et al. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Sci. Total Environ. 2020, 715, 136789. [Google Scholar] [CrossRef]
- Cytryn, E.; Levkovitch, I.; Negreanu, Y.; Dowd, S.; Frenk, S.; Silber, A. Impact of short-term acidification on nitrification and nitrifying bacterial community dynamics in soilless cultivation media. Appl. Environ. Microbiol. 2012, 78, 6576–6582. [Google Scholar] [CrossRef]
- Van Rooyen, I.L.; Nicol, W. Nitrogen management in nitrification-hydroponic systems by utilizing their pH characteristics. Environ. Technol. Innov. 2022, 26, 102360. [Google Scholar] [CrossRef]
- Wang, Z.; Zong, H.; Zheng, H.; Liu, G.; Chen, L.; Xing, B. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 2015, 138, 576–583. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar for sustainable soil health: A review of prospects and constraints. Pedosphere 2015, 25, 639–653. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef]
- Kumar, M.; Dutta, S.; You, S.; Luo, G.; Zhang, S.; Show, P.L.; Sawarkar, A.D.; Singh, L.; Tsang, D.C. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste sludge. J. Clean. Prod. 2021, 305, 127143. [Google Scholar] [CrossRef]
- Rizzioli, F.; Bertasini, D.; Bolzonella, D.; Frison, N.; Battista, F. A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector. Sep. Pur. Technol. 2022, 306, 122690. [Google Scholar] [CrossRef]
% of Element Relative to N | Typical Requirements by Plants | Nutrient Characteristics of FWAD | ||
---|---|---|---|---|
References | [17] | [12] | [18] | [19] |
N | 100 | 100 | 100 | 100 |
P | 13–19 | 7 | 6 | 15 |
K | 45–80 | 22 | 3 | 191 |
Ca | 5–15 | 8 | 7 | 22 |
Mg | 5–15 | 2 | 1 | 2 |
S | 8–9 | – | 0.78 | 8.31 |
Fe | 0.7 | 2.84 | 0.82 | 9.09 |
Mn | 0.4 | 0.10 | 0.03 | 0.15 |
Zn | 0.06 | 0.12 | 0.06 | 0.26 |
Cu | 0.03 | 0.092 | 0.006 | 0.091 |
B | 0.2 | – | – | 0 |
Mo | 0.003 | 0.0017 | 0.0000 | 0.0031 |
Cl | 0.03 | 21.5 | 42.0 | 50.3 |
Techniques | Nitrification | Struvite Precipitation | Ozonation |
---|---|---|---|
References | [14,19] | [34,35] | [36,37] |
Mechanisms | Nitrification of NH4+ into NO3− by microorganisms | Precipitation of NH4+, Mg, and PO4 into MgNH4PO4 | Oxidation of NH4+ by ozone gas |
Results | NH4+↓ (by 93%) and NO3− ↑ by using a moving bed biofilm reactor [14]. Maximum conversion rate from NH4+ to NO3−: 11.7 g N/m3/d [19]. | NH4+↓ (by 74%) at a pH of 10 [34]. NH4+↓ (by 92%) at a pH of 9 [35]. | NH4+↓ and NO3− ↑ by microbubble generator supplying 6.2 mg O3/L/min for 20 min [37]. |
Control | FWAD Treatments | Crop | Crop Responses | Reference |
---|---|---|---|---|
Synthetic fertilizer at 60 ppm nitrogen (N) during vegetative growth and 100 ppm N during fruiting | FWAD at 60 ppm N during vegetative growth and 100 ppm N during fruiting | Tomato | Survival rate ↓ Plant height ~ | [32] |
Synthetic fertilizer at electrical conductivity (EC) of 0.5 mS·cm−1 | FWAD at EC of 0.5–8.5 mS·cm−1 | Lettuce | At EC of 0.5 mS·cm−1: Fresh yields ~ At EC of 4.5, 6.5, 8.5 mS·cm−1: Fresh yields ↑ | [12] |
Synthetic fertilizer at EC of 0.5 mS·cm−1 | FWAD at EC of 0.5–8.5 mS·cm−1 | Parsley | At EC of 0.5 mS·cm−1: Fresh yields ~ At EC of 2.5, 3.5 mS·cm−1: Fresh yields ↑ | [12] |
Synthetic fertilizer at EC of 2.3 mS·cm−1 | FWAD at EC of 2.3 mS·cm−1 | Tomato | Fresh fruit yield ↓ Number of fruits ~ Fruit dry matter content ~ | [20] |
Synthetic fertilizer amended to a similar nutrient concentration as FWAD at 250 ppm N | Nitrified FWAD at 250 ppm N | Bok choy | Shoot fresh mass ~ Shoot dry mass ~ Chlorophyll content ~ | [19] |
Synthetic fertilizer at 250 ppm N | Nitrified FWAD amended to a similar nutrient concentration as synthetic fertilizer at 250 ppm N | Bok choy | Shoot fresh mass ~ Shoot dry mass ↑ | [19] |
Synthetic fertilizer at 720 ppm N | FWAD at a concentration of 20%, 40%, 60%, 80%, 100% | Bok choy | At 20–80%: Fresh mass ~ Dry mass ~ At 100%: Fresh mass ↓ Dry mass ↓ | [43] |
Synthetic fertilizer | FWAD at a concentration of 20%, 40%, 60%, 80%, 100% | Chinese spinach, water spinach, bok choy, lettuce | At 20–40%: Shoot fresh mass ~ | [4] |
Synthetic fertilizer at 192 ppm N | FWAD (at 210 ppm inorganic N) with a facilitated nitrification process, Nitrified FWAD (at 182 ppm inorganic N) without or with facilitated nitrification process | Bok choy | Shoot fresh mass ~ | [14] |
FWAD at 0, 2, 4, 6, 8, 10% without biochar | FWAD at 0, 2, 4, 6, 8, 10% with biochar | Tomato | At 2, 4, 6%: Shoot dry mass ↓ Shoot N uptake ↓ | [18] |
Synthetic fertilizer | FWAD amended biochar | Lettuce, kale, rocket salad | Shoot fresh mass ~ | [4] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ries, J.; Chen, Z.; Park, Y. Potential Applications of Food-Waste-Based Anaerobic Digestate for Sustainable Crop Production Practice. Sustainability 2023, 15, 8520. https://doi.org/10.3390/su15118520
Ries J, Chen Z, Park Y. Potential Applications of Food-Waste-Based Anaerobic Digestate for Sustainable Crop Production Practice. Sustainability. 2023; 15(11):8520. https://doi.org/10.3390/su15118520
Chicago/Turabian StyleRies, Jonathan, Zhihao Chen, and Yujin Park. 2023. "Potential Applications of Food-Waste-Based Anaerobic Digestate for Sustainable Crop Production Practice" Sustainability 15, no. 11: 8520. https://doi.org/10.3390/su15118520
APA StyleRies, J., Chen, Z., & Park, Y. (2023). Potential Applications of Food-Waste-Based Anaerobic Digestate for Sustainable Crop Production Practice. Sustainability, 15(11), 8520. https://doi.org/10.3390/su15118520