Development and Application of a Purification Method for the Determination of Three EDCs Isotopes in Sediments and Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sample Extraction and Purification
2.3. Instrumental Analysis
2.4. Study Region and Sample Collection
3. Results and Discussion
3.1. The Accuracy and Precision of CSIA
3.2. Purification Procedures
3.3. Isotope Fractionation in the Purification Procedures
3.4. Environmental Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Won, E.J.; Yun, H.Y.; Lee, D.H.; Shin, K.H. Application of Compound-Specific Isotope Analysis in Environmental Forensic and Strategic Management Avenue for Pesticide Residues. Molecules 2021, 26, 4412. [Google Scholar] [CrossRef]
- Petrie, B.; Lopardo, L.; Proctor, K.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Assessment of bisphenol-A in the urban water cycle. Sci. Total Environ. 2019, 650, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Giger, W.; Brunner, P.H.; Schaffner, C. 4-Nonylphenol in sewage sludge: Accumulation of toxic metabolites from nonionic surfactants. Science 1984, 225, 623–625. [Google Scholar] [CrossRef]
- Pignotti, E.; Dinelli, E. Distribution and partition of endocrine disrupting compounds in water and sediment: Case study of the Romagna area (North Italy). J. Geochem. Explor. 2018, 195, 66–77. [Google Scholar] [CrossRef]
- Nie, M.; Yan, C.; Dong, W.; Liu, M.; Zhou, J.; Yang, Y. Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary. Chemosphere 2015, 127, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Tu, Y.; Li, H.; Qiu, B.; Liu, Y.; Yang, Z. Endocrine-disrupting compounds in the Xiangjiang River of China: Spatio-temporal distribution, source apportionment, and risk assessment. Ecotoxicol. Environ. Saf. 2019, 167, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yin, P.; Zhao, L.; Yu, Q.; Hong, A.; Duan, S. Spatial-temporal distribution and potential ecological risk assessment of nonylphenol and octylphenol in riverine outlets of Pearl River Delta, China. J. Environ. Sci. 2014, 26, 2340–2347. [Google Scholar] [CrossRef]
- Pintado-Herrera, M.G.; Wang, C.; Lu, J.; Chang, Y.P.; Chen, W.; Li, X.; Lara-Martin, P.A. Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China. J. Hazard. Mater. 2017, 323, 128–138. [Google Scholar] [CrossRef]
- Saha, S.; Narayanan, N.; Singh, N.; Gupta, S. Occurrence of endocrine disrupting chemicals (EDCs) in river water, ground water and agricultural soils of India. Int. J. Environ. Sci. Technol. 2022, 19, 11459–11474. [Google Scholar] [CrossRef]
- Hofstetter, T.B.; Bolotin, J.; Skarpeli-Liati, M.; Wijker, R.; Kurt, Z.; Nishino, S.F.; Spain, J.C. Tracking transformation processes of organic micropollutants in aquatic environments using multi-element isotope fractionation analysis. Appl. Geochem. 2011, 26, S334–S336. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Kummel, S.; Merbach, I.; Sood, U.; Gupta, V.; Lal, R.; Richnow, H.H. Soil from a Hexachlorocyclohexane Contaminated Field Site Inoculates Wheat in a Pot Experiment to Facilitate the Microbial Transformation of beta-Hexachlorocyclohexane Examined by Compound-Specific Isotope Analysis. Environ. Sci. Technol. 2021, 55, 13812–13821. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Suchana, S.; Flick, R.; Kummel, S.; Richnow, H.; Passeport, E. Carbon, hydrogen and nitrogen stable isotope fractionation allow characterizing the reaction mechanisms of 1H-benzotriazole aqueous phototransformation. Water Res. 2021, 203, 117519. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.; Wu, L.; Nikolausz, M.; Lechtenfeld, O.J.; Richnow, H.H. 2H and 13C isotope fractionation analysis of organophosphorus compounds for characterizing transformation reactions in biogas slurry: Potential for anaerobic treatment of contaminated biomass. Water Res. 2019, 163, 114882. [Google Scholar] [CrossRef] [PubMed]
- Isaji, Y.; Ogawa, N.O.; Takano, Y.; Ohkouchi, N. Quantification and Carbon and Nitrogen Isotopic Measurements of Heme B in Environmental Samples. Anal. Chem. 2020, 92, 11213–11222. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zeng, Y.; Luo, X.; Ren, Z.; Lu, Q.; Tian, Y.; Gao, S.; Wang, S.; Harrad, S.; Mai, B. Tracing the sources and microbial degradation of PCBs in field sediments by a multiple-line-of-evidence approach including compound-specific stable isotope analysis. Water Res. 2020, 182, 115977. [Google Scholar] [CrossRef]
- Hofstetter, T.B.; Schwarzenbach, R.P.; Bernasconi, S.M. Assessing transformation processes of organic compounds using stable isotope fractionation. Environ. Sci. Technol. 2008, 42, 7737–7743. [Google Scholar] [CrossRef]
- Bashir, S.; Hitzfeld, K.L.; Gehre, M.; Richnow, H.H.; Fischer, A. Evaluating degradation of hexachlorcyclohexane (HCH) isomers within a contaminated aquifer using compound-specific stable carbon isotope analysis (CSIA). Water Res. 2015, 71, 187–196. [Google Scholar] [CrossRef]
- Alvarez-Zaldivar, P.; Payraudeau, S.; Meite, F.; Masbou, J.; Imfeld, G. Pesticide degradation and export losses at the catchment scale: Insights from compound-specific isotope analysis (CSIA). Water Res. 2018, 139, 198–207. [Google Scholar] [CrossRef]
- Droz, B.; Drouin, G.; Maurer, L.; Villette, C.; Payraudeau, S.; Imfeld, G. Phase Transfer and Biodegradation of Pesticides in Water-Sediment Systems Explored by Compound-Specific Isotope Analysis and Conceptual Modeling. Environ. Sci. Technol. 2021, 55, 4720–4728. [Google Scholar] [CrossRef]
- Broholm, M.M.; Hunkeler, D.; Tuxen, N.; Jeannottat, S.; Scheutz, C. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments. Chemosphere 2014, 108, 265–273. [Google Scholar] [CrossRef]
- Hellal, J.; Joulian, C.; Urien, C.; Ferreira, S.; Denonfoux, J.; Hermon, L.; Vuilleumier, S.; Imfeld, G. Chlorinated ethene biodegradation and associated bacterial taxa in multi-polluted groundwater: Insights from biomolecular markers and stable isotope analysis. Sci. Total Environ. 2021, 763, 142950. [Google Scholar] [CrossRef]
- Ren, Z.; Zeng, Y.; Luo, X.; Huang, C.; Tian, Y.; Gao, S.; Mai, B. Observable carbon isotope fractionation in the photodegradation of polybrominated diphenyl ethers by simulated sunlight. Chemosphere 2021, 266, 128950. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jiang, N.; Liu, Y.; Wang, X.; Liu, Y.; Jiao, D.; Wang, H. Competitive microbial degradation among PBDE congeners in anaerobic wetland sediments: Implication by multiple-line evidences including compound-specific stable isotope analysis. J. Hazard. Mater. 2021, 412, 125233. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Li, G.; An, T. Development of methodology for the determination of carbon isotope ratios using gas chromatography/combustion/isotope ratio mass spectrometry and applications in the biodegradation of phenolic brominated flame retardants and their degradation products. Rapid Commun. Mass Spectrom. 2015, 29, 54–60. [Google Scholar] [CrossRef]
- Elsner, M.; Imfeld, G. Compound-specific isotope analysis (CSIA) of micropollutants in the environment—Current developments and future challenges. Curr. Opin. Biotechnol. 2016, 41, 60–72. [Google Scholar] [CrossRef]
- Gong, J.; Duan, D.; Yang, Y.; Ran, Y.; Chen, D. Seasonal variation and partitioning of endocrine disrupting chemicals in waters and sediments of the Pearl River system, South China. Environ. Pollut. 2016, 219, 735–741. [Google Scholar] [CrossRef]
- Irei, S.; Rudolph, J.; Huang, L. Compound-specific stable carbon isotope ratios of phenols and nitrophenols derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide. Anal. Chim. Acta 2013, 786, 95–102. [Google Scholar] [CrossRef]
- Zeng, Y.H.; Luo, X.J.; Chen, H.S.; Chen, S.J.; Wu, J.P.; Mai, B.X. Method for the purification of polybrominated diphenyl ethers in sediment for compound-specific isotope analysis. Talanta 2013, 111, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Ran, Y.; Chen, D.; Yang, Y.; Ma, X. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China. Environ. Monit. Assess. 2009, 156, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kennicutt, M.C., 2nd; Qian, Y. Source characterization using compound composition and stable carbon isotope ratio of PAHs in sediments from lakes, harbor, and shipping waterway. Sci. Total Environ. 2008, 389, 367–377. [Google Scholar] [CrossRef]
- Gafni, A.; Siebner, H.; Bernstein, A. Potential for co-metabolic oxidation of TCE and evidence for its occurrence in a large-scale aquifer survey. Water Res. 2020, 171, 115431. [Google Scholar] [CrossRef] [PubMed]
- Imfeld, G.; Kopinke, F.D.; Fischer, A.; Richnow, H.H. Carbon and hydrogen isotope fractionation of benzene and toluene during hydrophobic sorption in multistep batch experiments. Chemosphere 2014, 107, 454–461. [Google Scholar] [CrossRef] [PubMed]
Compounds | δ13C (‰) | |||
---|---|---|---|---|
Underivatized a | Derivatized b | Calculated c | ∆δ13C d | |
OP (n = 5) | −27.43 ± 0.07 | −26.80 ± 0.30 | −27.15 ± 0.36 | 0.28 |
NPs (n = 5) | −29.94 ± 0.08 | −29.04 ± 0.42 | −29.82 ± 0.51 | 0.12 |
BPA (n = 5) | −30.53 ± 0.27 | −28.91 ± 0.47 | −30.41 ± 0.65 | 0.12 |
BSTFA (n = 5) | −25.16 ± 0.27 | / | / | / |
δ13C (‰) | ||||
---|---|---|---|---|
Compounds | Recoveries (%) | Before | After | ∆δ13C (‰) |
OP (n = 3) | 89.01 ± 1.46 | −27.43 ± 0.07 | −27.39 ± 0.19 | 0.04 |
NP (n = 3) | 84.55 ± 1.05 | −29.94 ± 0.08 | −29.93 ± 0.16 | 0.01 |
BPA (n = 3) | 84.60 ± 1.83 | −30.53 ± 0.27 | −30.52 ± 0.20 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Wang, R.; Wei, J.; Cao, Y. Development and Application of a Purification Method for the Determination of Three EDCs Isotopes in Sediments and Water. Sustainability 2023, 15, 8583. https://doi.org/10.3390/su15118583
Pan Z, Wang R, Wei J, Cao Y. Development and Application of a Purification Method for the Determination of Three EDCs Isotopes in Sediments and Water. Sustainability. 2023; 15(11):8583. https://doi.org/10.3390/su15118583
Chicago/Turabian StylePan, Zewen, Rui Wang, Jun Wei, and Yingjie Cao. 2023. "Development and Application of a Purification Method for the Determination of Three EDCs Isotopes in Sediments and Water" Sustainability 15, no. 11: 8583. https://doi.org/10.3390/su15118583
APA StylePan, Z., Wang, R., Wei, J., & Cao, Y. (2023). Development and Application of a Purification Method for the Determination of Three EDCs Isotopes in Sediments and Water. Sustainability, 15(11), 8583. https://doi.org/10.3390/su15118583